Amborella – Bearing Witness to the Past?
Valérie Poncet
UMR DIADE, IRD, University of Montpellier, Montpellier, France
Search for more papers by this authorPhilippe Birnbaum
UMR AMAP, CIRAD, IRD, CNRS, INRA, University of Montpellier, Montpellier, France
CIRAD, UMR AMAP, Nouméa, New Caledonia, France
Institut Agronomique néo-Calédonien (IAC), Equipe Sol & Végétation, Nouméa, New Caledonia, France
Search for more papers by this authorValérie Burtet-Sarramegna
Institut des Sciences Exactes et Appliquées (ISEA), Université de la Nouvelle-Calédonie, Nouméa, New Caledonia, France
Search for more papers by this authorAlexandre de Kochko
UMR DIADE, IRD, University of Montpellier, Montpellier, France
Search for more papers by this authorBruno Fogliani
Institut Agronomique néo-Calédonien (IAC), Equipe ARBOREAL, Paita, New Caledonia, France
Search for more papers by this authorGildas Gâteblé
Institut Agronomique néo-Calédonien (IAC), Equipe ARBOREAL, Paita, New Caledonia, France
Search for more papers by this authorSandrine Isnard
UMR AMAP, CIRAD, IRD, CNRS, INRA, University of Montpellier, Montpellier, France
UMR AMAP, IRD, Herbier de Nouvelle-Calédonie, Nouméa, New Caledonia, France
Search for more papers by this authorTanguy Jaffré
UMR AMAP, CIRAD, IRD, CNRS, INRA, University of Montpellier, Montpellier, France
UMR AMAP, IRD, Herbier de Nouvelle-Calédonie, Nouméa, New Caledonia, France
Search for more papers by this authorDominique Job
CNRS/Uni. Claude Bernard/INSA/Bayer CropScience Joint Laboratory (UMR5240), Lyon, France
Search for more papers by this authorFrançois Munoz
Laboratoire d'Ecologie Alpine, Université de Grenoble Alpes, Grenoble, France
Search for more papers by this authorJérôme Munzinger
UMR AMAP, CIRAD, IRD, CNRS, INRA, University of Montpellier, Montpellier, France
Search for more papers by this authorCharles P. Scutt
Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon-1, CNRS, INRA, Lyon, France
Search for more papers by this authorRémi Tournebize
UMR DIADE, IRD, University of Montpellier, Montpellier, France
Search for more papers by this authorSantiago Trueba
UMR AMAP, CIRAD, IRD, CNRS, INRA, University of Montpellier, Montpellier, France
School of Forestry & Environmental Studies, Yale University, New Haven, CT, USA
Search for more papers by this authorYohan Pillon
UMR LSTM, IRD, INRA, CIRAD, Montpellier Supagro, University of Montpellier, Montpellier, France
Search for more papers by this authorValérie Poncet
UMR DIADE, IRD, University of Montpellier, Montpellier, France
Search for more papers by this authorPhilippe Birnbaum
UMR AMAP, CIRAD, IRD, CNRS, INRA, University of Montpellier, Montpellier, France
CIRAD, UMR AMAP, Nouméa, New Caledonia, France
Institut Agronomique néo-Calédonien (IAC), Equipe Sol & Végétation, Nouméa, New Caledonia, France
Search for more papers by this authorValérie Burtet-Sarramegna
Institut des Sciences Exactes et Appliquées (ISEA), Université de la Nouvelle-Calédonie, Nouméa, New Caledonia, France
Search for more papers by this authorAlexandre de Kochko
UMR DIADE, IRD, University of Montpellier, Montpellier, France
Search for more papers by this authorBruno Fogliani
Institut Agronomique néo-Calédonien (IAC), Equipe ARBOREAL, Paita, New Caledonia, France
Search for more papers by this authorGildas Gâteblé
Institut Agronomique néo-Calédonien (IAC), Equipe ARBOREAL, Paita, New Caledonia, France
Search for more papers by this authorSandrine Isnard
UMR AMAP, CIRAD, IRD, CNRS, INRA, University of Montpellier, Montpellier, France
UMR AMAP, IRD, Herbier de Nouvelle-Calédonie, Nouméa, New Caledonia, France
Search for more papers by this authorTanguy Jaffré
UMR AMAP, CIRAD, IRD, CNRS, INRA, University of Montpellier, Montpellier, France
UMR AMAP, IRD, Herbier de Nouvelle-Calédonie, Nouméa, New Caledonia, France
Search for more papers by this authorDominique Job
CNRS/Uni. Claude Bernard/INSA/Bayer CropScience Joint Laboratory (UMR5240), Lyon, France
Search for more papers by this authorFrançois Munoz
Laboratoire d'Ecologie Alpine, Université de Grenoble Alpes, Grenoble, France
Search for more papers by this authorJérôme Munzinger
UMR AMAP, CIRAD, IRD, CNRS, INRA, University of Montpellier, Montpellier, France
Search for more papers by this authorCharles P. Scutt
Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon-1, CNRS, INRA, Lyon, France
Search for more papers by this authorRémi Tournebize
UMR DIADE, IRD, University of Montpellier, Montpellier, France
Search for more papers by this authorSantiago Trueba
UMR AMAP, CIRAD, IRD, CNRS, INRA, University of Montpellier, Montpellier, France
School of Forestry & Environmental Studies, Yale University, New Haven, CT, USA
Search for more papers by this authorYohan Pillon
UMR LSTM, IRD, INRA, CIRAD, Montpellier Supagro, University of Montpellier, Montpellier, France
Search for more papers by this authorAbstract
Amborella trichopoda (Amborellaceae) is a shrub endemic to New Caledonia in the Southwest Pacific region. This plant suddenly became famous when molecular phylogenetic studies revealed that this sole species is likely the sister taxon to all other angiosperms. It has thus been a prime research model for reconstructing plant evolution and gaining insight into what the earliest angiosperms looked like. A wealth of studies on Amborella have now shed considerable light on its genome, morphology, anatomy, physiology, development, and architecture – this research is reviewed in this article. While Amborella likely retained some ancestral traits, critical character reconstructions have also highlighted some derived and sometimes unique characters in this species. The history of Amborella is also tied to the South Pacific archipelago of New Caledonia, its homeland. It was part of the New Caledonian biogeography puzzle and its genetic history shed light on the dynamics of its ecosystem, the rainforest understorey. Amborella is now cultivated in botanical gardens and has been the focus of some conservation measures that will also benefit other species in this biodiversity hotspot.
References
- Adams, K. (2013). Genomic clues to the ancestral flowering plant. Science 342: 1456–1457.
- Aitchison, J.C., Clarke, G.L., Meffre, S., and Cluzel, D. (1995). Eocene arc-continent collision in New Caledonia and implications for regional southwest Pacific tectonic evolution. Geology 23: 161–164.
- Amborella Genome Project (2013). The Amborella genome and the evolution of flowering plants. Science 342: 1241089.
- Anger, N., Fogliani, B., Scutt, C.P., and Gâteblé, G. (2017). Dioecy in Amborella trichopoda: evidence for genetically based sex determination and its consequences for inferences of the breeding system in early angiosperms. AoB PLANTS 119: 591–597.
- Anonymous (1976). South Pacific hunt, UCSC alumni couple gathers rare plants. University Bulletin 24: 71.
- APGII (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141: 399–436.
- APGIV (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20.
- Archibald, J.M. (2011). Origin of eukaryotic cells: 40 years on. Symbiosis 54: 69–86.
- Arnault, G., Vialette, A.C.M., Andres-Robin, A. et al. (2018). Evidence for the extensive conservation of mechanisms of ovule integument development since the most recent common ancestor of living Angiosperms. Frontiers in Plant Science 9: 1352.
- Bailey, I.W. (1957). The potentialities and limitations of wood anatomy in the study of the phylogeny and classification of angiosperms. Journal of the Arnold Arboretum 38 (3): 243–254.
- Bailey, I.W. and Swamy, B.G.L. (1948). Amborella trichopoda Baill., a new morphological type of vesselless dicotyledon. Journal of the Arnold Arboretum 29: 245–254.
- Baillon, H. (1869). Histoire des plantes. Paris: Hachette.
- Baillon, H. (1873). Sur deux genres de Monimiacées. Adansonia, recueil périodique d'observations botaniques 10: 354–355.
- Barba-Montoya, J., dos Reis, M., Schneider, H. et al. (2018). Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytologist 218: 819–834.
- Barkman, T.J., Chenery, G., McNeal, J.R. et al. (2000). Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proceedings of the National Academy of Sciences of the United States of America 97: 13166–13171.
- Bell, C.D., Soltis, D.E., and Soltis, P.S. (2010). The age and diversification of the angiosperms re-revisited. American Journal of Botany 97: 1296–1303.
- Bergthorsson, U., Adams, K.L., Thomason, B., and Palmer, J.D. (2003). Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424: 197.
- Bergthorsson, U., Richardson, A.O., Young, G.J. et al. (2004). Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proceedings of the National Academy of Sciences of the United States of America 101: 17747–17752.
- Birnbaum, P., Ibanez, T., Pouteau, R. et al. (2015a). Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island. AoB PLANTS 7: plv075.
- Birnbaum, P., Ibanez, T., Vandrot, H. et al. (2015b). Les forêts humides de la province Nord, Nouvelle-Calédonie. Synthèse des travaux de recherche 2012-2015. Nouméa: IAC.
- Blanchard, E., Birnbaum, P., Ibanez, T. et al. (2016). Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas. Trees 30: 1953–1968.
10.1007/s00468-016-1424-3 Google Scholar
- Bond, W.J. (1989). The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36: 227–249.
- Boucher, Y., Douady, C.J., Papke, R.T. et al. (2003). Lateral gene transfer and the origins of Prokaryotic groups. Annual Review of Genetics 37: 283–328.
- Bowman, J.L., Kohchi, T., Yamato, K.T. et al. (2017). Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171: 287–304.e215.
- Buzgo, M., Soltis, P.S., and Soltis, D.E. (2004). Floral developmental morphology of Amborella trichopoda (Amborellaceae). International Journal of Plant Sciences 165: 925–947.
- Cailleau, A., Cheptou, P.O., and Lenormand, T. (2010). Ploidy and the evolution of endosperm of flowering plants. Genetics 184: 439–453.
- Carlquist, S. (1965). Island Life. New York: American Museum of Natural History.
- Carlquist, S. (1996). Wood anatomy of primitive angiosperms: new perspectives and syntheses. In: Flowering Plant Origin, Evolution & Phylogeny (ed. D.W. Taylor and L.J. Hickey), 68–90. Boston, MA: Springer US.
10.1007/978-0-585-23095-5_4 Google Scholar
- Carlquist, S. (2009). Xylem heterochrony: an unappreciated key to angiosperm origin and diversifications. Botanical Journal of the Linnean Society 161: 26–65.
- Carlquist, S. (2012). How wood evolves: a new synthesis. Botany 90: 901–940.
- Carlquist, S. and Schneider, E.L. (2001). Vegetative anatomy of the New Caledonian endemic Amborella trichopoda: relationships with the Illiciales and implications for vessel origin and definition. Pacific Science 55: 305–312.
10.1353/psc.2001.0020 Google Scholar
- Carlquist, S. and Schneider, E.L. (2002). The tracheid-vessel element transition in angiosperms involves multiple independent features: cladistic consequences. American Journal of Botany 89: 185–195.
- Carlquist, S., Schneider, E.L., and Hellquist, C.B. (2009). Xylem of early angiosperms: Nuphar (Nymphaeaceae) has novel tracheid microstructure 1. American Journal of Botany 96: 207–215.
- Causier, B., Schwarz-Sommer, Z., and Davies, B. (2010). Floral organ identity: 20 years of ABCs. Seminars in Cell & Developmental Biology 21: 73–79.
- Chamala, S., Chanderbali, A.S., Der, J.P. et al. (2013). Assembly and validation of the genome of the nonmodel basal angiosperm Amborella. Science 342: 1516–1517.
- Chanderbali, A.S., Berger, B.A., Howarth, D.G. et al. (2017). Evolution of floral diversity: genomics, genes and gamma. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 372: 20150509.
- Chang, C.R., Bowman, J.L., and Meyerowitz, E.M. (2016). Field guide to plant model systems. Cell 167: 325–339.
- Chase, M.W., Soltis, D.E., Olmstead, R.G. et al. (1993). Phylogenetics of seed plants - an analysis of nucleotide-sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80: 528–580.
- Cluzel, D., Chiron, D., and Courme, M.D. (1998). Upper Eocene unconformity and pre-obduction events in New Caledonia. Comptes Rendus de l'Académie des Sciences - Sciences de la terre et des planétes 327: 485–491.
- Cooper, E.D. (2014). Horizontal gene transfer: accidental inheritance drives adaptation. Current Biology 24: R562–R564.
- Crisp, A., Boschetti, C., Perry, M. et al. (2015). Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biology 16: 50.
- Cruaud, A., Jabbour-Zahab, R., Genson, G. et al. (2012). Testing the emergence of New Caledonia: fig wasp mutualism as a case study and a review of evidence. PLoS One 7: e30941.
- Darwin, C.R. (1903). Letter to J.D. Hooker, July 22nd 1879. In: More Letters of Charles Darwin: A Record of His Work in a Series of Hitherto Unpublished Papers, vol. II (ed. F. Darwin and A.C. Seward), 20–21. London: John Murray.
- De-Paula, O.C., Assis, L.C.S., and de Craene, L.P.R. (2018). Unbuttoning the ancestral flower of angiosperms. Trends in Plant Science 23: 551–554.
- Dickie, J. and Pritchard, H. (2002). Systematic and evolutionary aspects of desiccation tolerance in seeds. In: Desiccation and Plant Survival (ed. M. Black and H. Pritchard), 239–262. Wallingford, UK: CABI Publishing.
10.1079/9780851995342.0239 Google Scholar
- Dong, S., Zhao, C., Chen, F. et al. (2018). The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genomics 19: 614.
- Doyle, J.A. and Endress, P.K. (2000). Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. International Journal of Plant Sciences 161: S121–S153.
- Drew, B.T., Ruhfel, B.R., Smith, S.A. et al. (2014). Another look at the root of the angiosperms reveals a familiar tale. Systematic Biology 63: 368–382.
- Endress, P.K. (2001). The flowers in extant basal angiosperms and inferences on ancestral flowers. International Journal of Plant Sciences 162: 1111–1140.
- Endress, P.K. and Doyle, J.A. (2009). Reconstructing the ancestral angiosperm flower and its initial specializations. American Journal of Botany 96: 22–66.
- Endress, P.K. and Doyle, J.A. (2015). Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. Taxon 64: 1093–1116.
- Endress, P.K. and Igersheim, A. (2000a). Gynoecium structure and evolution in basal angiosperms. International Journal of Plant Sciences 161: S211–S223.
- Endress, P.K. and Igersheim, A. (2000b). The reproductive structures of the basal angiosperm Amborella trichopoda (Amborellaceae). International Journal of Plant Sciences 161: 237–248.
- Enright, N.J., Ogden, J., and Rigg, L. (1999). Dynamics of forests with Araucariaceae in the western Pacific. Journal of Vegetation Science 10: 793–804.
- Feild, T.S. and Arens, N.C. (2005). Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils. New Phytologist 166: 383–408.
- Feild, T.S., Zweiniecki, M.A., Brodribb, T. et al. (2000). Structure and fonction of tracheary elements in Amborella trichopoda. International Journal of Plant Sciences 161: 705–712.
- Feild, T.S., Brodribb, T., and Holbrook, N.M. (2002). Hardly a relict: freezing and the evolution of vesselless wood in Winteraceae. Evolution 56: 464–478.
- Feild, T.S., Arens, N.C., Doyle, J.A. et al. (2004). Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30: 82–107.
- Feild, T.S., Chatelet, D.S., and Brodribb, T.J. (2009). Ancestral xerophobia: a hypothesis on the whole plant ecophysiology of early angiosperms. Geobiology 7: 237–264.
- Feild, T.S., Chatelet, D.S., Balun, L. et al. (2012). The evolution of angiosperm lianescence without vessels – climbing mode and wood structure–function in Tasmannia cordata (Winteraceae). New Phytologist 193: 229–240.
- Field, D.L., Pickup, M., and Barrett, S.C.H. (2013). Comparative analyses of sex-ratio variation in dioecious flowering plants. Evolution 67: 661–672.
- Fogliani, B., Gâteblé, G., Villegente, M. et al. (2017). The morphophysiological dormancy in Amborella trichopoda seeds is a pleisiomorphic trait in angiosperms. AoB PLANTS 119: 581–590.
- Forbis, T.A., Floyd, S.K., and de Queiroz, A. (2002). The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution 56: 2112–2125.
- Fourcade, F., Pouteau, R., Jaffré, T., and Marmey, P. (2015). In situ observations of the basal angiosperm Amborella trichopoda reveal a long fruiting cycle overlapping two annual flowering periods. Journal of Plant Research 128: 821–828.
- Fourquin, C., Vinauger-Douard, M., Fogliani, B. et al. (2005). Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms. Proceedings of the National Academy of Sciences of the United States of America 102: 4649–4654.
- Friedman, W.E. (2006). Embryological evidence for developmental lability during early angiosperm evolution. Nature 441: 337–340.
- Friedman, W.E. and Ryerson, K.C. (2009). Reconstructing the ancestral female gametophyte of angiosperms: insights from Amborella and other ancient lineages of flowering plants. American Journal of Botany 96: 129–143.
- Fruchard, C. and Marais, G.A.B. (2017). The evolution of sex determination in plants. In: Evolutionary Developmental Biology (ed. L. Nuno de la Rosa and G. Muller). New York/Heidelberg: Springer.
10.1007/978-3-319-33038-9_168-1 Google Scholar
- Fu, Q., Diez, J.B., Pole, M. et al. (2018). An unexpected noncarpellate epigynous flower from the Jurassic of China. Elife 7: e38827.
- Gâteblé, G. (2015). Flore ornementale de Nouvelle-Calédonie, horticulture, botanique & histoire. Tahiti, Polynésie française: Au vent des îles.
- Gillespie, R.G. and Roderick, G.K. (2002). Arthropods on islands: colonization, speciation, and conservation. Annual Review of Entomology 47: 595–632.
- Gomez, B., Daviero-Gomez, V., Coiffard, C. et al. (2015). Montsechia, an ancient aquatic angiosperm. Proceedings of the National Academy of Sciences of the United States of America 112: 10985–10988.
- Goremykin, V.V., Hirsch-Ernst, K.I., Wolfl, S., and Hellwig, F.H. (2003). Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Molecular Biology and Evolution 20: 1499–1505.
- Goremykin, V.V., Hirsch-Ernst, K.I., Wolfl, S., and Hellwig, F.H. (2004). The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Molecular Biology and Evolution 21: 1445–1454.
- Grandcolas, P., Murienne, J., Robillard, T. et al. (2008). New Caledonia: a very old Darwinian island? Philosophical Transactions of the Royal Society B-Biological Sciences 363: 3309–3317.
- Grandcolas, P., Nattier, R., and Trewick, S. (2014). Relict species: a relict concept? Trends in Ecology & Evolution 29: 655–663.
- Große-Veldmann, B., Korotkova, N., Reinken, B. et al. (2011). Amborella trichopoda, cultivation of the most ancestral angiosperm in botanic gardens. Sibbaldia 9: 143–155.
- Hager, K.P. and Wind, C. (1997). Two ways of legumin-precursor processing in conifers – characterization and evolutionary relationships of Metasequoia cDNAs representing two divergent legumin gene subfamilies. European Journal of Biochemistry 246: 763–771.
- Hellstrom, J., McCulloch, M., and Stone, J. (1998). A detailed 31,000-year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems. Quaternary Research 50: 167–178.
- Hope, G., Kershaw, A.P., van der Kaars, S. et al. (2004). History of vegetation and habitat change in the Austral-Asian region. Quaternary International 118: 103–126.
- Husby, C., Determann, R., Moyroud, R., and Hall, B. (2010). Les plantes de Nouvelle-Calédonie dans les établissements botaniques d'Amérique du Nord: un intérêt grandissant pour une flore extraordinairement belle et unique. Ethnopharmacologia 46: 13–16.
- Ibanez, T., Borgniet, L., Mangeas, M. et al. (2013). Rainforest and savanna landscape dynamics in New Caledonia: towards a mosaic of stable rainforest and savanna states? Austral Ecology 38: 33–45.
- Ibanez, T., Munzinger, J., Dagostini, G. et al. (2014). Structural and floristic diversity of mixed tropical rain forest in New Caledonia: new data from the New Caledonian Plant Inventory and Permanent Plot Network (NC-PIPPN). Applied Vegetation Science 17: 386–397.
- Ibanez, T., Blanchard, E., Hequet, V. et al. (2018). High endemism and stem density distinguish New Caledonian from other high-diversity rainforests in the Southwest Pacific. AoB PLANTS 121: 25–35.
- Ibanez, T., Keppel, G., Menkes, C. et al. (2019). Globally consistent impact of tropical cyclones on the structure of tropical and subtropical forests. Journal of Ecology 107: 279–292.
- Isnard, S. and Feild, T.S. (2015). The evolution of angiosperm lianescence: a perspective from xylem structure-function. In: The Ecology of Lianas, vol. 17 (ed. S.A. Schnitzer, F. Bongers, R.J. Burnham and F.E. Putz), 221–238. Oxford, UK: Wiley Blackwell.
10.1002/9781118392409.ch17 Google Scholar
- Isnard, S., L'huillier, L., Rigault, F., and Jaffré, T. (2016). How did the ultramafic soils shape the flora of the New Caledonian hotspot? Plant and Soil 403: 53–76.
- Jasinski, S., Vialette-Guiraud, A.C.M., and Scutt, C.P. (2010). The evolutionary-developmental analysis of plant microRNAs. Philosophical Transactions of the Royal Society B-Biological Sciences 365: 469–476.
- Jérémie, J. (1982). Amborellacées. In: Flore de la Nouvelle-Calédonie et Dépendances, vol. 11 (ed. A. Aubréville and J.F. Leroy), 157–160. Paris, France: Museum National d'Histoire Naturelle.
- Jiao, Y., Wickett, N.J., Ayyampalayam, S. et al. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–100.
- Keeling, P.J. and Palmer, J.D. (2008). Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics 9: 605.
- Keppel, G., Van Niel, K.P., Wardell-Johnson, G.W. et al. (2012). Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21: 393–404.
- Kersey, P.J., Allen, J.E., Armean, I. et al. (2016). Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Research 44: D574–D580.
- Kim, S., Koh, J., Yoo, M.J. et al. (2005). Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant Journal 43: 724–744.
- Leitch, I.J. and Hanson, L. (2002). DNA C-values in seven families fill phylogenetic gaps in the basal angiosperms. Botanical Journal of the Linnean Society 140: 175–179.
- Leslie, A.B., Beaulieu, J., Holman, G. et al. (2018). An overview of extant conifer evolution from the perspective of the fossil record. American Journal of Botany 105: 1531–1544.
- Liao, X., Zhao, Y., Kong, X. et al. (2018). Complete sequence of kenaf (Hibiscus cannabinus) mitochondrial genome and comparative analysis with the mitochondrial genomes of other plants. Scientific Reports 8: 12714.
- Lowry, P.P. (1998). Diversity, endemism, and extinction in the flora of New Caledonia: a review. In: Rare, Threatened, and Endangered Floras of Asia and the Pacific Rim (ed. C.I. Peng and P.P. Lowry), 181–206. Taipei: Institute of Botany, Academia Sinica Monograph.
- Magallón, S., Gomez-Acevedo, S., Sanchez-Reyes, L.L., and Hernandez-Hernandez, T. (2015). A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist 207: 437–453.
- Mathews, S. and Donoghue, M.J. (1999). The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947–950.
- Moore, M.J., Bell, C.D., Soltis, P.S., and Soltis, D.E. (2007). Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the National Academy of Sciences of the United States of America 104: 19363–19368.
- Morat, P., Jaffré, T., Tronchet, F. et al. (2012). The taxonomic reference base Florical and characteristics of the native vascular flora of New Caledonia. Adansonia 34: 179–221.
- Morley, R.J. (2001). Why are there so many primitive angiosperms in the rain forests of Asia-Australasia? In: Faunal and Floral Migrations and Evolution in SE Asia-Australasia (ed. I. Metcalfe, S. JMB, M. Morwood and I. Davidson). Lisse: A.A. Balkema Publishers.
- Mower, J.P., Stefanović, S., Hao, W. et al. (2010). Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biology 8: 150.
- Moyroud, E., Monniaux, M., Thevenon, E. et al. (2017). A link between LEAFY and B-gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development. New Phytologist 216: 469–481.
- Nattier, R., Pellens, R., Robillard, T. et al. (2017). Updating the phylogenetic dating of New Caledonian biodiversity with a meta-analysis of the available evidence. Scientific Reports 7: 3705.
- Neale, D.B., Wegrzyn, J.L., Stevens, K.A. et al. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology 15: R59.
- Oginuma, K., Jaffré, T., and Tobe, H. (2000). The karyotype analysis of somatic chromosomes in Amborella trichopoda (Amborellaceae). Journal of Plant Research 113: 281–283.
- Olson, M.E. (2012). Linear trends in botanical systematics and the major trends of xylem evolution. The Botanical Review 78: 154–183.
- Pantz, P.-A., Létocart, I., Létocart, D. et al. (2006). Nouvelle-Calédonie chlorophylle. Solaris.
- Paris, J.P. (1981). Géologie de la Nouvelle-Calédonie: un essai de synthèse. Orléans: Editions du B.R.G.M.
- Park, J.-M., Manen, J.-F., and Schneeweiss, G.M. (2007). Horizontal gene transfer of a plastid gene in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Molecular Phylogenetics and Evolution 43: 974–985.
- Parkinson, C.L., Adams, K.L., and Palmer, J.D. (1999). Multigene analyses identify the three earliest lineages of extant flowering plants. Current Biology 9: 1485–1488.
- Pelletier, B. (2006). Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. In: Compendium of Marine Species of New Caledonia, Doc. Sci. Tech. II7, seconde édition (ed. C.E. Payri and B. Richer de Forges), 19–32. Nouméa: IRD.
- Perlman, D. (1999). Island shrub might be first flowering plant, species being propagated at UC Santa Cruz. https://www.sfgate.com/news/article/Island-Shrub-Might-Be-First-Flowering-Plant-2910753.php (accessed 1 June 2019).
- Pichon, P. (1948). Les Monimiacées, famille hétérogène. Bulletin du Muséum National d'Histoire naturelle 20: 383–384.
- Pillon, Y. (2012). Time and tempo of diversification in the flora of New Caledonia. Botanical Journal of the Linnean Society 170: 288–298.
- Pillon, Y. and Buerki, S. (2017). How old are island endemics? Biological Journal of the Linnean Society 121: 469–474.
- Pillon, Y. and Munzinger, J. (2005). Amborella fever and its (little) implication in conservation. Trends in Plant Science 10: 519–520.
- Pillon, Y., Barrabé, L., and Buerki, S. (2017). How many genera of vascular plants are endemic to New Caledonia? A critical review based on phylogenetic evidence. Botanical Journal of the Linnean Society 183: 177–198.
- Pintaud, J.-C., Jaffré, T., and Puig, H. (2001). Chorology of New Caledonian palms and possible evidence of Pleistocene rain forest refugia. Comptes Rendus de l'Académie des Sciences - Series III 324: 453–463.
- Pole, M. (2010). Was New Zealand a primary source for the New Caledonian flora? Alcheringa 34: 61–74.
- Poncet, V., Couderc, M., Tranchant-Dubreuil, C. et al. (2012). Microsatellite markers for Amborella (Amborellaceae), a monotypic genus endemic to New Caledonia. American Journal of Botany 99: e411–e414.
- Poncet, V., Munoz, F., Munzinger, J. et al. (2013). Phylogeography and niche modelling of the relict plant Amborella trichopoda (Amborellaceae) reveal multiple Pleistocene refugia in New Caledonia. Molecular Ecology 22: 6163–6178.
- Poncet, V., Scutt, C., Tournebize, R. et al. (2015). The Amborella vacuolar processing enzyme family. Frontiers in Plant Science 6: 618.
- Pouteau, R., Trueba, S., Feild, T.S., and Isnard, S. (2015). New Caledonia: a Pleistocene refugium for rainforest lineages of relict angiosperms. Journal of Biogeography 42: 2062–2077.
- Qiu, Y.-L., Lee, J., Bernasconi-Quadroni, F. et al. (1999). The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404.
- Renner, S.S. (2014). The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany 101: 1588–1596.
- Rice, D.W. and Palmer, J.D. (2006). An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biology 4: 31.
- Rice, D.W., Alverson, A.J., Richardson, A.O. et al. (2013). Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342: 1468–1473.
- Richardson, A.O., Rice, D.W., Young, G.J. et al. (2013). The “fossilized” mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate. BMC Biology 11: 29.
- Rowe, N.P. and Speck, T. (2005). Plant growth forms: an ecological and evolutionary perspective. New Phytologist 166: 61–72.
- Rubiales, D. and Heide-Jørgensen, H.S. (2011). Parasitic plants. In: Encyclopedia of Life Sciences, 1–10. Chichester: John Wiley & Sons, Ltd.
10.1002/9780470015902.a0021271 Google Scholar
- Saarela, J.M., Rai, H.S., Doyle, J.A. et al. (2007). Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446: 312–315.
- Sauquet, H., von Balthazar, M., Magallon, S. et al. (2017). The ancestral flower of angiosperms and its early diversification. Nature Communications 8: 16047.
- Scutt, C.P., Gâteblé, G., Fogliani, B. et al. (2015). Synthèse des travaux de recherche et d'expérimentation menés sur Amborella trichopoda 2012 à 2014, 120. Fondation de France.
- Setoguchi, H., Ohsawa, P., Pintaud, J.C. et al. (1998). Phylogenetic relationship of Araucariaceae inferred from rbcL gene sequence. American Journal of Botany 85: 1507–1516.
- Simmons, M.P. (2017). Mutually exclusive phylogenomic inferences at the root of the angiosperms: Amborella is supported as sister and Observed Variability is biased. Cladistics 33: 488–512.
- Sokoloff, D.D., Remizowa, M.V., Bateman, R.M., and Rudall, P.J. (2018). Was the ancestral angiosperm flower whorled throughout? American Journal of Botany 105: 5–15.
- Sollars, E.S.A., Harper, A.L., Kelly, L.J. et al. (2017). Genome sequence and genetic diversity of European ash trees. Nature 541: 212–216.
- Soltis, D.E. and Soltis, P.S. (2004). Amborella not a “basal angiosperm”? Not so fast. American Journal of Botany 91: 997–1001.
- Soltis, D.E., Soltis, P.S., Nickrent, D.L. et al. (1997). Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Annals of the Missouri Botanical Garden 84: 1–49.
- Soltis, P.S., Soltis, D.E., and Chase, M.W. (1999). Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402–404.
- Soltis, D.E., Soltis, P.S., Bennett, M.D., and Leitch, I.J. (2003). Evolution of genome size in the angiosperms. American Journal of Botany 90: 1596–1603.
- Soltis, D.E., Albert, V.A., Savolainen, V. et al. (2004). Genome-scale data, angiosperm relationships, and “ending incongruence”: a cautionary tale in phylogenetics. Trends in Plant Science 9: 477–483.
- Soltis, D.E., Albert, V.A., Leebens-Mack, J. et al. (2008). The Amborella genome: an evolutionary reference for plant biology. Genome Biology 9: 402.
- Soltis, D.E., Smith, S.A., Cellinese, N. et al. (2011). Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704–730.
- Soltis, D.E., Soltis, P.S., Endress, P.K. et al. (2018). Phylogeny and Evolution of the Angiosperms (Revised and Updated Edition). Chicago/London: The University of Chicago Press.
10.7208/chicago/9780226441757.001.0001 Google Scholar
- Soucy, S.M., Huang, J.L., and Gogarten, J.P. (2015). Horizontal gene transfer: building the web of life. Nature Reviews Genetics 16: 472–482.
- Sperry, J.S., Hacke, U.G., Feild, T.S. et al. (2007). Hydraulic consequences of vessel evolution in Angiosperms. International Journal of Plant Sciences 168: 1127–1139.
- Spicer, R. (2017). Variation in angiosperm wood structure and its physiological and evolutionary significance. In: Comparative and Evolutionary Genomics of Angiosperm Trees (ed. A. Groover and Q. Cronk), 19–60. Cham: Springer International Publishing.
- Stefanovic, S., Rice, D.W., and Palmer, J.D. (2004). Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? BMC Evolutionary Biology 4: 35.
- Stephens, T. (1999). Rare specimens at the Arboretum declared most primitive of living flowering plants. University of California, Santa Cruz, Currents, Vol. 4. http://www1.ucsc.edu/currents/99-00/08-30/amborella.htm
- Stevenson, J. and Hope, G.S. (2005). A comparison of late Quaternary forest changes in New Caledonia and northeastern Australia. Quaternary Research 64: 372–383.
- Stevenson, J., Dodson, J.R., and Prosser, I.P. (2001). A late Quaternary record of environmental change and human impact from New Caledonia. Palaeogeography, Palaeoclimatology, Palaeoecology 168: 97–123.
- Suprin, B. (2011). Florilège des plantes en Nouvelle-Calédonie. Tome 1. Nouméa: Editions Photosynthèse.
- von Teichman, I. and van Wyk, A.E. (1994). Structural aspects and trends in the evolution of recalcitrant seeds in dicotyledons. Seed Science Research 4: 225–239.
- Thien, L.B., Sage, T.L., Jaffré, T. et al. (2003). The population structure and floral biology of Amborella trichopoda (Amborellaceae). Annals of the Missouri Botanical Garden 90: 466–490.
- Thomas, N., Bruhl, J.J., Ford, A., and Weston, P.H. (2014). Molecular dating of Winteraceae reveals a complex biogeographical history involving both ancient Gondwanan vicariance and long-distance dispersal. Journal of Biogeography 41: 894–904.
- Thorne, R.F. (1965). Floristics relationships of New Caledonia. The University of Iowa Studies in Natural History 20: 1–14.
- Tomato Genome Consortium, Sato, S., Tabata, S. et al. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635–641.
- Toublanc-Lambault, O., Pouteau, R., Davezies, M. et al. (2019). Environmental correlates for seed desiccation sensitivity of New Caledonian plant species. Pacific Science 73 (2): 231–248.
10.2984/73.2.5 Google Scholar
- Tournebize, R., Manel, S., Vigouroux, Y. et al. (2017). Two disjunct Pleistocene populations and anisotropic postglacial expansion shaped the current genetic structure of the relict plant Amborella trichopoda. PLoS One 12: e0183412.
- Trueba, S., Isnard, S., Barthélémy, D., and Olson, M.E. (2016). Trait coordination, mechanical behavior, and growth form plasticity of Amborella trichopoda under variation in canopy openness. AoB PLANTS 8: plw068.
- Trueba, S., Pouteau, R., Lens, F. et al. (2017). Vulnerability to xylem embolism as a major correlate of the environmental distribution of rainforest species on a tropical island. Plant, Cell & Environment 40: 237–248.
- Trueba, S., delzon, S., Isnard, S., and Lens, F. (2019). Similar hydraulic efficiency and safety across vesselless angiosperms and vessel-bearing species with scalariform perforation plates. Journal of Experimental Botany 70: 3227–3240.
- Vialette-Guiraud, A.C.M., Adam, H., Finet, C. et al. (2011). Insights from ANA-grade angiosperms into the early evolution of CUP-SHAPED COTYLEDON genes. AoB PLANTS 107: 1511–1519.
- Villegente, M., Marmey, P., Job, C. et al. (2017). A combination of histological, physiological, and proteomic approaches shed light on seed desiccation tolerance of the basal angiosperm Amborella trichopoda. Proteomes 5: 19.
- Wallace, A.R. (1880). Island life, or, The Phenomena and Causes of Insular Faunas and Floras: Including a Revision and Attempted Solution of the Problem of Geological Climates. London: Macmillan.
- Warren, W.C., Hillier, L.W., Marshall Graves, J.A. et al. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453: 175–183.
- Wendel, J.F., Jackson, S.A., Meyers, B.C., and Wing, R.A. (2016). Evolution of plant genome architecture. Genome Biology 17: 37.
- Willis, C.G., Baskin, C.C., Baskin, J.M. et al. (2014). The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytologist 203: 300–309.
- Wu, B., Buljic, A., and Hao, W. (2015). Extensive horizontal transfer and homologous recombination generate highly chimeric mitochondrial genomes in yeast. Molecular Biology and Evolution 32: 2559–2570.
- Wulff, A.S., Hollingsworth, P.M., Ahrends, A. et al. (2013). Conservation priorities in a biodiversity hotspot: analysis of narrow endemic plant species in New Caledonia. PLoS ONE 8: e73371.
- Xi, Z., Wang, Y., Bradley, R.K. et al. (2013). Massive mitochondrial gene transfer in a parasitic flowering plant clade. PLOS Genetics 9: e1003265.
- Xi, Z., Liu, L., Rest, J.S., and Davis, C.C. (2014). Coalescent versus concatenation methods and the placement of Amborella as sister to water lilies. Systematic Biology 63: 919–932.
- Yang, Z., Zhang, Y., Wafula, E.K. et al. (2016). Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proceedings of the National Academy of Sciences 113: E7010.
- Young, D.A. (1981). Are the angiosperms primitively vesselless? Systematic Botany 6: 313–330.
- Yuan, Y., Jin, X., Liu, J. et al. (2018). The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nature Communications 9: 1615.
- Zhong, B.J. and Betancur-R, R. (2017). Expanded taxonomic sampling coupled with gene genealogy interrogation provides unambiguous resolution for the evolutionary root of angiosperms. Genome Biology and Evolution 9: 3154–3161.
- Zimmermann, M.H. (1983). Xylem Structure and the Ascent of Sap. Berlin: Springer.
10.1007/978-3-662-22627-8 Google Scholar
Citing Literature
Browse other articles of this reference work: