5 Adventitious Root Formation: New Insights and Perspectives
Gaia Geiss
Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
Laboratoire de Biologie Cellulaire, Unité de Recherche 501, Institut National de la Recherche Scientifique, F-78000, Versailles, France
These two authors have contributed equally to the work.Search for more papers by this authorLaurent Gutierrez
Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
Search for more papers by this authorCatherine Bellini
Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
Laboratoire de Biologie Cellulaire, Unité de Recherche 501, Institut National de la Recherche Scientifique, F-78000, Versailles, France
These two authors have contributed equally to the work.Search for more papers by this authorGaia Geiss
Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
Laboratoire de Biologie Cellulaire, Unité de Recherche 501, Institut National de la Recherche Scientifique, F-78000, Versailles, France
These two authors have contributed equally to the work.Search for more papers by this authorLaurent Gutierrez
Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
Search for more papers by this authorCatherine Bellini
Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
Laboratoire de Biologie Cellulaire, Unité de Recherche 501, Institut National de la Recherche Scientifique, F-78000, Versailles, France
These two authors have contributed equally to the work.Search for more papers by this authorAbstract
The root system of a plant consists of the primary, lateral and adventitious roots. Lateral roots always develop from roots whereas adventitious roots form from stem or leaf-derived cells. Adventitious rooting is an essential step in the vegetative propagation of economically important horticultural and woody species. It allows clonal propagation and rapid fixation of superior genotypes prior to their introduction into production or breeding programs. Problems associated with rooting of cuttings frequently result in significant economic losses. Development of adventitious roots is a complex process that is affected by multiple factors including phytohormones, light, nutritional status, associated stress responses such as wounding, and genetic characteristics. How endogenous and environmental factors interact to control adventitious root formation is still poorly understood, although significant progress has been made in the understanding of the molecular control of root and lateral root development. In this review, we will summarize the current knowledge on the physiological aspects of AR formation and highlight the recent progress made in the identification of putative molecular players involved in the control of adventitious rooting.
References
- Ahmad, M. and Cashmore, A.R. (1993). HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366, 162–166.
- Altamura, M.M., Torrigiani, P., Capitani, F., Scaramagli, S. and Bagni, N. (1991). De novo root formation in tobacco thin layers is affected by inhibition of polyamine biosynthesis. J. Exp. Bot. 42, 1575–1582.
- Altamura, M.M. (1996). Root histogenesis in herbaceous and woody explants cultured in vitro. A critical review. Agronomie 16, 589–602.
- Anuradha, M. and Narayanan, A. (1991). Promotion of root elongation by phosphorus deficiency. Plant Soil 136, 273–275.
- Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W. and Feyereisen, R. (2001). CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13, 101–111.
- Ballester, A., San-José, M.C., Vidal, N., Fernández-Lorenzo, J.L. and Vieitez, A.M. (1999). Anatomical and biochemical events during in vitro rooting of microcuttings from juvenile and mature phases of chestnut. Ann. Bot. 83, 619–629.
- Barlier, I., Kowalczyk, M., Marchant, A., Ljung, K., Bhalerao, R., Bennett, M. et al. (2000). The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc. Natl. Acad. Sci. U. S. A. 97, 14819–14824.
- Bellamine, J., Penel, C., Greppin, H. and Gaspar, T. (1998). Confirmation of the role of auxin and calcium in the late phases of adventitious root formation. Plant Growth Regul. 26, 191–194.
- Berhens, V. (1988). Storage of unrooted cuttings. In Adventitious Root Formation in Cuttings, T.D. Davis, B.E. Haissig and N. Sankhla (eds). Portland, Dioscorides Press, pp. 235–247.
- Biondi, S., Diaz, T., Iglesias, I., Gamberini, G. and Bagni, N. (1990). Polyamines and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol. Plant. 78, 474–483.
- Blačková, A., Sotta, B., Tranvan, H., Maldiney, R., Bonnet, M., Einhorn, J. et al. (1997). Auxin metabolism and rooting in young and mature clones of Sequoia sempervirens . Physiol. Plant. 99, 73–80.
- Blazich, F.A. (1988). Mineral nutrition and adventitious rooting. In Adventitious Root Formation in Cuttings, T.D. Davis, B.E. Haissig and N. Sankhla (eds). Portland, Dioscorides Press, pp. 61–69.
- Boerjan, W., Cervera, M.-T., Delarue, M., Beeckman, T., Dewitte, W., Bellini, C. et al. (1995). Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7, 1405–1419.
- Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M. and Benning, C. (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170–180.
- Bollmark, M. and Eliasson, L. (1986). Effects of exogenous cytokinins on root-formation in pea cuttings. Physiol. Plant. 68, 662–666.
- Bollmark, M. and Eliasson, L. (1990). A rooting inhibitor present in Norway spruce seedlings grown at high irradiance – a putative cytokinin. Physiol. Plant. 80, 527–533.
- Brinker, M., van Zyl, L., Liu, W., Craig, D., Sederoff, R.R., Clapham, D.H. et al. (2004). Microarray analyses of gene expression during adventitious root development in Pinus contorta . Plant Physiol. 135, 1526–1539.
- Brown, D.E., Rashotte, A.M., Murphy, A.S., Normanly, J., Tague, B.W., Peer, W.A. et al. (2001). Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 126, 524–535.
- Butler, E.D. and Gallagher, T.F. (1998). Gene expression during adventitious root formation in apple. Symp. Soc. Exp. Biol. 51, 79–84.
- Butler, E.D. and Gallagher, T.F. (2000). Characterization of auxin-induced ARRO-1 expression in the primary root of Malus domestica . J. Exp. Bot. 51, 1765–1766.
- Caboni, E., Tonelli, M.G., Lauri, P., Iacovacci, P., Kevers, C., Damiano, C. et al. (1997). Biochemical aspects of almond microcuttings related to in vitro rooting ability. Biol. Plant. 39, 91–97.
- Calamar, A. and de Klerk, G.-J. (2002). Effect of sucrose on adventitious root regeneration in apple. Plant Cell Tissue Organ Cult. 70, 207–212.
- Capone, I., Cardarelli, M., Trovato, M. and Costantino, P. (1989). Upstream non-coding region which confers polar expression to Ri plasmid root inducing gene rolB. Mol. Gen. Genet. 216, 239–244.
- Casson, S.A. and Lindsey, K. (2003). Genes and signalling in root development. New Phytol. 158, 11–38.
- Cheng, B., Peterson, C.M. and Mitchell, R.J. (1992). The role of sucrose, auxin and explant source on in vitro rooting of seedling explants of Eucalyptus sideroxylon . Plant Sci. 87, 207–214.
- Cheng, Y., Dai, X. and Zhao, Y. (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis . Genes Dev. 20, 1790–1799.
- Chilton, M.-D., Tepfer, D.A., Petit, A., David, C., Casse-Delbart, F. and Tempé, J. (1982). Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295, 432–434.
- Clark, D.G., Gubrium, E.K., Barrett, J.E., Nell, T.A. and Klee, H.J. (1999). Root formation in ethylene-insensitive plants. Plant Physiol. 121, 53–59.
- Cooper, W.C. (1935). Hormones in relation to root formation on stem cuttings. Plant Physiol. 10, 789–794.
- Corrêa, L. Da Rocha and Fett-Neto, A.G. (2004). Effects of temperature on adventitious root development in microcuttings of Eucalyptus saligna Smith and Eucalyptus globulus Labill. J. Therm. Biol. 29, 315–324.
- Curir, P., VanSumere, C.F., Termini, A., Barthe, P., Marchesini, A. and Dolci, M. (1990). Flavonoid accumulation is correlated with adventitious roots formation in Eucalyptus gunnii hook micropropagated through axillary bud stimulation. Plant Physiol. 92, 1148–1153.
-
Damiano, C. and
Monticelli, S.
(1998).
In vitro fruit trees rooting by Agrobacterium rhizogenes wild type infection.
Electron. J. Biotechnol.
1,
189–195.
10.2225/vol1-issue3-fulltext-4 Google Scholar
- Dawson, J.H. (1988). Probing structure–function relations in heme-containing oxygenases and peroxidases. Science 240, 433–439.
- De Klerk, G.-J., Keppel, M., Ter Brugge, J. and Meekes, H. (1995). Timing of the phases in adventitious root formation in apple microcuttings. J. Exp. Bot. 46, 965–972.
- De Klerk, G.-J., Van der Krieken, W. and De Jong, J.C. (1999). The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant 35, 189–199.
- De Vries, D.P. and Dubois, L.A.M. (1988). The effect of BAP and IBA on sprouting and adventitious root formation of ‘Amanda’ rose single-node softwood cuttings. Sci. Horticult. 34, 115–121.
- Delarue, M., Prinsen, E., Van Onckelen, H., Caboche, M. and Bellini, C. (1998). Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J. 14, 603–611.
- Dhaliwal, H.S., Ramesar-Fortner, N.S., Yeung, E.C. and Thorpe, T.A. (2003). Competence, determination, and meristemoid plasticity in tobacco organogenesis in vitro. Can. J. Bot. 81, 611–621.
- Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G. et al. (1996). The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423–433.
- Díaz-Sala, C., Garrido, G. and Sabater, B. (2002). Age-related loss of rooting capability in Arabidopsis thaliana and its reversal by peptides containing the Arg-Gly-Asp (RGD) motif. Physiol. Plant. 114, 601–607.
- Diaz-Sala, C., Hutchison, K.W., Goldfarb, B. and Greenwood, M.S. (1996). Maturation-related loss in rooting competence by loblolly pine stem cuttings: the role of auxin transport, metabolism and tissue sensitivity. Physiol. Plant. 97, 481–490.
- Druart, P. (1997). Optimization of culture media for in vitro rooting of Malus domestica Borkh. cv. Compact Spartan. Biol. Plant. 39, 67–77.
- Druege, U., Zerche, S. and Kadner, R. (2004). Nitrogen- and storage-affected carbohydrate partitioning in high-light-adapted Pelargonium cuttings in relation to survival and adventitious root formation under low light. Ann. Bot. 94, 831–842.
- Druege, U., Zerche, S., Kadner, R. and Ernst, M. (2000). Relation between nitrogen status, carbohydrate distribution and subsequent rooting of chrysanthemum cuttings as affected by pre-harvest nitrogen supply and cold-storage. Ann. Bot. 85, 687–701.
- El Euch, C., Jay-Allemand, C., Pastuglia, M., Doumas, P., Charpentier, J.P., Capelli, P. et al. (1998). Expression of antisense chalcone synthase RNA in transgenic hybrid walnut microcuttings. Effect on flavonoid content and rooting ability. Plant Mol. Biol. 38, 467–479.
- Epstein, E. and Ludwig-Müller, J. (1993). Indole-3-butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiol. Plant. 88, 382–389.
- Fett-Neto, A.G., Fett, J.P., Vieira Goulart, L.W., Pasquali, G., Termignoni, R.R. and Ferreira, A.G. (2001). Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus . Tree Physiol. 21, 457–464.
- Filippini, F., Lo Schiavo, F., Terzi, M., Costantino, P. and Trovato, M. (1994). The plant oncogene rolB alters binding of auxin to plant cell membranes. Plant Cell Physiol. 35, 767–771.
- Filippini, F., Rossi, V., Marin, O., Trovato, M., Costantino, P., Downey, P.M. et al. (1996). A plant oncogene as a phosphatase. Nature 379, 499–500.
- Flygh, G., Grönroos, R., Gulin, L. and von Arnold, S. (1993). Early and late root formation in epicotyl cuttings of Pinus sylvestris after auxin treatment. Tree Physiol. 12, 81–92.
- Forschner, W. and Reuther, G. (1984). Photosynthese und Wasserhaushalt von Pelargonienstecklingen während der Bewurzelung unter dem Einfluß verschiedener Licht- und CO2-Bedingungen. Gartenbauwissenschaft 49, 182–190.
- Fortuna, P., Morini, S. and Giovannetti, M. (1998). Effects of arbuscular mycorrhizal fungi on in vivo root initiation and development of micropropagated plum shoots. J. Hort. Sci. Biotechnol. 73, 19–28.
- Foster, G.S. (1990). Genetic control of rooting ability of stem cuttings from loblolly pine. Can. J. For. Res. 20, 1361–1368.
- Gaspar, T., Kevers, C., Hausman, J.F., Berthon, J.Y. and Ripetti, V. (1992). Practical uses of peroxidase activity as a predictive marker of rooting performance of micropropagated shoots. Agronomie 12, 757–765.
- Gaspar, T., Kevers, C., Penel, C., Greppin, H., Reid, D.M. and Thorpe, T.A. (1996). Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell. Dev. Biol. Plant 32, 272–289.
- Gaspar, T., Penel, C., Castillo, F.J. and Greppin, H. (1985). A two-step control of basic and acidic peroxidases and its significance for growth and development. Physiol. Plant. 64, 418–423.
- Gatineau, F., Fouché, J.G., Kevers, C., Hausman, J.F. and Gaspar, T. (1997). Quantitative variations of indolyl compounds including IAA, IAA-aspartate and serotonin in walnut microcuttings during root induction. Biol. Plant. 39, 131–137.
- Gay, G. (1990). Effect of the ectomycorrhizal fungus Hebeloma hiemale on adventitious root formation in derooted Pinus halepensis shoot hypocotyls. Can. J. Bot. 68, 1265–1270.
- Gibson, S.I. (2004). Sugar and phytohormone response pathways: navigating a signalling network. J. Exp. Bot. 55, 253–264.
- Gibson, S.I. (2005). Control of plant development and gene expression by sugar signaling. Curr. Opin. Plant Biol. 8, 93–102.
- Grattapaglia, D., Bertolucci, F.L. and Sederoff, R.R. (1995). Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-testcross strategy and RAPD markers. Theor. Appl. Genet. 90, 933–947.
- Greenwood, M.S. and Weir, R.J. (1994). Genetic variation in rooting ability of loblolly pine cuttings: effects of auxin and family on rooting by hypocotyl cuttings. Tree Physiol. 15, 41–45.
- Greenwood, M.S., Hopper, C.A. and Hutchison, K.W. (1989). Maturation in larch. I. Effect of age on shoot growth, foliar characteristics, and DNA methylation. Plant Physiol. 90, 406–412.
- Haissig, B.E., Davis, T.D. and Riemenschneider, D.E. (1992). Researching the controls of adventitious rooting. Physiol. Plant. 84, 310–317.
- Hartmann, H.T. and Kester, D.E. (1983). Plant Propagation: Principles and Practices, 4th edn. Englewood Cliffs, NJ, Prentice-Hall, 727 pp.
- Hartmann, H.T., Kester, D.E. and Davies, F.T. (1990). Plant propagation: Principles and Practices, 5th edn. Englewood Cliffs, NJ, Prentice-Hall, 647 pp.
- Hatzilazarou, S.P., Syros, T.D., Yupsanis, T.A., Bosabalidis, A.M. and Economou, A.S. (2006). Peroxidases, lignin and anatomy during in vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots. J. Plant Physiol. 163, 827–836.
- Hausman, J.-F., Gevers, C. and Gaspar, T. (1994). Involvement of putrescine in the inductive rooting phase of poplar shoots raised in vitro. Physiol. Plant. 92, 201–206.
- Heidstra, R., Welch, D. and Scheres, B. (2004). Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev. 18, 1964–1969.
- Humphries, E.C. (1960). Inhibition of root development on petioles and hypocotyls of dwarf bean (Phaseolus vulgaris) by kinetin. Physiol. Plant. 13, 659–663.
- Ikeda, H., Kamoshita, A. and Manabe, T. (2007). Genetic analysis of rooting ability of transplanted rice (Oryza sativa L.) under different water conditions. J. Exp. Bot. 58, 309–318.
-
Imaseki, H.
(1985).
Hormonal control of wound-induced responses. In
Hormonal Regulation of Development III, Encyclopedia of Plant Physiology, Vol.
11,
New Series,
R.P. Pharis and
D.M. Reid (eds).
Berlin,
Springer-Verlag,
pp. 485–512.
10.1007/978-3-642-67734-2_14 Google Scholar
- Inukai, Y., Sakamoto, T., Ueguchi-Tanaka, M., Shibata, Y., Gomi, K., Umemura, I. et al. (2005). Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17, 1387–1396.
- Jarvis, B.C. and Shaheed, A.I. (1987). Adventitious root formation in relation to irradiance and auxin supply. Biol. Plant. 29, 321–333.
- Jarvis, B.C., Yasmin, S. and Coleman, M.T. (1985). RNA and protein metabolism during adventitious root formation in stem cuttings of Phaseolus aureus . Physiol. Plant. 64, 53–59.
- Jásik, J. and De Klerk, G.-J. (1997). Anatomical and ultrastructural examination of adventitious root formation in stem slices of apple. Biol. Plant. 39, 79–90.
- Jusaitis, M. (1986). Rooting response of mung bean cuttings to 1-aminocyclopropane-1-carboxylic acid and inhibitors of ethylene biosynthesis. Sci. Horticult. 29, 77–85.
- Kadner, R., Drüge, U. and Kühnemann, F. (2000). Ethylenemission von Pelargonienstecklingen während der Lagerung bei unterschiedlichen Temperaturen. Gartenbauwissenschaft 65, 272–279.
- Karabaghli, C., Frey-Klett, P., Sotta, B., Bonnet, M. and Le Tacon, F. (1998). In vitro effects of Laccaria bicolor S238 N and Pseudomonas fluorescens strain BBc6 on rooting of de-rooted shoot hypocotyls of Norway spruce. Tree Physiol. 18, 103–111.
- Kevers, C., Hausman, J.F., Faivre-Rampant, O., Evers, D. and Gaspar, T. (1997). Hormonal control of adventitious rooting: progress and questions. J. Appl. Bot.-Angew. Bot. 71, 71–79.
- King, J.J. and Stimart, D.P. (1998). Genetic analysis of variation for auxin-induced adventitious root formation among eighteen ecotypes of Arabidopsis thaliana L. Heynh. J. Hered. 89, 481–487.
- Kling, G.J. and Meyer, M.M. Jr., (1983). Effects of phenolic compounds and indoleacetic acid on adventitious root initiation in cuttings of Phaseolus aureus, Acer saccharinum, and Acer griseum . HortScience 18, 352–354.
- Kohler, A., Delaruelle, C., Martin, D., Encelot, N. and Martin, F. (2003). The poplar root transcriptome: analysis of 7000 expressed sequence tags. FEBS Lett. 542, 37–41.
- Konishi, M. and Sugiyama, M. (2003). Genetic analysis of adventitious root formation with a novel series of temperature-sensitive mutants of Arabidopsis thaliana . Development 130, 5637–5647.
- Konishi, M. and Sugiyama, M. (2006). A novel plant-specific family gene, ROOT PRIMORDIUM DEFECTIVE 1, is required for the maintenance of active cell proliferation. Plant Physiol. 140, 591–602.
- Kuroha, T., Kato, H., Asami, T., Yoshida, S., Kamada, H. and Satoh, S. (2002). A trans-zeatin riboside in root xylem sap negatively regulates adventitious root formation on cucumber hypocotyls. J. Exp. Bot. 53, 2193–2200.
- Kuroha, T., Ueguchi, C., Sakakibara, H. and Satoh, S. (2006). Cytokinin receptors are required for normal development of auxin-transporting vascular tissues in the hypocotyl but not in adventitious roots. Plant Cell Physiol. 47, 234–243.
- Label, P., Sotta, B. and Miginiac, E. (1989). Endogenous levels of abscisic acid and indole-3-acetic acid during in vitro rooting of wild cherry explants produced by micropropagation. Plant Growth Regul. 8, 325–333.
- Lanteri, M.L., Pagnussat, G.C. and Lamattina, L. (2006). Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J. Exp. Bot. 57, 1341–1351.
- León, P. and Sheen, J. (2003). Sugar and hormone connections. Trends Plant Sci. 8, 110–116.
- Li, M. and Leung, D.W.M. (2001). Protein changes associated with adventitious root formation in hypocotyls of Pinus radiata . Biol. Plant. 44, 33–39.
- Li, M. and Leung, D.W.M. (2000). Starch accumulation is associated with adventitious root formation in hypocotyl cuttings of Pinus radiata . J. Plant Growth Regul. 19, 423–428.
- Li, M. and Leung, D.W.M. (2003). Root induction in radiata pine using Agrobacterium rhizogenes . Electron. J. Biotechnol. 6, 254–261.
- Liu, H., Wang, S., Yu, X., Yu, J., He, X., Zhang, S. et al. (2005). ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J. 43, 47–56.
- Ljung, K., Hull, A.K., Kowalczyk, M., Marchant, A., Celenza, J., Cohen, J.D. et al. (2002). Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana . Plant Mol. Biol. 49, 249–272.
- Ludwig-Müller, J., Vertocnik, A. and Town, C.D. (2005). Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J. Exp. Bot. 56, 2095–2105.
- Mano, Y., Omori, F., Muraki, M. and Takamizo, T. (2005). QTL mapping of adventitious root formation under flooding conditions in tropical maize (Zea mays L.) seedlings. Breed. Sci. 55, 343–347.
- Marques, C.M., Brondani, R.P.V., Grattapaglia, D. and Sederoff, R. (2002). Conservation and synteny of SSR loci and QTLs for vegetative propagation in four Eucalyptus species. Theor. Appl. Genet. 105, 474–478.
- Marques, C.M., Vasquez-Kool, J., Carocha, V.J., Ferreira, J.G., O'Malley, D.M., Liu, B.-H. et al. (1999). Genetic dissection of vegetative propagation traits in Eucalyptus tereticornis and E. globulus . Theor. Appl. Genet. 99, 936–946.
- Fogaça, C.M. and Fett-Neto, A.G. (2005). Role of auxin and its modulators in the adventitious rooting of Eucalyptus species differing in recalcitrance. Plant Growth Regul. 45, 1–10.
- Martin, R.C., Mok, D.W.S., Smets, R., Van Onckelen, H.A. and Mok, M.C. (2001). Development of transgenic tobacco harboring a zeatin O-glucosyltransferase gene from Phaseolus . In Vitro Cell. Dev. Biol. Plant 37, 354–360.
- Martinez-Pastur, G., Zappacosta, D., Arena, M. and Curvetto, N. (2001). Changes in isoperoxidase patterns during the in vitro rooting of Nothofagus antarctica . Bulg. J. Plant Physiol. 27, 43–53.
- Maurel, C., Barbier-Brygoo, H., Spena, A., Tempé, J. and Guern, J. (1991). Single rol genes from the Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum . Plant Physiol. 97, 212–216.
- McDonald, M.P. and Visser, E.J.W. (2003). A study of the interaction between auxin and ethylene in wild type and transgenic ethylene-insensitive tobacco during adventitious root formation induced by stagnant root zone conditions. Plant Biol. 5, 550–556.
- Metaxas, D.J., Syros, T.D., Yupsanis, T. and Economou, A.S. (2004). Peroxidases during adventitious rooting in cuttings of Arbutus unedo and Taxus baccata as affected by plant genotype and growth regulator treatment. Plant Growth Regul. 44, 257–266.
- Mikkelsen, M.D., Naur, P. and Halkier, B.A. (2004). Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J. 37, 770–777.
- Milborrow, B.V. (1984). Inhibitors. In Advanced Plant Physiology, M.B. Wilkins (ed.). London, Pitman Publishing, pp. 76–110.
- Miller, C.R., Ochoa, I., Nielsen, K.L., Beck, D. and Lynch, J.P. (2003). Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils. Funct. Plant Biol. 30, 973–985.
- Moriuchi, H., Okamoto, C., Nishihama, R., Yamashita, I., Machida, Y. and Tanaka, N. (2004). Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB . Plant J. 38, 260–275.
- Nag, S., Saha, K. and Choudhuri, M.A. (2001). Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J. Plant Growth Regul. 20, 182–194.
- Niemi, K., Häggman, H. and Sarjala, T. (2002a). Effects of exogenous diamines on the interaction between ectomycorrhizal fungi and adventitious root formation in Scots pine in vitro. Tree Physiol. 22, 373–381.
- Niemi, K., Julkunen-Tiitto, R., Tegelberg, R. and Häggman, H. (2005). Light sources with different spectra affect root and mycorrhiza formation in Scots pine in vitro. Tree Physiol. 25, 123–128.
- Niemi, K., Salonen, M., Ernstsen, A., Heinonen-Tanski, H. and Häggman, H. (2000). Application of ectomycorrhizal fungi in rooting of Scots pine fascicular shoots. Can. J. For. Res. 30, 1221–1230.
- Niemi, K., Scagel, C. and Häggman, H. (2004). Application of ectomycorrhizal fungi in vegetative propagation of conifers. Plant Cell Tissue Organ Cult. 78, 83–91.
- Niemi, K., Vuorinen, T., Ernstsen, A. and Häggman, H. (2002b). Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro. Tree Physiol. 22, 1231–1239.
- Normand, L., Bärtschi, H., Debaud, J.-C. and Gay, G. (1996). Rooting and acclimatization of micropropagated cuttings of Pinus pinaster and Pinus sylvestris are enhanced by the ectomycorrhizal fungus Hebeloma cylindrosporum . Physiol. Plant. 98, 759–766.
- Oldacres, A.M., Newbury, H.J. and Puddephat, I.J. (2005). QTLs controlling the production of transgenic and adventitious roots in Brassica oleracea following treatment with Agrobacterium rhizogenes . Theor. Appl. Genet. 111, 479–488.
- Ozawa, S., Yasutani, I., Fukuda, H., Komamine, A. and Sugiyama, M. (1998). Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana . Development 125, 135–142.
- Robbins, J.A., Reid, M.S., Paul, J.L. and Rost, T.L. (1985). The effect of ethylene on adventitious root formation in mung bean (Vigna radiata) cuttings. Plant Growth Regul. 4, 147–157.
- Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J. et al. (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472.
- Sabatini, S., Heidstra, R., Wildwater, M. and Scheres, B. (2003). SCARECROW is involved in positioning the stem cell niche in the Arabidopsis meristem. Genes Dev. 17, 354–358.
- Sánchez, C., Vielba, J.M., Ferro, E., Covelo, G., Solé, A., Abarca, D. et al. (2007). Two SCARECROW-LIKE genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species. Tree Physiol. 27, 1459–1470.
- Schwambach, J., Fadanelli, C. and Fett-Neto, A.G. (2005). Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globulus . Tree Physiol. 25, 487–494.
- Scotti-Saintagne, C., Bertocchi, E., Barreneche, T., Kremer, A. and Plomion, C. (2005). Quantitative trait loci mapping for vegetative propagation in pedunculate oak. Ann. For. Sci. 62, 369–374.
- Shyr, Y.-Y. and Kao, C.-H. (1985). Polyamines and root formation in mung bean hypocotyl cuttings. Bot. Bull. Acad. Sin. 26, 179–184.
- Smith, D.R. and Thorpe, T.A. (1975). Root initiation in cuttings of Pinus radiata seedlings. II. Growth regulator interactions. J. Exp. Bot. 26, 193–202.
- Sorin, C., Bussell, J.D., Camus, I., Ljung, K., Kowalczyk, M., Geiss, G. et al. (2005). Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17, 1343–1359.
- Sorin, C., Negroni, L., Balliau, T., Corti, H., Jacquemot, M.-P., Davanture, M. et al. (2006). Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol. 140, 349–364.
- Spena, A., Schmülling, T., Koncz, C. and Schell, J.S. (1987). Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J. 6, 3891–3899.
- Steffens, B., Wang, J. and Sauter, M. (2006). Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223, 604–612.
- Sugiyama, M. (2003). Isolation and initial characterization of temperature-sensitive mutants of Arabidopsis thaliana that are impaired in root redifferentiation. Plant Cell Physiol. 44, 588–596.
- Supriyanto, M. and Rohr, R. (1994). In vitro regeneration of plantlets of Scots pine (Pinus sylvestris) with mycorrhizal roots from subcultured callus initiated from needle adventitious buds. Can. J. Bot. 72, 1144–1150.
- Takahashi, F., Sato-Nara, K., Kobayashi, K., Suzuki, M. and Suzuki, H. (2003). Sugar-induced adventitious roots in Arabidopsis seedlings. J. Plant Res. 116, 83–91.
- Tal, M. (1966). Abnormal stomatal behavior in wilty mutants of tomato. Plant Physiol. 41, 1387–1391.
- Tanaka, N., Fujikawa, Y., Aly, M.A.M., Saneoka, H., Fujita, K. and Yamashita, I. (2001). Proliferation and rol gene expression in hairy root lines of Egyptian clover. Plant Cell Tissue Organ Cult. 66, 175–182.
- Tang, W. and Newton, R.J. (2005). Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) plantlets. Plant Cell Rep. 24, 581–589.
- Thompson, A.J., Thorne, E.T., Burbidge, A., Jackson, A.C., Sharp, R.E. and Taylor, I.B. (2004). Complementation of notabilis, an abscisic acid-deficient mutant of tomato: importance of sequence context and utility of partial complementation. Plant Cell Environ. 27, 459–471.
- Tiburcio, A.F., Gendy, C.A. and Tran Thanh Van, K. (1989). Morphogenesis in tobacco subepidermal cells: putrescine as marker of root differentiation. Plant Cell Tissue Organ Cult. 19, 43–54.
- Tonon, G., Kevers, C. and Gaspar, T. (2001). Changes in polyamines, auxins and peroxidase activity during in vitro rooting of Fraxinus angustifolia shoots: an auxin-independent rooting model. Tree Physiol. 21, 655–663.
- Ueda, J. (1989). Promotive effect of capillarol and related compounds on root growth. Physiol. Plant. 76, 42–46.
- Van Der Krieken, W.M., Breteler, H. and Visser, M.H.M. (1992). Uptake and metabolism of indolebutyric acid during root formation on Malus microcuttings. Acta Bot. Neerl. 41, 435–442.
- Veierskov, B. (1988). Relations between carbohydrates and adventitious root formation. In Adventitious Root Formation in Cuttings, T.D. Davis, B.E. Haissig and N. Sankhla (eds). Portland, Dioscorides Press, pp. 70–78.
- Vera, P., Lamb, C. and Doerner, P.W. (1994). Cell-cycle regulation of hydroxyproline-rich glycoprotein HRGPnt3 gene expression during the initiation of lateral root meristems. Plant J. 6, 717–727.
- Vidal, N., Arellano, G., San-José, M.C., Vieitez, A.M. and Ballester, A. (2003). Developmental stages during the rooting of in-vitro-cultured Quercus robur shoots from material of juvenile and mature origin. Tree Physiol. 23, 1247–1254.
- Visser, E.J.W., Blom, C.W.P.M. and Voesenek, L.A.C.J. (1996). Flooding-induced adventitious rooting in Rumex: morphology and development in an ecological perspective. Acta Bot. Neerl. 45, 17–28.
- Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H. and Schmülling, T. (2003). Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15, 2532–2550.
- Werner, T., Motyka, V., Strnad, M. and Schmülling, T. (2001). Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. U. S. A. 98, 10487–10492.
- White, F.F., Taylor, B.H., Huffman, G.A., Gordon, M.P. and Nester, E.W. (1985). Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes . J. Bacteriol. 164, 33–44.
- Wilcox, J.R. and Farmer, R.E. Jr., (1968). Heritability and C effects in early growth of eastern cottonwood cuttings. Heredity 23, 239–245.
- Wysocka-Diller, J.W., Helariutta, Y., Fukaki, H., Malamy, J.E. and Benfey, P.N. (2000). Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127, 595–603.
- Xu, M., Zhu, L., Shou, H. and Wu, P. (2005). A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol. 46, 1674–1681.
- Zhao, Y., Christensen, S.K., Fankhauser, X., Cashman, J.R., Cohen, J.D., Weigel, D. et al. (2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306–309.
- Zhao, Y., Hull, A.K., Gupta, N.R., Goss, K.A., Alonso, J., Ecker, J.R. et al. (2002). Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 16, 3100–3112.
- Zheng, B.S., Yang, L., Zhang, W.P., Mao, C.Z., Wu, Y.R., Yi, K.K. et al. (2003). Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor. Appl. Genet. 107, 1505–1515.
- Zhu, L.-H., Holefors, A., Ahlman, A., Xue, Z.-T. and Welander, M. (2001). Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Sci. 160, 433–439.
- Zimmerman, P.W. and Hitchcock, A.E. (1933). Initiation and stimulation of adventitious roots caused by unsaturated hydrocarbon gases. Contrib. Boyce Thompson Inst. 5, 351–369.
- Zimmerman, P.W. and Wilcoxon, F. (1935). Several chemical growth substances which cause initiation of roots and other responses in plants. Contrib. Boyce Thompson Inst. 7, 209–229.
Citing Literature
Browse other articles of this reference work: