9 Data Integration, Metabolic Networks and Systems Biology
Henning Redestig
RIKEN Plant Science Center, Yokohama-shi, 17-2-2 Tsurumi-ku, Suehiro-cho, 230-0045 Japan
Search for more papers by this authorJedrzej Szymanski
Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Golm, 14476 Germany
Search for more papers by this authorMasami Y. Hirai
RIKEN Plant Science Center, Yokohama-shi, 17-2-2 Tsurumi-ku, Suehiro-cho, 230-0045 Japan
Search for more papers by this authorJoachim Selbig
Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Golm, 14476 Germany
Search for more papers by this authorLothar Willmitzer
Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Golm, 14476 Germany
Search for more papers by this authorZoran Nikoloski
Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Golm, 14476 Germany
Search for more papers by this authorKazuki Saito
RIKEN Plant Science Center, Yokohama-shi, 17-2-2 Tsurumi-ku, Suehiro-cho, 230-0045 Japan
Search for more papers by this authorHenning Redestig
RIKEN Plant Science Center, Yokohama-shi, 17-2-2 Tsurumi-ku, Suehiro-cho, 230-0045 Japan
Search for more papers by this authorJedrzej Szymanski
Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Golm, 14476 Germany
Search for more papers by this authorMasami Y. Hirai
RIKEN Plant Science Center, Yokohama-shi, 17-2-2 Tsurumi-ku, Suehiro-cho, 230-0045 Japan
Search for more papers by this authorJoachim Selbig
Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Golm, 14476 Germany
Search for more papers by this authorLothar Willmitzer
Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Golm, 14476 Germany
Search for more papers by this authorZoran Nikoloski
Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Golm, 14476 Germany
Search for more papers by this authorKazuki Saito
RIKEN Plant Science Center, Yokohama-shi, 17-2-2 Tsurumi-ku, Suehiro-cho, 230-0045 Japan
Search for more papers by this authorAbstract
As analytical techniques and data pre-processing methods continue to improve, the bottleneck of metabolomics is shifting towards later stages of data analysis and biological interpretation. High-coverage metabolomics is only possible when combining data from multiple platforms necessitating efficient methods for data integration. Metabolomic data sets with high coverage provide a unique opportunity to estimate and study metabolic networks. Once established, these networks can provide a backbone for systems biology approaches where the aim is to construct fundamental models of metabolic regulation. In this chapter, we provide an overview of status of these topics and describe current methods and tools, their drawbacks and advantages for integrative plant metabolomics.
References
- Abe, T., Kanaya, S., Kinouchi, M. et al. (2003) Informatics for unveiling hidden genome signatures. Genome Research 13, 693–702.
- Akiyama, K., Chikayama, E., Yuasa, H. et al. (2008) PRIMe: a web site that assembles tools for metabolomics and transcriptomics. In Silico Biology 8, 339–345.
- Andersson-Gunneras, S., Mellerowicz, E.J., Love, J. et al. (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. The Plant Journal 45, 144–165.
- Angelovici, R., Fait, A., Zhu, X. et al. (2009) Novel genes and metabolic networks regulating seed maturation and germination, revealed by seed-specific alteration of lysine metabolism Plant Physiology 151, 2058–2072.
- Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.
- Baier, M.C., Barsch, A., Kuster, H. et al. (2007) Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Plant Physiology 145, 1600–1618.
- Bailey, T.L., Williams, N., Misleh, C. et al. (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research 34, W369–W373.
- Beard, D.A., Liang, S. and Qian, H. (2002) Energy balance for analysis of complex metabolic networks. Biophysical Journal 83, 79–86.
- Biais, B., Allwood, J.W., Deborde, C. et al. (2009) 1H NMR, GC-EI-TOFMS, and data set correlation for fruit metabolomics: application to spatial metabolite analysis in melon. Analytical Chemistry 81, 2884–2894.
- Birkemeyer, C., Luedemann, A., Wagner, C. et al. (2005) Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends in Biotechnology, 23, 28–33.
- Borevitz, J.O., Xia, Y., Blount, J. et al. (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2394.
- Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1–20.
- Boyle, N. and Morgan, J. (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Systems Biology 3, 4.
- Brautigam, K., Dietzel, L., Kleine, T. et al. (2009) Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis. Plant Cell 21 (9), 2715–2732, tpc.108.062018.
- Brenner, S., Johnson, M., Bridgham, J. et al. (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology 18, 630–634.
- Broeckling, C.D., Huhman, D.V., Farag, M.A. et al. (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. Journal of Experimental Botany 56, 323–336.
- Burgard, A.P. and Maranas, C.D. (2003) Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnology and Bioengineering 82, 670–677.
- Burgard, A.P., Pharkya, P. and Maranas, C.D. (2003) OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering 84, 647–657.
- Butte, A. and Kohane, I. (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: Pac Symp Biocomput, vol. 5. Citeseer, pp. 418–429.
- Bylesjö, M., Eriksson, D., Sjödin, A. et al. (2007a) Orthogonal projections to latent structures as a strategy for microarray data normalization. BMC Bioinformatics 8, 207.
- Bylesjö, M., Eriksson, D., Kusano, M. et al. (2007b) Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. Plant Journal 52, 1181–1191.
- Bylesjö, M., Nilsson, R., Srivastava, V. et al. (2009) Integrated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen. Journal of Proteome Research 8, 199–210.
- Büscher, J.M., Czernik, D., Ewald, J.C. et al. (2009) Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Analytical Chemistry 81, 2135–2143.
- Cakir, T., Hendriks, M.M., Westerhuis, J.A. et al. (2009) Metabolic network discovery through reverse engineering of metabolome data. Metabolomics 5, 318–329.
- Camacho, D., de la Fuente, A. and Mendes, P. (2005) The origin of correlations in metabolomics data. Metabolomics 1, 53–63.
- Carrari, F. and Fernie, A.R. (2006) Metabolic regulation underlying tomato fruit development. Journal of Experimental Botany 57, 1883–1897.
- Chassagnole, C., Noisommit-Rizzi, N., Schmid, J.W. et al. (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli . Biotechnology and Bioengineering 79, 53–73.
- Cook, D., Fowler, S., Fiehn, O. et al. (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 101, 15243–15248.
-
Costa, M.A.,
Braga, A.P. and
de Menezes, B.R.
(2002)
Constructive and pruning methods for neural network design. In:
Brazilian Symposium on Neural Networks, vol.
0. pp.
49–49.
10.1109/SBRN.2002.1181434 Google Scholar
- Covert, M.W. and Palsson, B.O. (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli . Journal of Biological Chemistry 277, 28058–28064.
- Craigon, D.J., James, N., Okyere, J. et al. (2004) NASCArrays: a repository for microarray data generated by NASC's transcriptomics service. Nucleic Acids Research 32, D575–577.
- Daub, C., Steuer, R., Selbig, J. et al. (2004) Estimating mutual information using B-spline functions – an improved similarity measure for analysing gene expression data. BMC Bioinformatics 5, 118.
- Dauwe, R., Morreel, K., Goeminne, G. et al. (2007) Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. The Plant Journal 52, 263–285.
- Davuluri, R.V., Sun, H., Palaniswamy, S.K. et al. (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4, 25.
- de Godoy, L.M., Olsen, J.V., de Souza, G.A. et al. (2006) Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biology 7, R50.
- de la Fuente, A., Bing, N., Hoeschele, I. et al. (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20, 3565–3574.
- de Oliveira Dal'Molin, C.G., Quek, L.E., Palfreyman, R.W. et al. (2009) AraGEM- A genome-scale reconstruction of primary metabolic betwork in Arabidopsis thaliana. Plant Physiology 152, 579–589.
- Dettmer, K., Aronov, P.A. and Hammock, B.D. (2007) Mass spectrometry-based metabolomics. Mass Spectrometry Review 26, 51–78.
- Diaz-Sierra, R., Lozano, J.B. and Fairen, V. (1999) Deduction of chemical mechanisms from the linear response around steady state. The Journal of Physical Chemistry A 103, 337–343.
- Dodd, A.N., Salathia, N., Hall, A. et al. (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633.
- Doi, K., Hosaka, A., Nagata, T. et al. (2008) Development of a novel data mining tool to find cis-elements in rice gene promoter regions. BMC Plant Biology 8, 20.
- Druart, N., Johansson, A., Baba, K. et al. (2007) Environmental and hormonal regulation of the activity dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. The Plant Journal 50, 557–573.
-
Edwards, D.
(2000)
Introduction to Graphical Modelling.
Springer,
New York.
10.1007/978-1-4612-0493-0 Google Scholar
- Edwards, J.S. and Palsson, B.O. (2002) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences of the United States of America 9, 5528–5533.
- Faith, J.J., Hayete, B., Thaden, J.T. et al. (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology 5, e8.
- Feist, A.M., Herrgård, M.J., Thiele, I. et al. (2009) Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology 7, 129–143.
- Fiehn, O. (2003) Metabolic networks of Cucurbita maxima phloem. Phytochemistry 62, 875–886.
- Fiehn, O., Kopka, J., Dormann, P. et al. (2000) Metabolite profiling for plant functional genomics. Nature Biotechnology 18, 1157–1161.
- Figueiredo, A., Fortes, A.M., Ferreira, S. et al. (2008) Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. Journal of Experimental Botany 59, 3371–3381.
- Forshed, J., Idborg, H. and Jacobsson, S.P. (2007) Evaluation of different techniques for data fusion of LC/MS and H-1-NMR. Chemometrics and Intelligent Laboratory Systems 85, 102–109.
- Friedman, N., Linial, M., Nachman, I. et al. (2000) Using Bayesian networks to analyze expression data. Journal of Computational Biology 7, 601.
- Gavai, A.K., Tikunov, Y., Ursem, R. et al. (2009) Constraint-based probabilistic learning of metabolic pathways from tomato volatiles. Metabolomics 5, 419–428.
- Gerlee, P., Lizana, L. and Sneppen, K. (2009) Pathway identification by network pruning in the metabolic network of Escherichia coli . Bioinformatics 25, 3282–3288.
- Gianchandani, E.P., Oberhardt, M.A., Burgard, A.P. et al. (2008) Predicting biological system objectives de novo from internal state measurements. BMC Bioinformatics 9, 43.
- Goda, H., Sasaki, E., Akiyama, K. et al. (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant Journal 55, 526–542.
- Goossens, A., Häkkinen, S.T., Laakso, I. et al. (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proceedings of the National Academy of Sciences of the United States of America 100, 8595–8600.
- Grafahrend-Belau, E., Schreiber, F., Koschützki, D. et al. (2009) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiology 149, 585–598.
- Gullberg, J., Jonsson, P., Nordström, A. et al. (2004) Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry 331, 283–295.
- Heckerman, D. (1995) A tutorial on learning with bayesian networks. Tech. rep., Microsoft Research.
-
Heinrich, R. and
Schuster, S.
(1996)
The Regulation of Cellular Systems.
Chapman & Hall,
New York.
10.1007/978-1-4613-1161-4 Google Scholar
- Hernández, G., Valdés-López, O., Ramírez, M. et al. (2009) Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiology 151, 1221–1238.
- Hirai, M.Y., Klein, M., Fujikawa, Y. et al. (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. Journal of Biological Chemistry 280, 25590–25595.
- Hirai, M.Y., Sugiyama, K., Sawada, Y. et al. (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 104, 6478–6483.
- Hirai, M.Y., Yano, M., Goodenowe, D.B. et al. (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 101, 10205–10210.
- Hofmeyr, J.H.S. (2001) Metabolic control analysis in a nutshell. In: T.M. Yi, M. Hucka, M. Morohashi and H. Kitano (eds.) 2nd International Conference on Systems Biology, Omnipress, Madison, WI. pp. 291–300.
- Hoppe, A., Hoffmann, S. and Holzhütter, H.G. (2007) Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Systems Biology 1, 23.
- Horan, K., Jang, C., Bailey-Serres, J. et al. (2008) Annotating genes of known and unknown function by large-scale coexpression analysis. Plant Physiology 147, 41–57.
- Howell, K.A., Narsai, R., Carroll, A. et al. (2009) Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiology 149, 961–980.
-
Husmeier, D.,
Dybowski, R. and
Roberts, S.
(2005)
Probabilistic Modeling in Bioinformatics and Medical Informatics.
Springer,
New York.
10.1007/b138794 Google Scholar
- Hynne, F., Dano, S. and Sorensen, P.G. (2001) Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophysical Chemistry 94, 121–163.
- Jeong, H., Tombor, B., Albert, R. et al. (2000) The large-scale organization of metabolic networks. Nature 407, 651–654.
- Joung, J.G., Corbett, A.M., Fellman, S.M. et al. (2009) Plant MetGenMAP: an integrative analysis system for plant systems biology. Plant Physiology 151, 1758–1768.
- Kanaya, S., Kinouchi, M., Abe, T. et al. (2001) Analysis of codon usage diversity of bacterial genes with a self-organizing map (SOM): characterization of horizontally transferred genes with emphasis on the E. coli O157 genome. Gene 276, 89–99.
- Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28, 27–30.
- Karp, P.D., Ouzounis, C.A., Moore-Kochlacs, C. et al. (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research 33, 6083–6089.
- Kell, D.B. (2004) Metabolomics and systems biology: making sense of the soup. Current Opinion in Microbiology 7, 296–307.
- Kilian, J., Whitehead, D., Horak, J. et al. (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant Journal 50, 347–363.
- Klamt, S., Schuster, S. and Gilles, E.D. (2002) Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnology and Bioengineering 77, 734–751.
- Klie, S., Nikoloski, Z. and Selbig, J. (2010) Biological cluster evaluation for gene function prediction. Journal of Computational Biology 17, 1–8.
- Kolbe, A., Oliver, S.N., Fernie, A.R. et al. (2006) Combined transcript and metabolite profiling of Arabidopsis leaves reveals fundamental effects of the thiol-disulfide status on plant metabolism. Plant Physiology 141, 412–422.
- Kristensen, C., Morant, M., Olsen, C.E. et al. (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proceedings of the National Academy of Sciences of the United States of America 102, 1779–1784.
- Kusano, M., Fukushima, A., Arita, M. et al. (2007) Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana. BMC Systems Biology 1, 53.
- Kuśnierczyk, A., Winge, P., Jørstad, T. et al. (2008) Towards global understanding of plant defence against aphids timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environment 31, 1097–1115.
- Lake, D.E. (2009) Nonparametric entropy estimation using kernel densities. Methods Enzymology 467, 531–546.
- Lawrence, S. (2006) Trends in biotech literature 2005. Nature Biotechnology 24, 380.
- Lee, J.M., Gianchandani, E.P., Eddy, J.A. et al. (2008) Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Computational Biology 4, e1000086.
- Lenz, E.M. and Wilson, I.D. (2007) Analytical strategies in metabonomics. Journal of Proteome Research 6, 443–458.
-
Liang, K.C. and
Wang, X.
(2008)
Gene regulatory network reconstruction using conditional mutual information.
EURASIP Journal on Bioinformatics and Systems Biology
2008,
253894.
10.1155/2008/253894 Google Scholar
- Lippold, F., Sanchez, D.H., Musialak, M. et al. (2009) AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiology 149, 1761–1772.
- Liu, R.H., Lin, D.L., Chang, W.T. et al. (2002) Isotopically labeled analogues for drug quantitation. Analytical Chemistry 74, 618A–626A.
- Luo, J., Fuell, C., Parr, A. et al. (2009a) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21, 318–333.
- Luo, R., Wei, H., Ye, L. et al. (2009b) Photosynthetic metabolism of C3 plants shows highly cooperative regulation under changing environments: a systems biological analysis. Proceedings of the National Academy of Sciences of the United States of America 106, 847–852.
- Ma, H.W. and Zeng, A.P. (2003) The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19, 1423–1430.
- Mahadevan, R., Edwards, J.S. and Doyle F.J., 3rd. (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli . Biophysical Journal 83, 1331–1340.
- Margolin, A., Nemenman, I., Basso, K. et al. (2006) ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a mammalian cellular context. BMC Bioinformatics 7, S7.
- Martins, A.M., Camacho, D., Shuman, J. et al. (2004) A systems biology study of two distinct growth phases of Saccharomyces cerevisiae cultures. Current Genomics 5, 649–663.
- MASC (2007) The Multinational Coodinated Arabidopsis thaliana Functional Genomics Project – Annual Report 2007. Technical Report, The Multinational Arabidopsis Steering Committee.
- Matsuda, F., Hirai, M.Y., Sasaki, E. et al. (2009) AtMetExpress development: a phytochemical atlas of Arabidopsis thaliana development. Plant Physiology 152, 566–578.
- May, P., Christian, J.O., Kempa, S. et al. (2009) ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii . BMC Genomics 10, 209.
- May, P., Wienkoop, S., Kempa, S. et al. (2008) Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii . Genetics 179, 157–166.
- Meek, C. (1995) Causal inference and causal explanation with background. In: Uncertainty in Artificial Intelligence: Proceedings of the Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Pub, San Fransisco. p. 403.
- Merchant, S.S., Prochnik, S.E., Vallon, O. et al. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245–250.
- Meyer, P., Lafitte, F. and Bontempi, G. (2008) minet: A R/bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 9, 461.
- Meyer, P.E., Kontos, K., Lafitte, F. et al. (2007) Information-theoretic inference of large transcriptional regulatory networks. EURASIP Journal on Bioinformatics and Systems Biology 2207, 79879.
- Mintz-Oron, S., Aharoni, A., Ruppin, E. et al. (2009) Network-based prediction of metabolic enzymes' subcellular localization. Bioinformatics 25, i247–i252.
- Mintz-Oron, S., Mandel, T., Rogachev, I. et al. (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiology 147, 823–851.
- Moco, S., Forshed, J., De Vos, R.C.H. et al. (2008) Intra- and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography-mass spectrometry and nuclear magnetic resonance. Metabolomics 4, 202–215.
- Morgenthal, K., Weckwerth, W. and Steuer, R. (2006) Metabolomic networks in plants: transitions from pattern recognition to biological interpretation. Biosystems 83, 108–117.
- Morioka, R., Kanaya, S., Hirai, M.Y. et al. (2007) Predicting state transitions in the transcriptome and metabolome using a linear dynamical system model. BMC Bioinformatics 8, 343.
- Mounet, F., Moing, A., Garcia, V. et al. (2009) Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiology 149, 1505–1528.
- Muller-Linow, M., Weckwerth, W. and Hutt, M.T. (2007) Consistency analysis of metabolic correlation networks. BMC Systems Biology 1, 44.
- Murphy, K. and Mian, S. (1999) Modelling Gene Expression Data using Dynamic Bayesian Networks. Technical Report, University of California, Berkeley.
- Nagrath, D., Avila-Elchiver, M., Berthiaume, F. et al. (2007) Integrated energy and flux balance multiobjective framework for large-scale metabolic networks. Annals of Biomedical Engineering 35, 863–885.
- Ni, Y., Su, M., Qiu, Y. et al. (2007) Metabolic profiling using combined GC-MS and LC-MS provides a systems understanding of aristolochic acid-induced nephrotoxicity in rat. FEBS Letters 581, 707–711.
- Nikiforova, V.J., Daub, C.O., Hesse, H. et al. (2005) Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response. Journal of Experimental Botany 56, 1887–1896.
- Obayashi, T., Hayashi, S., Shibaoka, M. et al. (2008) COXPRESdb: a database of coexpressed gene networks in mammals. Nucleic Acids Research 36, D77–D82.
- Obayashi, T., Kinoshita, K., Nakai, K. et al. (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Research 35, D863–D869.
- Obayashi, T., Hayashi, S., Saeki, M. et al. (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Research 37, D987–D991.
- Ong, E.S., Chor, C.F., Zou, L. et al. (2009) A multi-analytical approach for metabolomic profiling of zebrafish (Danio rerio) livers. Molecular BioSystems 5, 288–298.
- Paley, S.M. and Karp, P.D. (2006) The Pathway Tools cellular overview diagram and Omics Viewer. Nucleic Acids Research 34, 3771–3778.
- Pearl, J. (1998) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Menlo Park.
- Poolman, M.G., Miguet, L., Sweetlove, L.J. et al. (2009) A genome-scale metabolic model of Arabidopsis thaliana and some of its properties. Plant Physiology 151, 1570–1581.
- Ramakrishna, R., Edwards, J.S., McCulloch, A. et al. (2001) Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stocihiometric constraints. The American Journal of Physiology- Regulatory, Integrative, and Comparative Physiology 280, R695–R704.
- Rawat, A., Seifert, G. and Deng, Y. (2008) Novel implementation of conditional co-regulation by graph theory to derive co-expressed genes from microarray data. BMC Bioinformatics 9, S7.
- Redestig, H., Kusano, M., Matsuda, F. et al. (2010) Consolidating metabolite identifiers to enable contextual and multi-platform metabolomics. BMC Bioinformatics 11, 214.
- Redestig, H., Fukushima, A., Stenlund, H. et al. (2009) Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data. Analytical Chemistry 81, 7974–7980.
- Roessner, U., Luedemann, A., Brust, D. et al. (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13, 11–29.
- Roussel, S., Bellon-Maurel, V., Roger, J. et al. (2003) Fusion of aroma, FT-IR and UV sensor data based on the Bayesian inference. Application to the discrimination of white grape varieties. Chemometrics and Intelligent Laboratory Systems 65, 209–219.
- Rowe, H.C., Hansen, B.G., Halkier, B.A. et al. (2008) Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell 20, 1199–1216.
- Saito, K., Hirai, M.Y. and Yonekura-Sakakibara, K. (2008) Decoding genes with coexpression networks and metabolomics – ‘majority report by precogs’. Trends in Plant Science 13, 36–43.
- Sanchez, D.H., Szymanski, J., Erban, A. et al. (2009) Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus. Plant Cell Environ, NA, NA.
- Sawada, Y., Kuwahara, A., Nagano, M. et al. (2009a) Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant and Cell Physiology 50, 1181–1190.
- Sawada, Y., Toyooka, K., Kuwahara, A. et al. (2009b) Arabidopsis bile acid: sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis. Plant and Cell Physiology 50, 1579–1586.
- Schmid, M., Davison, T.S., Henz, S.R. et al. (2005) A gene expression map of Arabidopsis thaliana development. Nature Genetics 37, 501–506.
- Schuetz, R., Kuepfer, L. and Sauer, U. (2007) Systematic evaluation of objective functions for predicting intercellular fluxes in Escherichia coli . Molecular Systems Biology 3, 119.
- Schuster, S., Pfeiffer, T. and Fell, D.A. (2008) Is maximization of molar yield in metabolic networks favoured by evolution. Journal of Theoretical Biology 252, 497–504.
- Schäfer, J. and Strimmer, K. (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21, 754–764.
- Shipley, B. (2002) Cause and Correlation in Biology: A User's Guide to Path Analysis, Structural Equations and Causal Inference. Cambridge University Press, Cambridge, UK.
- Smilde, A.K., Van Der Werf, M.J., Bijlsma, S. et al. (2005) Fusion of mass spectrometry-based metabolomics data. Analytical Chemistry 77, 6729–6736.
- Soranzo, N., Bianconi, G. and Altafini, C. (2007) Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics 23, 1640–1647.
- Sprites, P., Glymour, C. and Scheines, R. (2000) Causation, Prediction and Search. The MIT Press, Cambridge USA.
- Steinmetz, V., Sevila, F. and Bellon-Maurel, V. (1999) A methodology for sensor fusion design: application to fruit quality assessment. Journal of Agricultural Engineering Research 74, 21–31.
- Stelling, J., Klamt, S., Bettenbrock, K. et al. (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190–193.
- Steuer, R., Kurths, J., Daub, C.O. et al. (2002) The mutual information: Detecting and evaluating dependencies between variables. Bioinformatics 18, S231–S240.
- Steuer, R., Kurths, J., Fiehn, O. et al. (2003) Observing and interpreting correlations in metabolomic networks. Bioinformatics 19, 1019–1026.
- Styczynski, M.P., Moxley, J.F., Tong, L.V. et al. (2007) Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Analytical Chemistry 79, 966–973.
- Suzuki, M., Kusano, M., Takahashi, H. et al. (2010) Rice-Arabidopsis FOX line screening with FT-NIR-based fingerprinting for GC-TOF/MS-based metabolite profiling. Metabolomics 6, 137–145.
- Sysi-Aho, M., Katajamaa, M., Yetukuri, L. et al. (2007) Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics 8, 93.
- Szymanski, J., Jozefczuk, S., Nikoloski, Z. et al. (2009) Stability of metabolic correlations under changing environmental conditions in Escherichia coli – a systems approach. PLoS ONE 4, e7441.
- Taroncher-Oldenburg, G. and Marshall, A. (2007) Trends in biotech literature 2006. Nature Biotechnology 25, 961.
- Teusink, B., Passarge, J., Reijenga, C.A. et al. (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. European Journal of Biochemistry 267, 5313–5329.
- Thimm, O., Bläsing, O., Gibon, Y. et al. (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal 37, 914–939.
- Thomas-Chollier, M., Sand, O., Turatsinze, J.V. et al. (2008) RSAT: regulatory sequence analysis tools. Nucleic Acids Research 36, W119–W127.
- t'Kindt, R., Morreel, K., Deforce, D. et al. (2009) Joint GC-MS and LC-MS platforms for comprehensive plant metabolomics: repeatability and sample pre-treatment. Journal of Chromatography B, NA, NA.
- Tohge, T., Nishiyama, Y., Hirai, M.Y. et al. (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing a MYB transcription factor. Plant Journal 42, 218–235.
- Tokimatsu, T., Sakurai, N., Suzuki, H. et al. (2005) KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiology 138, 1289–1300.
- Toufighi, K., Brady, S.M., Austin, R. et al. (2005) The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. Plant Journal 43, 153–163.
- Trygg, J. and Wold, S. (2002) Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics 16, 119–128.
- Urano, K., Maruyama, K., Ogata, Y. et al. (2008) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant Journal 57, 1065–1078.
- Urbanczyk-Wochniak, E., Luedemann, A., Kopka, J. et al. (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Reports 4, 989–993.
- Usadel, B., Nagel, A., Thimm, O. et al. (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiology 138, 1195–1204.
- van den Berg, R.A., Hoefsloot, H.C.J., Westerhuis, J.A. et al. (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7, 142.
- Van Der Werf, M.J., Overkamp, K.M., Muilwijk, B. et al. (2007) Microbial metabolomics: toward a platform with full metabolome coverage. Analytical Biochemistry 370, 17–25.
- van Kampen, N. (1992) Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam.
- Vojinovic, V. and von Stockar, U. (2009) Influence of Uncertainties in PH, pMg, activity coefficients, metabolite concentrations, and other factors on the analysis of the thermodynamic feasibility of metabolic pathways. Biotechnology and Bioengineering 103, 780–795.
- Wang, H., Schauer, N., Usadel, B. et al. (2009) Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell 21, 1428–1452.
- Wang, R., Guegler, K., LaBrie, S.T. et al. (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12, 1491–1510.
- Weckwerth, W. (2003) Metabolomics in systems biology. Annual Review of Plant Biology 54, 669–689.
- Weckwerth, W., Loureiro, M.E., Wenzel, K. et al. (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proceedings of the National Academy of Sciences of the United States of America 101, 7809–7814.
- Weckwerth, W., Tolstikov, V. and Fiehn, O. (2001) Metabolomic characterization of transgenic potato plants using GC/TOF and LC/MS. In: Proceedings of the 49th ASMS Conference on Mass spectrometry and Allied Topics. pp. 1–2.
- Weigelt, K., Kuster, H., Rutten, T. et al. (2009) ADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon–nitrogen metabolism and stress responses. Plant Physiology 149, 395–411.
- Wentzell, A.M., Rowe, H.C., Hansen, B.G. et al. (2007) Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genetics 3, e162.
-
Westerhuis, J.,
Kourti, T. and
MacGregor, J.
(1998)
Analysis of multiblock and hierarchical PCA and PLS models.
Journal of Chemometrics
12,
301–321.
10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S CAS Web of Science® Google Scholar
- Williams, R., Lenz, E.M., Wilson, A.J. et al. (2006) A multi-analytical platform approach to the metabonomic analysis of plasma from normal and Zucker (fa/fa) obese rats. Molecular BioSystems 2, 174–183.
- Yeung, M.K., Tegner, J. and Collins, J.J. (2002) Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings of the National Academy of Sciences of the United States of America 99, 6163–6168.
- Yonekura-Sakakibara, K., Tohge, T., Matsuda, F. et al. (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20, 2160–2176.
- Yonekura-Sakakibara, K., Tohge, T., Niida, R. et al. (2007) Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics. Journal of Biological Chemistry 282, 14932–14941.
- Zhang, P., Foerster, H., Tissier, C.P. et al. (2005) MetaCyc and AraCyc. Metabolic Pathway Databases for plant research. Plant Physiology 138, 27–37.
- Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. et al. (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology 136, 2621–2632.
Citing Literature
Browse other articles of this reference work: