5 Ethylene Biosynthesis and Signaling: A Puzzle Yet to be Completed
Filip Vandenbussche
Department of Molecular Genetics, Universiteit Gent, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
Search for more papers by this authorWim H. Vriezen
Department of Plant Cell Biology, Radboud University Nymegen, 6525 ED, Nymegen, The Netherlands
Search for more papers by this authorDominique Van Der Straeten
Department of Molecular Genetics, Universiteit Gent, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
Search for more papers by this authorFilip Vandenbussche
Department of Molecular Genetics, Universiteit Gent, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
Search for more papers by this authorWim H. Vriezen
Department of Plant Cell Biology, Radboud University Nymegen, 6525 ED, Nymegen, The Netherlands
Search for more papers by this authorDominique Van Der Straeten
Department of Molecular Genetics, Universiteit Gent, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
Search for more papers by this authorAbstract
The sections in this article are
- Introduction
- Ethylene Biosynthesis
- Ethylene Signal Transduction
- A Complex Network
- Acknowledgements
References
- Abel, S., Nguyen, M.D., Chow, W. & Theologis, A. (1995). ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin. J. Biol. Sci., 270, 19093–19099.
- Abeles, F.B., Morgan, P.W. & Saltveit, M.E. (1992). Ethylene in Plant Biology, 2nd edition, Academic Press, San Diego.
- Achard, P., Vriezen, W.H., Van Der Straeten, D. & Harberd, N.P. (2003). Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell., 15, 2816–2825.
- Adams, D.O. & Yang, S.F. (1979). Ethylene biosynthesis: identification of 1-aminocycloproane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA, 76, 170–174.
- Alabadí, D., Gil, J., Blazquez, M.A. & García-Martínez, J.L. (2004). Gibberellins repress photomorphogenesis in darkness. Plant Physiol., 134, 1050–1057.
- Alonso, J.M., Hirayama, T., Roman, G., Nourizadeh, S. & Ecker, J.R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis . Science, 284, 2148–2152.
- Alonso, J.M., Stepanova, A.N., Solano, R., Wisman, E., Ferrari, S., Ausubel, F.M. & Ecker, J.R. (2003a). Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis . Proc. Natl. Acad. Sci. USA, 100, 2992–2997.
- Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C. & Ecker, J.R. (2003b). Genome-wide insertional mutagenesis of Arabidopsis thaliana . Science, 301, 653–657.
- Barry, C.S., Blume, B., Bouzayen, M., Cooper, W., Hamilton, A.J. & Grierson, D. (1996). Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J., 9, 525–535.
- Bassett, C.L., Artlip, T.S. & Callahan, A.M. (2002). Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing. Planta, 215, 679–688.
- Beaudoin, N., Serizet, C., Gosti, F. & Giraudat, J. (2000). Interactions between abscisic acid and ethylene signaling cascades. Plant Cell, 12, 1103–1115.
- Binder, B.M., O'Malley, R.C., Wang, W., Moore, J.M., Parks, B.M., Spalding, E.P. & Bleecker, A.B. (2004). Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. Plant Physiol., 136, 2913–2920.
- Blanpied, G.D. (1985). Introduction to the symposium. HortScience, 20, 40–41.
- Bleecker, A.B., Kenyon, W.H., Somerville, C. & Kende, H. (1986). Use of monoclonal antibodies in the purification and characterization of 1-amino-cyclopropane-1-carboxylate synthase, an enzyme in ethylene biosynthesis. Proc. Natl. Acad. Sci. USA, 83, 7755–7759.
- Bleecker, A.B., Estelle, M.A., Somerville, C. & Kende, H. (1988). Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana seedlings. Science, 241, 1086–1089.
- Botella, J.R., Arteca, R.N. & Frangos, J.A. (1995). A mechanical strain-induced 1-aminocyclopropane-1-carboxylic acid synthase gene. Proc. Natl. Acad. Sci. USA, 92, 1595–1598.
- Cancel, J.D. & Larsen, P.B. (2002). Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis . Plant Physiol., 129, 1557–1567.
- Capitani, G., Hohenester, E., Feng, L., Storici, P., Kirsch, J.F. & Jansonius, J.N. (1999). Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J. Mol. Biol., 294, 745–756.
- Cary, A.J., Liu, W. & Howell, S.H. (1995). Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol., 107, 1075–1082.
- Chae, H.S. & Kieber, J.J. (2005). Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci., 10, 291–296.
- Chae, H.S., Faure, F. & Kieber, J.J. (2003). The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell, 15, 545–559.
- Chang, C., Kwok, S.F., Bleecker, A.B. & Meyerowitz, E.M. (1993). Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 262, 539–544.
- Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W. & Ecker, J.R. (1997). Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell, 89, 1133–1144.
- Chen, Q.G. & Bleecker, A.B. (1995). Analysis of ethylene signal-transduction kinetics associated with seedling-growth response and chitinase induction in wild-type and mutant Arabidopsis . Plant Physiol., 108, 597–607.
- Clark, K.L., Larsen, P.B., Wang, X. & Chang, C. (1998). Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc. Natl. Acad. Sci. USA, 95, 5401–5406.
- De Grauwe, L., Vandenbussche, F., Tietz, O., Palme, K. & Van Der Straeten D. (2005). Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant Cell Physiol., 46, 827–836.
- De Paepe, A., Vuylsteke, M., Van Hummelen, P., Zabeau, M. & Van Der Straeten, D. (2004). Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis . Plant J., 39, 537–559.
- De Paepe, A., De Grauwe, L., Bertrand, S., Smalle, J. & Van Der Straeten, D. (2005). The Arabidopsis mutant eer2 has enhanced ethylene responses in the light. J. Exp. Bot., 56, 2409–2420.
- Fluhr, R. & Mattoo, A.K. (1996). Ethylene – biosynthesis and perception. Crit. Rev. Plant Sci., 15, 479–523.
- Fu, X. & Harberd, N.P. (2003). Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 421, 740–743.
- Gagne, J.M., Smalle, J., Gingerich, D.J., Walker, J.M., Yoo, S.D., Yanagisawa, S. & Vierstra, R.D. (2004). Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin–protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc. Natl. Acad. Sci. USA, 101, 6803–6808.
- Gallie, D.R. & Young, T.E. (2004). The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol. Genet. Genomics, 271, 267–281.
- Gamble, R.L., Coonfield, M.L. & Schaller, G.E. (1998). Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis . Proc. Natl. Acad. Sci. USA, 95, 7825–7829.
- Gamble, R.L., Qu, X. & Schaller, G.E. (2002). Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol., 128, 1428–1438.
- Gane, R. (1934). Production of ethylene by some ripening fruits. Nature, 134, 1008.
- Gao, Z., Chen, Y.F., Randlett, M.D., Zhao, X.C., Findell, J.L., Kieber, J.J. & Schaller, G.E. (2003). Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J. Biol. Chem., 278, 34725–34732.
- Gazzarrini, S. & McCourt, P. (2001). Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr. Opin. Plant Biol., 4, 387–391.
- Gazzarrini, S. & McCourt, P. (2003). Cross-talk in plant hormone signaling: what Arabidopsis mutants are telling us. Ann. Bot., 91, 605–612.
- Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H., Kamiya, Y. & McCourt, P. (2000). Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis . Plant Cell, 12, 1117–1126.
- Glazebrook, J. (1999). Genes controlling expression of defense responses in Arabidopsis . Curr. Opin. Plant Biol., 2, 280–286.
- Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B.M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W.L., Chen, L., Cooper, B., Park, S., Wood, T.C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R.M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A. & Briggs, S. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 296, 92–100.
- Gomez-Lim, M.A., Valdes-Lopez, V., Cruz-Hernandez, A. & Saucedo-Arias, L.J. (1993). Isolation and characterization of a gene involved in ethylene biosynthesis from Arabidopsis thaliana . Gene, 134, 217–221.
- Guo, H. & Ecker, J.R. (2003). Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell, 115, 667–677.
- Guo, H.W. & Ecker, J.R. (2004). The ethylene signaling pathway: new insights. Curr. Opinion Plant Biol. 7, 40–49.
- Hall, A.E. & Bleecker, A.B. (2003). Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell, 15, 2032–2041.
- Hamilton, A.J., Bouzayen, M. & Grierson, D. (1991). Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc. Natl. Acad. Sci. USA, 88, 7434–7437.
- Harper, R.M., Stowe-Evans, E.L., Luesse, D.R., Muto, H., Tatematsu, K., Watahiki, M.K., Yamamoto, K. & Liscum, E. (2000). The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 12, 757–770.
- Hass, C., Lohrmann, J., Albrecht, V., Sweere, U., Hummel, F., Yoo, S.D., Hwang, I., Zhu, T., Schafer, E., Kudla, J. & Harter, K. (2004). The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis . EMBO J., 18, 3290–3302.
- Hernandez Sebastià, C., Hardin, S.C., Clouse, S.D., Kieber, J.J. & Huber, S.C. (2004). Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch. Biochem. Biophys., 428, 81–91.
- Hirayama, T., Kieber, J.J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., Alonso, J.M., Dailey, W.P., Dancis, A. & Ecker, J.R. (1999). RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis . Cell, 97, 383–393.
- Hoffman, N.E., Yang, S.F. & McKeon, T. (1982). Identification of 1-(malonylamino)-cyclopropane-1-carboxylic acid as a major conjugate of 1-amino-cyclopropane-1-carboxylic acid, an ethylene precursor in higher plants. Biochem. Biophys. Res. Commun., 104, 765–770.
- Hua, J. & Meyerowitz, E.M. (1998). Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana . Cell, 94, 261–271.
- Hua, J., Sakai, H., Nourizadeh, S., Chen, Q.G., Bleecker, A.B., Ecker, J.R. & Meyerowitz, E.M. (1998). EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis . Plant Cell, 10, 1321–1332.
- Huang, Y., Li, H., Hutchison, C.E., Laskey, J. & Kieber, J.J. (2003). Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis . Plant J., 33, 221–233.
- Jiao, X-Z., Philosoph-Hadas, S., Su, L-Y. & Yang, S.F. (1986). The conversion of 1-(malonyl-amino) cyclopropane-1-carboxylic acid in plant tissues. Plant Physiol., 81, 637–641.
- Jun, S.H., Han, M.J., Lee, S., Seo, Y.S., Kim, W.T. & An, G. (2004). OsEIN2 is a positive component in ethylene signaling in rice. Plant Cell Physiol., 45, 281–289.
- Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A. & Ecker, J.R. (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell, 72, 427–441.
- Klee, H.J. (2004). Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol., 135, 660–667.
- Knight, L.I., Rose, R.C. & Crocker, W. (1910). Effects of various gases and vapors upon etiolated seedlings of the sweet pea. Science, 31, 635–636.
- Kosugi, S. & Ohashi, Y. (2000). DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog. Nucl. Acids Res., 28, 960–967.
- Larsen, P.B. & Chang, C. (2001). The Arabidopsis eer1 mutant has enhanced ethylene responses in the hypocotyl and stem. Plant Physiol., 125, 1061–1073.
- Le, J., Vandenbussche, F., Van Der Straeten, D. & Verbelen, J.-P. (2001). In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiol., 125, 519–522.
- Lehman, A., Black, R. & Ecker, J.R. (1996). HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyls. Cell, 85, 183–194.
- Leon, P. & Sheen, J. (2003). Sugar and hormone connections. Trends Plant Sci., 8, 110–116.
- Liang, X., Abel, S., Keller, J.A., Shen, N.F. & Theologis, A. (1992). The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana . Proc. Natl. Acad. Sci. USA, 89, 11046–11050.
- Liu, Y. & Zhang, S. (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis . Plant Cell, 16, 3386–3399.
- Lorenzo, O., Piqueras, R., Sanchez-Serrano, J.J. & Solano, R. (2003). ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 15, 165–178.
- Martin, M.N., Cohen, J.D. & Saftner, R.A. (1995). A new 1-aminocyclopropane-1-carboxylic acid-conjugating activity in tomato fruit. Plant Physiol., 109, 917–926.
- Mehta, P.K., Hale, T.I. & Christen, P. (1993). Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur. J. Biochem., 214, 549–561.
- Moussatche, P. & Klee, H.J. (2004). Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J. Biol. Chem., 279, 48734–48741.
- Nakajima, N. & Imaseki, H. (1986). Purification and properties of 1-aminocyclopropane-1-carboxylate synthase of mesocarp of Cucurbita maxima Duch. fruits. Plant Cell Physiol., 27, 969–980.
- Nakajima, N., Mori, H., Yamazaki, K. & Imaseki, H. (1990). Molecular cloning and sequence of a complementary DNA encoding 1-aminocyclopropane-1-carboxylate synthase induced by tissue wounding. Plant Cell Physiol., 31, 1021–1029.
- Neljubow, D. (1901). Ueber die horizontale Nutation der Stengel von Pisum sativum und einiger anderen Pflanzen. Pflanzen Beih. Bot. Zentralb., 10, 128–139.
- Ouaked, F., Rozhon, W., Lecourieux, D. & Hirt, H. (2003). A MAPK pathway mediates ethylene signaling in plants. EMBO J., 1282–1288.
- Penninckx, I.A., Thomma, B.P., Buchala, A., Metraux, J.P. & Broekaert, W.F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis . Plant Cell, 10, 2103–2113.
- Pitts, R.J., Cernac, A. & Estelle, M. (1998). Auxin and ethylene promote root hair elongation in Arabidopsis . Plant J., 16, 553–560.
- Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C. & Genschik, P. (2003). EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell, 115, 679–689.
- Qu, X. & Schaller, G.E. (2004). Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol., 136, 2961–2970.
- Rahman, A., Amakawa, T., Goto, N. & Tsurumi, S. (2001). Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots. Plant Cell Physiol., 42, 301–307.
- Ravanel, S., Gakiere, B., Job, D. & Douce, R. (1998). The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. USA, 95, 7805–7812.
- Raz, V. & Ecker, J.R. (1999). Regulation of differential growth in the apical hook of Arabidopsis . Development, 126, 3661–3668.
- Rieu, I., Cristescu, S.M., Harren, F.J., Huibers, W., Voesenek, L.A., Mariani, C. & Vriezen, W.H. (2005). RP-ACS1, a flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of Rumex palustris, is involved in rhythmic ethylene production. J. Exp. Bot., 413, 841–849.
- Rodrigues-Pousada, R.A., De Rycke, R., Dedonder, A., Van Caeneghem, W., Engler, G., Van Montagu, M. & Van Der Straeten, D. (1993). The Arabidopsis 1-aminocyclopropane-1-carboxylate synthase gene 1 is expressed during early development. Plant Cell, 5, 897–911.
- Rodriguez, F.I., Esch, J.J., Hall, A.E., Binder, B.M., Schaller, G.E. & Bleecker, A.B. (1999). A copper cofactor for the ethylene receptor ETR1 from Arabidopsis . Science, 12, 996–998.
- Roman, G. & Ecker, J.R. (1995). Genetic analysis of a seedling stress response to ethylene in Arabidopsis . Philos. Trans. R. Soc. Lond. B. Biol. Sci., 350, 75–81.
- Sato, T. & Theologis, A. (1989). Cloning the mRNA encoding 1-amino-cyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc. Natl. Acad. Sci. USA, 86, 6621–6625.
- Sato-Nara, K., Yuhashi, K.I., Higashi, K., Hosoya, K., Kubota, M. & Ezura, H. (1999). Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol., 120, 321–330.
- Schaller, G.E., Ladd, A.N., Lanahan, M.B., Spanbauer, J.M. & Bleecker, A.B. (1995). The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimmer. J. Biol. Chem., 270, 12526–12530.
- Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C. & Manners, J.M. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA, 11655–11660.
- Shibuya, K., Nagata, M., Tanikawa, N., Yoshioka, T., Hashiba, T. & Satoh, S. (2002). Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J. Exp. Bot., 53, 399–406.
- Shibuya, K., Barry, K.G., Ciardi, J.A., Loucas, H.M., Underwood, B.A., Nourizadeh, S., Ecker, J.R., Klee, H.J. & Clark, D.G. (2004). The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol., 136, 2900–2912.
- Smalle, J., Haegman, M., Kurepa, J., Van Montagu, M. & Van Der Straeten, D. (1997). Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc. Natl. Acad. Sci. USA, 94, 2756–2761.
- Solano, R., Stepanova, A., Chao, Q. & Ecker, J.R. (1998). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev., 12, 3703–3714.
- Stepanova, A.N., Hoyt, J.M., Hamilton, A.A. & Alonso, J.M. (2005). A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis . Plant Cell, 17, 2230–2242.
- Tang, X., Gomes, A.M.T.R., Bhatia, A. & Woodson, W.R. (1994). Pistil specific and ethylene-regulated expression of 1-amino-cyclopropane-1-carboxylate oxidase genes in petunia flowers. Plant Cell, 6, 1227–1239.
- Tatsuki, M. & Mori, H. (2001). Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J. Biol. Chem., 276, 28051–28057.
- Thain, S., Vandenbussche, F., Laarhoven, L.J., Dowson-Day, M.J., Wang, Z.Y., Tobin, E.M., Harren, F.J., Millar, A.J. & Van Der Straeten, D. (2004). Circadian rhythms of ethylene emission in Arabidopsis . Plant Physiol., 136, 3751–3761.
- Thomine, S., Wang, R., Ward, J.M., Crawford, N.M. & Schroeder, J.I. (2000). Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Natl. Acad. Sci. USA, 97, 4991–4996.
- Tieman, D.M., Taylor, M.G., Ciardi, J.A. & Klee, H.J. (2000). The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc. Natl. Acad. Sci. USA, 97, 5663–5668.
- Tsuchisaka, A. & Theologis, A. (2004a). Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc. Natl. Acad. Sci. USA, 101, 2275–2280.
- Tsuchisaka, A. & Theologis, A. (2004b). Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol., 136, 2982–3000.
- Vahala, J., Schlagnhaufer, C.D. & Pell, E.J. (1998). Induction of an ACC synthase cDNA by ozone in light-grown Arabidopsis thaliana leaves. Physiol. Plant, 103, 45–50.
- Van Der Straeten, D., Van Wiemeersch, L., Goodman, H.M. & Van Montagu, M. (1989). Purification and partial characterization of 1-aminocyclopropane-1-carboxylate synthase from tomato pericarp. Eur. J. Biochem., 182, 639–647.
- Van Der Straeten, D., Van Wiemeersch, L., Goodman, H.M. & Van Montagu, M. (1990). Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato. Proc. Natl. Acad. Sci. USA, 87, 4859–4863.
- Van Der Straeten, D., Rodrigues-Pousada, R.A., Villarroel, R., Hanley, S., Goodman, H.M. & Van Montagu, M. (1992). Cloning, genetic mapping, and expression analysis of an Arabidopsis thaliana gene that encodes 1-aminocyclopropane-1-carboxylate synthase. Proc. Natl. Acad. Sci. USA, 89, 9969–9973.
- Van Der Straeten, D., Djudzman, A., Van Caeneghem, W., Smalle, J. & Van Montagu, M. (1993). Genetic and physiological analysis of a new locus in Arabidopsis that confers resistance to 1-aminocyclopropane-1-carboxylic acid and ethylene and specifically affects the ethylene signal transduction pathway. Plant Physiol., 102, 401–408.
- Van Der Straeten, D., Anuntalabhochai, S., Van Caeneghem, W., Zhou, Z., Gielen, J. & Van Montagu, M. (1997). Expression of three members of the ACC synthase gene family in deepwater rice by submergence, wounding and hormonal treatments. Plant Sci., 124, 79–87.
- Van Der Straeten, D., Zhou, Z., Prinsen, E., Van Onckelen, H.A. & Van Montagu, M.C. (2001). A comparative molecular–physiological study of submergence response in lowland and deepwater rice. Plant Physiol., 125, 955–968.
- Van Zhong, G. & Burns, J.K. (2003). Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol. Biol., 53, 117–131.
- Vandenbussche, F. & Van Der Straeten, D. (2004). Shaping the shoot: a circuitry involving multiple signals. Trends Plant Sci., 9, 499–506.
- Vandenbussche, F., Vriezen, W., Smalle, J., Laarhoven, L.J., Harren, F. & Van Der Straeten, D. (2003a). Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol., 133, 517–527.
- Vandenbussche, F., Smalle, J., Le, J., Saibo, N.J., De Paepe, A., Chaerle, L., Tietz, O., Smets, R., Laarhoven, L.J., Harren, F.J., Van Onckelen, H., Palme, K., Verbelen, J.P. & Van Der Straeten, D. (2003b). The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol., 131, 1228–1238.
- Vandenbussche, F., Verbelen, J.-P. & Van Der Straeten, D. (2005). Of light and length: regulation of hypocotyl growth in Arabidopsis . Bioessays, 27, 275–284.
- Ververidis, P. & John, P. (1991). Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry, 30, 725–727.
- Vogel, J.P., Schuerman, P., Woeste, K., Brandstatter, I. & Kieber, J.J. (1998a). Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin. Genetics, 149, 417–427.
- Vogel, J.P., Woeste, K.E., Theologis, A. & Kieber, J.J. (1998b). Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc. Natl. Acad. Sci. USA, 95, 4766–4771.
- Vriezen, W.H., van Rijn, C.P., Voesenek, L.A. & Mariani, C. (1997). A homolog of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J., 11, 1265–1271.
- Vriezen, W.H., Achard, P., Harberd, N.P. & Van Der Straeten, D. (2004). Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J., 37, 505–516.
- Wang, W., Hall, A.E., O'Malley, R. & Bleecker, A.B. (2003). Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc. Natl. Acad. Sci. USA, 100, 352–357.
- Wang, K.L., Yoshida, H., Lurin, C. & Ecker, J.R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature, 428, 945–950.
- Wang, N.N., Shih, M.C. & Li, N. (2005). The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J. Exp. Bot., 56, 909–920.
- Woeste, K.E., Ye, C. & Kieber, J.J. (1999). Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol., 119, 521–530.
- Yamagami, T., Tsuchisaka, A., Yamada, K., Haddon, W.F., Harden, L.A. & Theologis, A. (2003). Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem., 278, 49102–49112.
- Yanagisawa, S., Yoo, S.D. & Sheen, J. (2003). Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature, 425, 521–525.
- Yang, S.F. & Hoffman, N.E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol., 35, 155–189.
- Yi, H.C., Joo, S., Nam, K.H., Lee, J.S., Kang, B.G. & Kim, W.T. (1999). Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Mol. Biol., 41, 443–454.
- Yu, J., Hu, S., Wang, J., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science, 296, 79–92.
- Zarembinski, T.I. & Theologis, A. (1993). Anaerobiosis and plant growth hormones induce two genes encoding 1-aminocyclopropane-1-carboxylate synthase in rice (Oryza sativa L.). Mol. Biol. Cell, 4, 363–373.
- Zarembinski, T.I. & Theologis, A. (1997). Expression characteristics of OS-ACS1 and OS-ACS2, two members of the 1-aminocyclopropane-1-carboxylate synthase gene family in rice (Oryza sativa L. cv. Habiganj Aman II) during partial submergence. Plant Mol. Biol., 33, 71–77.
- Zhao, X.C., Qu, X., Mathews, D.E. & Schaller, G.E. (2002). Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis . Plant Physiol., 130, 1983–1991.
- Zhou, L., Jang, J.C., Jones, T.L. & Sheen, J. (1998). Glucose and ethylene signal transduction cross-talk revealed by an Arabidopsis glucose-insensitive mutant. Proc. Natl. Acad. Sci. USA, 95, 10294–10299.
- Zhou, Z., De Almeida-Engler, J., Rouan, D., Michiels, F., Van Montagu, M. & Van Der Straeten, D. (2002). Tissue localization of a submergence-induced 1-aminocyclopropane-1-carboxylic acid synthase in rice. Plant Physiol., 129, 72–84.
Browse other articles of this reference work: