Arabidopsis Seed Mucilage: A Specialised Extracellular Matrix that Demonstrates the Structure–Function Versatility of Cell Wall Polysaccharides
Corresponding Author
Krešimir Šola
Department of Botany, University of British Columbia, Vancouver, Canada
These authors contributed equally to the writing of this manuscript.Search for more papers by this authorCorresponding Author
Gillian H. Dean
Department of Botany, University of British Columbia, Vancouver, Canada
These authors contributed equally to the writing of this manuscript.Search for more papers by this authorGeorge W. Haughn
Department of Botany, University of British Columbia, Vancouver, Canada
Search for more papers by this authorCorresponding Author
Krešimir Šola
Department of Botany, University of British Columbia, Vancouver, Canada
These authors contributed equally to the writing of this manuscript.Search for more papers by this authorCorresponding Author
Gillian H. Dean
Department of Botany, University of British Columbia, Vancouver, Canada
These authors contributed equally to the writing of this manuscript.Search for more papers by this authorGeorge W. Haughn
Department of Botany, University of British Columbia, Vancouver, Canada
Search for more papers by this authorAbstract
Arabidopsis seed coat mucilage is a specialised extracellular matrix composed of the same broad classes of polysaccharides found in a primary cell wall (cellulose, pectin, and hemicellulose), arranged in a distinct structure with special properties. It is deposited by the seed coat epidermal cells in the apoplast in a polar manner to produce a doughnut-shaped mucilage pocket on the outside of the cell. Following exposure to water the mucilage extrudes from the outer surface of the cell. A portion of this mucilage remains strongly adherent to the seed. The unique features of mucilage make it amenable to study, and genetic, cytological, and biochemical analyses have been used to determine its composition, synthesis, and structure, and establish how these combine to determine its properties. Lessons learned from these studies strengthen and extend our understanding of plant extracellular matrices, especially the cell wall. In this article, we summarise and contextualise what is currently known about mucilage by focusing on its main features – extrusion and adherence.
References
- Arsovski, A.A., Popma, T.M., Haughn, G.W. et al. (2009). AtBXL1 encodes a bifunctional β-d-xylosidase/α-l-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells. Plant Physiology 150: 1219–1234.
- Arsovski, A.A., Haughn, G.W., and Western, T.L. (2010). Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research. Plant Signaling & Behavior 5: 796–801. doi: 10.4161/psb.5.7.11773.
- Basu, D., Tian, L., Debrosse, T. et al. (2016). Glycosylation of a fasciclin-like arabinogalactan protein (SOS5) mediates root growth and seed mucilage adherence via a cell wall receptor-like kinase (FEI1/FEI2) pathway in Arabidopsis. PLoS One 11: e0145092. doi: 10.1371/journal.pone.0145092.
- Ben-Tov, D., Abraham, Y., Stav, S. et al. (2015). COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in Arabidopsis seed coat mucilage secretory cells. Plant Physiology 167: 711–724. doi: 10.1104/pp. 114.240671.
- Ben-Tov, D., Idan-Molakandov, A., Hugger, A. et al. (2018). The role of COBRA-LIKE 2 function, as part of the complex network of interacting pathways regulating Arabidopsis seed mucilage polysaccharide matrix organization. The Plant Journal 94: 497–512. doi: 10.1111/tpj.13871.
- Brown, D.M., Goubet, F., Wong, V.W. et al. (2007). Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. The Plant Journal 52: 1154–1168.
- Caffall, K.H., Pattathil, S., Phillips, S.E. et al. (2009). Arabidopsis thaliana T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa. Molecular Plant 2: 1000–1014. doi: 10.1093/mp/ssp062.
- Coenen, G.J., Bakx, E.J., Verhoef, R.P. et al. (2007). Identification of the connecting linkage between homo- or xylogalacturonan and rhamnogalacturonan type I. Carbohydrate Polymers 70: 224–235. doi: 10.1016/j.carbpol.2007.04.007.
- Day, R.N. and Davidson, M.W. (2009). The fluorescent protein palette: tools for cellular imaging. Chemical Society Reviews 38: 2887–2921. doi: 10.1039/b901966a.
- Dean, G.H., Zheng, H., Tewari, J. et al. (2007). The Arabidopsis MUM2 gene encodes a β-galactosidase required for the production of seed coat mucilage with correct hydration properties. Plant Cell 19: 4007–4021. doi: 10.1105/tpc.107.050609.
- Dean, G.H., Jin, Z., Shi, L. et al. (2017). Identification of a seed coat-specific promoter fragment from the Arabidopsis MUCILAGE-MODIFIED4 gene. Plant Molecular Biology 95: 33–50. doi: 10.1007/s11103-017-0631-7.
- Deng, W., Jeng, D.-S., Toorop, P.E. et al. (2011). A mathematical model of mucilage expansion in myxospermous seeds of Capsella bursa-pastoris (shepherd's purse). Annals of Botany 109: 419–427. doi: 10.1093/aob/mcr296.
- Driouich, A., Follet-gueye, M., Bernard, S. et al. (2012). Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants. Frontiers in Plant Science. doi: 10.3389/fpls.2012.00079.
- Edqvist, J., Blomqvist, K., Nieuwland, J., and Salminen, T.A. (2018). Plant lipid transfer proteins: are we finally closing in on the roles of these enigmatic proteins? Journal of Lipid Research 59: 1374–1382. doi: 10.1194/jlr.R083139.
- Esfandiari, E., Jin, Z., Abdeen, A. et al. (2013). Identification and analysis of an outer-seed-coat-specific promoter from Arabidopsis thaliana . Plant Molecular Biology 81: 93–104. doi: 10.1007/s11103-012-9984-0.
- Fangel, J.U., Ulvskov, P., Knox, J.P. et al. (2012). Cell wall evolution and diversity. Frontiers in Plant Science . doi: 10.3389/fpls.2012.00152.
- Francoz, E., Ranocha, P., Burlat, V., and Dunand, C. (2015). Arabidopsis seed mucilage secretory cells: regulation and dynamics. Trends in Plant Science 20: 515–524. doi: 10.1016/j.tplants.2015.04.008.
- Francoz, E., Lepiniec, L., and North, H.M. (2018a). Seed coats as an alternative molecular factory: thinking outside the box. Plant Reproduction 31: 327–342. doi: 10.1007/s00497-018-0345-2.
- Francoz, E., Ranocha, P., Le Ru, A. et al. (2018b). Pectin demethylesterification generates platforms that anchor peroxidases to remodel plant cell wall domains. Developmental Cell 1–16. doi: 10.1016/j.devcel.2018.11.016.
- Gendre, D., McFarlane, H.E., Johnson, E. et al. (2013). Trans-golgi network Localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. Plant Cell 25: 2633–2646. doi: 10.1105/tpc.113.112482.
- Golz, J.F., Allen, P.J., Li, S.F. et al. (2018). Insights into the role of transcription factors controlling mucilage production in the Arabidopsis seed coat. Plant Science 272: 179–192. doi: 10.1016/j.plantsci.2018.04.021.
- Goujon, T., Minic, Z., El Amrani, A. et al. (2003). AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. The Plant Journal 33: 677–690.
- Grant, G.T., Morris, E.R., Rees, D.A. et al. (1973). Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Letters 32: 195–198. doi: 10.1016/0014-5793(73)80770-7.
- Griffiths, J.S. and North, H.M. (2017). Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions. The New Phytologist 214: 959–966. doi: 10.1111/nph.14468.
- Griffiths, J.S., Tsai, A.Y.-L., Xue, H. et al. (2014). SALT-OVERLY SENSITIVE5 mediates Arabidopsis seed coat mucilage adherence and organization through pectins. Plant Physiology 165: 991–1004. doi: 10.1104/pp.114.239400.
- Griffiths, J.S., Šola, K., Kushwaha, R. et al. (2015). Unidirectional movement of cellulose synthase complexes in Arabidopsis seed coat epidermal cells deposit cellulose involved in mucilage extrusion, adherence, and ray formation. Plant Physiology 168: 502–520.
- Griffiths, J.S., Crepeau, M.-J., Ralet, M.-C. et al. (2016). Dissecting seed mucilage adherence mediated by FEI2 and SOS5. Frontiers in Plant Science . doi: 10.3389/fpls.2016.01073.
- Hamilton, J.M.U., Simpson, D.J., Hyman, S.C. et al. (2003). Ara12 subtilisin-like protease from Arabidopsis thaliana: purification, substrate specificity and tissue localization. Biochemical Journal 370: 57–67. doi: 10.1042/bj20021125.
- Harpaz-Saad, S., McFarlane, H.E., Xu, S. et al. (2011). Cellulose synthesis via the FEI2 RLK/SOS5 pathway and CELLULOSE SYNTHASE 5 is required for the structure of seed coat mucilage in Arabidopsis. The Plant Journal 68: 941–953.
- Haughn, G.W. and Chaudhury, A. (2005). Genetic analysis of seed coat development in Arabidopsis . Trends in Plant Science 10: 472–477. doi: 10.1016/j.tplants.2005.08.005.
- Haughn, G.W. and Western, T.L. (2012). Arabidopsis seed coat mucilage is a specialized cell wall that can be used as a model for genetic analysis of plant cell wall structure and function. Frontiers in Plant Science 3: 1–5. doi: 10.3389/fpls.2012.00064.
- Hu, R., Li, J., Wang, X. et al. (2016a). Xylan synthesized by Irregular Xylem 14 (IRX14) maintains the structure of seed coat mucilage in Arabidopsis. Journal of Experimental Botany 67: 1243–1257. doi: 10.1093/jxb/erv510.
- Hu, R., Li, J., Yang, X. et al. (2016b). Irregular xylem 7 (IRX7) is required for anchoring seed coat mucilage in Arabidopsis. Plant Molecular Biology 92: 25–38. doi: 10.1007/s11103-016-0493-4.
- Huang, J., DeBowles, D., Esfandiari, E. et al. (2011). The Arabidopsis transcription factor LUH/MUM1 is required for extrusion of seed coat mucilage. Plant Physiology 156: 491–502.
- Kauss, H. and Hassid, W.Z. (1967). Enzymic introduction of the methyl ester groups of pectin. The Journal of Biological Chemistry 242: 3449–3453.
- Kohn, R., Markovič, O., and Machová, E. (1983). Deesterification mode of pectin by pectin esterases of Aspergillus foetidus, tomatoes and alfalfa. Collection of Czechoslovak Chemical Communications 48: 790–797. doi: 10.1135/cccc19830790.
- Kong, Y., Zhou, G., Abdeen, A.M.A. et al. (2013). GALACTURONOSYLTRANSFERASE-LIKE5 is involved in the production of Arabidopsis seed coat mucilage. Plant Physiology 163: 1203–1217. doi: 10.1104/pp.113.227041.
- Kulich, I., Cole, R., Drdová, E. et al. (2010). Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. The New Phytologist 188: 615–625. doi: 10.1111/j.1469-8137.2010.03372.x.
- Kunieda, T., Shimada, T., Kondo, M. et al. (2013). Spatiotemporal secretion of PEROXIDASE36 is required for seed coat mucilage extrusion in Arabidopsis . Plant Cell 25: 1355–1367. doi: 10.1105/tpc.113.110072.
- Lau, J.M., McNeil, M., Darvill, A.G., and Albersheim, P. (1985). Structure of the backbone of rhamnogalacturonan I, a pectic polysaccharide in the primary cell walls of plants. Carbohydrate Research 137: 111–125. doi: 10.1016/0008-6215(85)85153-3.
- Lau, J.M., McNeil, M., Darvill, A.G., and Albersheim, P. (1987). Treatment of rhamnogalacturonan I with lithium in ethylenediamine. Carbohydrate Research 168: 245–274. doi: 10.1016/0008-6215(87)80029-0.
- Lerouge, P., Neill, M.A.O., Darvill, A.G., and Albersheim, P. (1993). Structural characterization of endo-glycanase-generated oligoglycosyl side chains of rhamnogalacturonan I. Carbohydrate Research 243: 359–371.
- Levy, S. and Staehelin, L.A. (1992). Synthesis, assembly and function of plant cell wall macromolecules. Current Opinion in Cell Biology 4: 856–862. doi: 10.1016/0955-0674(92)90111-O.
- Liwanag, A.J.M., Ebert, B., Verhertbruggen, Y. et al. (2012). Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a β-1,4-galactan β-1,4-galactosyltransferase. Plant Cell 24: 5024–5036. doi: 10.1105/tpc.112.106625.
- MacMillan, C.P., Birke, H., Chuah, A. et al. (2017). Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls. BMC Genomics . doi: 10.1186/s12864-017-3902-4.
- Macquet, A., Ralet, M.-C., Loudet, O. et al. (2007a). A naturally occurring mutation in an Arabidopsis accession affects a β-d-galactosidase that increases the hydrophilic potential of rhamnogalacturonan I in seed mucilage. Plant Cell 19: 3990–4006.
- Macquet, A., Ralet, M.C., Kronenberger, J. et al. (2007b). In-situ, chemical and macromolecular study of the composition of Arabidopsis thaliana seed coat mucilage. Plant & Cell Physiology 48: 984–999. doi: 10.1093/pcp/pcm068.
- McFarlane, H.E., Young, R.E., Wasteneys, G.O., and Samuels, A.L. (2008). Cortical microtubules mark the mucilage secretion domain of the plasma membrane in Arabidopsis seed coat cells. Planta 227: 1363–1375. doi: 10.1007/s00425-008-0708-2.
- McFarlane, H.E., Watanabe, Y., Gendre, D. et al. (2013). Cell wall polysaccharides are mislocalized to the vacuole in echidna mutants. Plant & Cell Physiology 54: 1867–1880. doi: 10.1093/pcp/pct129.
- McGee, R., Dean, G.H., Mansfield, S.D., and Haughn, G.W. (2019). Assessing the utility of seed coat-specific promoters to engineer cell wall polysaccharide composition of mucilage. Plant Molecular Biology. doi: org/10.1007/s11103-019-00909-8
- McNeil, M., Darvill, A.G., and Albersheim, P. (1980). Rhamnogalacturonan I, a structurally complex pectic polysaccharide in the walls of suspension-cultured sycamore cells. Plant Physiology 66: 1128–1134. doi: 10.1104/pp.66.6.1128.
- Mendu, V., Griffiths, J., Persson, S. et al. (2011). Subfunctionalization of cellulose synthases in seed coat epidermal cells mediates secondary radial wall synthesis and mucilage attachment. Plant Physiology 157: 441–453.
- Miller, D.H., Lamport, D.T.A., and Miller, M. (1972). Hydroxyproline heterooligosaccharides in Chlamydomonas. Science 176: 918–920. doi: 10.1126/science.176.4037.918.
- Miller, D.H., Mellman, I.R.A.S., and Lamport, D.T.A. (1974). The chemical composition of the cell wall of Chlamydomonas gymnogama and the concept of a plant cell wall protein. The Journal of Cell Biology 63: 420–429.
- Minic, Z., Rihouey, C., Do, C.T. et al. (2004). Purification and characterization of enzymes exhibiting β-d-xylosidase activities in stem tissues of Arabidopsis. Plant Physiology 135: 867–878.
- North, H.M., Berger, A., Saez-Aguayo, S., and Ralet, M.-C. (2014). Understanding polysaccharide production and properties using seed coat mutants: future perspectives for the exploitation of natural variants. Annals of Botany 114: 1251–1263. doi: 10.1093/aob/mcu011.
- O'Neill, M.A., Eberhard, S., Albersheim, P., and Darvill, A.G. (2001). Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294: 846–849.
- Oka, T., Nemoto, T., and Jigami, Y. (2006). Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-d-glucose to UDP-l-rhamnose conversion. The Journal of Biological Chemistry 282: 5389–5403. doi: 10.1074/jbc.M610196200.
- Park, Y.B. and Cosgrove, D.J. (2012). Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis. Plant Physiology 158: 465–475. doi: 10.1104/pp.111.189779.
- Peña, M.J., Zhong, R., Zhou, G.-K. et al. (2007). Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. The Plant Journal 19: 549–563. doi: 10.1105/tpc.106.049320.
-
Phan, J.L. and Burton, R.A. (2018). New insights into the composition and structure of seed mucilage. Annual Plant Reviews Online 1: 1–41. doi: 10.1002/9781119312994.apr0606.
10.1002/9781119312994.apr0606 Google Scholar
- Polko, J.K. and Kieber, J.J. (2019). The regulation of cellulose biosynthesis in plants. Plant Cell 31: 282–296. doi: 10.1105/tpc.18.00760.
- Polko, J.K., Barnes, W.J., Pauly, M. et al. (2018). SHOU4 proteins regulate trafficking of cellulose synthase complexes to the plasma membrane. Current Biology 28: 3174–3182. doi: 10.1016/j.cub.2018.07.076.
- Ralet, M.-C., Crépeau, M.-J., Vigouroux, J. et al. (2016). Xylans provide the structural driving force for mucilage adhesion to the Arabidopsis seed coat. Plant Physiology 171: 00211.2016. doi: 10.1104/pp.16.00211.
- Rautengarten, C., Usadel, B., Neumetzler, L. et al. (2008). A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats. The Plant Journal 54: 466–480.
- Rautengarten, C., Ebert, B., Herter, T. et al. (2011). The interconversion of UDP-arabinopyranose and UDP-arabinofuranose is indispensable for plant development in Arabidopsis . Plant Cell 23: 1373–1390. doi: 10.1105/tpc.111.083931.
- Rautengarten, C., Ebert, B., Moreno, I. et al. (2014). The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis . Proceedings of the National Academy of Sciences 111: 11563–11568. doi: 10.1073/pnas.1406073111.
- Ridley, B.L., O'Neill, M.A., and Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57: 929–967.
- Saez-Aguayo, S., Ralet, M.-C., Berger, A. et al. (2013). PECTIN METHYLESTERASE INHIBITOR6 promotes Arabidopsis mucilage release by limiting methylesterification of homogalacturonan in seed coat epidermal cells. Plant Cell 25: 308–323. doi: 10.1105/tpc.112.106575.
- Saez-Aguayo, S., Rautengarten, C., Temple, H. et al. (2017). UUAT1 is a Golgi-localized UDP-uronic acid transporter that modulates the polysaccharide composition of Arabidopsis seed mucilage. Plant Cell 29: 129–143. doi: 10.1105/tpc.16.00465.
- Schuetz, M., Smith, R., and Ellis, B.E. (2013). Xylem tissue specification, patterning, and differentiation mechanisms. Journal of Experimental Botany 64: 11–31. doi: 10.1093/jxb/ers287.
- Shahriari, M., Hülskamp, M., and Schellmann, S. (2010). Seeds of Arabidopsis plants expressing dominant-negative AtSKD1 under control of the GL2 promoter show a transparent testa phenotype and a mucilage defect. Plant Signaling & Behavior 5: 1308–1310. doi: 10.4161/psb.5.10.13134.
- Shi, H., Kim, Y., Guo, Y. et al. (2003). The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15: 19–32. doi: 10.1105/tpc.007872.
- Shi, D.-C., Wang, J., Hu, R.B. et al. (2017). Boron-bridged RG-II and calcium are required to maintain the pectin network of the Arabidopsis seed mucilage ultrastructure. Plant Molecular Biology 1–14. doi: 10.1007/s11103-017-0606-8.
- Shi, D., Ren, A., Tang, X. et al. (2018). MYB52 negatively regulates pectin demethylesterification in seed coat mucilage. Plant Physiology 176: 2737–2749. doi: 10.1104/pp.17.01771.
- Shimada, T., Kunieda, T., Sumi, S. et al. (2018). The AP-1 complex is required for proper mucilage formation in Arabidopsis seeds. Plant & Cell Physiology 1–8. doi: 10.1093/pcp/pcy158.
- Šola, K., Gilchrist, E.J., Ropartz, D. et al. (2019). RUBY, a putative galactose oxidase, influences pectin properties and promotes cell-to-cell adhesion in the seed coat epidermis of Arabidopsis thaliana . The Plant Cell . doi: 10.1105/tpc.18.00954.
- Sorensen, I., Domozych, D., and Willats, W.G.T. (2010). How have plant cell walls evolved? Plant Physiology 153: 366–372. doi: 10.1104/pp.110.154427.
- Stork, J., Harris, D., Griffiths, J. et al. (2010). CELLULOSE SYNTHASE9 serves a nonredundant role in secondary cell wall synthesis in Arabidopsis epidermal testa cells. Plant Physiology 153: 580–589. doi: 10.1104/pp.110.154062.
- Sullivan, S., Ralet, M.-C., Berger, A. et al. (2011). CESA5 is required for the synthesis of cellulose with a role in structuring the adherent mucilage of Arabidopsis seeds. Plant Physiology 156: 1725–1739. doi: 10.1104/pp.111.179077.
- Takenaka, Y., Kato, K., Ogawa-Ohnishi, M. et al. (2018). Pectin RG-I rhamnosyltransferases represent a novel plant-specific glycosyltransferase family. Nature Plants. doi: 10.1038/s41477-018-0217-7.
- Tan, L., Eberhard, S., Pattathil, S. et al. (2013). An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25: 270–287. doi: 10.1105/tpc.112.107334.
- Tsai, A.Y.-L., Kunieda, T., Rogalski, J. et al. (2017). Identification and characterization of seed coat mucilage proteins. Plant Physiology 173: 1059–1074. doi: 10.1104/pp.16.01600.
- Turbant, A., Fournet, F., Lequart, M. et al. (2016). PME58 plays a role in pectin distribution during seed coat mucilage extrusion through homogalacturonan modification. Journal of Experimental Botany 67: 2177–2190. doi: 10.1093/jxb/erw025.
- Usadel, B., Kuschinsky, A.M., Rosso, M.G. et al. (2004). RHM2 is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis. Plant Physiology 134: 286–295. doi: 10.1104/pp.103.034314.
- Voiniciuc, C. and Günl, M. (2016). Analysis of monosaccharides in total mucilage extractable from Arabidopsis seeds. Bio-protocol 6: e1801.
- Voiniciuc, C., Dean, G.H., Griffiths, J.S. et al. (2013). FLYING SAUCER1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed Mucilage. Plant Cell 25: 944–959. doi: 10.1105/tpc.112.107888.
- Voiniciuc, C., Günl, M., Schmidt, M.H.-W., and Usadel, B. (2015a). Highly branched xylan made by IRREGULAR XYLEM14 and MUCILAGE-RELATED21 links mucilage to Arabidopsis seeds. Plant Physiology 169: 2481–2495. doi: 10.1104/pp.15.01441.
- Voiniciuc, C., Schmidt, M.H.-W., Berger, A. et al. (2015b). MUCILAGE-RELATED10 produces galactoglucomannan that maintains pectin and cellulose architecture in Arabidopsis seed mucilage. Plant Physiology 169: 403–420. doi: 10.1104/pp.15.00851.
- Voiniciuc, C., Yang, B., Schmidt, M.H.-W. et al. (2015c). Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls. International Journal of Molecular Sciences 16: 3452–3473. doi: 10.3390/ijms16023452.
- Voiniciuc, C., Engle, K.A., Günl, M. et al. (2018). Identification of key enzymes for pectin synthesis in seed mucilage. Plant Physiology 178: 00584.2018. doi: 10.1104/pp.18.00584.
- Western, T.L. (2012). The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal. Seed Science Research 22: 1–25. doi: 10.1017/S0960258511000249.
- Western, T.L., Skinner, D.J., and Haughn, G.W. (2000). Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiology 122: 345–356. doi: 10.1104/pp.122.2.345.
- Western, T.L., Burn, J., Tan, W.L. et al. (2001). Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis. Plant Physiology 127: 998–1011. doi: 10.1104/pp.010410.
- Western, T.L., Young, D.S., Dean, G.H. et al. (2004). MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiology 134: 296–306. doi: 10.1104/pp.103.035519.
- van Wijk, R., Zhang, Q., Zarza, X. et al. (2018). Role for Arabidopsis PLC7 in stomatal Movement, seed mucilage attachment, and leaf serration. Frontiers in Plant Science 9: 1721. doi: 10.3389/fpls.2018.01721.
- Willats, W.G.T., McCartney, L., and Knox, J.P. (2001a). In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana . Planta 213: 37–44.
- Willats, W.G.T., McCartney, L., Mackie, W., and Knox, J.P. (2001b). Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology 47: 9–27. doi: 10.1023/A:1010662911148.
- Wolf, S., Van Der Does, D., Ladwig, F. et al. (2014). A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling. Proceedings of the National Academy of Sciences . doi: 10.1073/pnas.1322979111.
- Wormit, A. and Usadel, B. (2018). The multifaceted role of pectin methylesterase inhibitors (PMEIs). International Journal of Molecular Sciences 19: 2878.
- Xu, S.-L., Rahman, A., Baskin, T.I., and Kieber, J.J. (2008). Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20: 3065–3079. doi: 10.1105/tpc.108.063354.
- Yang, X., Baskin, J.M., Baskin, C.C., and Huang, Z. (2012). More than just a coating: Ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspectives in Plant Ecology, Evolution and Systematics 14: 434–442. doi: 10.1016/j.ppees.2012.09.002.
- Yang, B., Voiniciuc, C., Fu, L. et al. (2018). TRM4 is essential for cellulose deposition in Arabidopsis seed mucilage by maintaining cortical microtubule organization and interacting with CESA3. The New Phytologist . doi: 10.1111/nph.15442.
-
Yin, Y., Mohnen, D., Albersheim, I.G. et al. (2011). Glycosyltransferases of the GT8 family. Annual Plant Reviews 167–211. doi: 10.1002/9781119312994.apr0435.
10.1002/9781119312994.apr0435 Google Scholar
- Young, R.E., McFarlane, H.E., Hahn, M.G. et al. (2008). Analysis of the golgi apparatus in Arabidopsis seed coat cells during polarized secretion of pectin-rich mucilage. Plant Cell 20: 1623–1638.
- Yu, L., Shi, D., Li, J. et al. (2014). CELLULOSE SYNTHASE-LIKE A2, a glucomannan synthase, is involved in maintaining adherent mucilage structure in Arabidopsis seed. Plant Physiology 164: 1842–1856. doi: 10.1104/pp.114.236596.
- Yu, L., Lyczakowski, J.J., Pereira, C.S. et al. (2018). The patterned structure of galactoglucomannan suggests it may bind to cellulose in seed mucilage. Plant Physiology 178: 00709.2018. doi: 10.1104/pp.18.00709.
- Zhang, G.F. and Staehelin, L.A. (1992). Functional compartmentation of the Golgi apparatus of plant cells. Plant Physiology 99: 1070–1083. doi: 10.1104/pp.99.3.1070.
- Zhang, Y., Nikolovski, N., Sorieul, M. et al. (2016). Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. Nature Communications . doi: 10.1038/ncomms11656.
- Zhao, X., Qiao, L., and Wu, A.M. (2017). Effective extraction of Arabidopsis adherent seed mucilage by ultrasonic treatment. Scientific Reports 7: 1–8. doi: 10.1038/srep40672.
Citing Literature
Browse other articles of this reference work: