9 Chloroplast Avoidance Movement
Annual Plant Reviews book series, Volume 13: Plastids
Masahiro Kasahara,
Masamitsu Wada,
Masahiro Kasahara
Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183–8509 Japan
Search for more papers by this authorMasamitsu Wada
Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192–0397 Japan
Search for more papers by this authorMasahiro Kasahara,
Masamitsu Wada,
Masahiro Kasahara
Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183–8509 Japan
Search for more papers by this authorMasamitsu Wada
Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192–0397 Japan
Search for more papers by this authorThis article was originally published in 2005 in Plastids, Volume 13 (ISBN 9781405118828) of the Annual Plant Reviews book series, this volume edited by Simon Geir Møller. The article was republished in Annual Plant Reviews online in April 2018.
Abstract
The sections in this article are
- Introduction
- Photoreceptors Controlling Chloroplast Movement
- Downstream Signaling from the Photoreceptors
- Physiological Significance of Chloroplast Movement
- Conclusion
- Acknowledgements
References
- Asada, K. (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 601–639.
- Babourina, O., Newman, I. and Shabala, S. (2002) Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings. Proc. Natl. Acad. Sci. U.S.A., 99, 2433–2438.
- Baum, G., Long, J.C., Jenkins, G.I. and Trewavas, A.J. (1999) Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+ . Proc. Natl. Acad. Sci. U.S.A., 96, 13554–13559.
- Briggs, W.R., Beck, C.F., Cashmore, A.R. et al. (2001) The phototropin family of photoreceptors. Plant Cell, 13, 993–997.
- Briggs, W.R. and Christie, J.M. (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci., 7, 204–210.
- Briggs, W.R. and Huala, E. (1999) Blue-light photoreceptors in higher plants. Annu. Rev. Cell Dev. Biol., 15, 33–62.
- Brugnoli, E. and Bjökman, O. (1992) Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ′pH and zeaxanthin formation. Photosynth. Res., 32, 23–35.
- Christie, J.M., Salomon, M., Nozue, K., Wada, M. and Briggs, W.R. (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc. Natl. Acad. Sci. U.S.A., 96, 8779–8783.
- Christie, J.M., Swartz, T.E., Bogomolni, R.A. and Briggs, W.R. (2002) Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J., 32, 205–219.
- Crosson, S. and Moffat, K. (2001) Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Proc. Natl. Acad. Sci. U.S.A., 98, 2995–3000.
- Crosson, S. and Moffat, K. (2002) Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell, 14, 1067–1075.
- Crosson, S., Rajagopal, S. and Moffat, K. (2003) The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry, 42, 2–10.
- Demmig-Adams, B. and Adams, W.W.I. (1992) Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol., 43, 599–626.
- Gorton, H.L., Herbert, S.K. and Vogelmann, T.C. (2003) Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis . Plant Physiol., 132, 1529–1539.
- Gorton, H.L., Williams, W.E. and Vogelmann, T.C. (1999) Chloroplast movement in Alocasia macrorrhiza . Physiol. Plant., 106, 421–428.
- Harada, A., Sakai, T. and Okada, K. (2003) phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc. Natl. Acad. Sci. U.S.A., 100, 8583–8588.
- Haupt, W. and Scheuerlein, R. (1990) Chloroplast movement. Plant Cell Environ., 13, 595–614.
- Huala, E., Oeller, P.W., Liscum, E., Han, I.S., Larsen, E. and Briggs, W.R. (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science, 278, 2120–2123.
- Inoue, Y. and Shibata, K. (1974) Comparative examination of terrestrial plant leaves in terms of light-induced absorption changes due to chloroplast rearrangements. Plant Cell Physiol., 17, 717–721.
- Jarillo, J.A., Gabrys, H., Capel, J., Alonso, J.M., Ecker, J.R. and Cashmore, A.R. (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature, 410, 952–954.
- Jeong, W.J., Park, Y.I., Suh, K., Raven, J.A., Yoo, O.J. and Liu, J.R. (2002) A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts. Plant Physiol., 129, 112–121.
- Kadota, A., Sato, Y. and Wada, M. (2000) Intracellular chloroplast photorelocation in the moss Physcomitrella patens is mediated by phytochrome as well as by a blue-light receptor. Planta, 210, 932–937.
- Kadota, A. and Wada, M. (1992a) Photoorientation of chloroplasts in protonemal cells of the fern Adiantum as analyzed by use of a video-tracking system. Bot. Mag. Tokyo, 105, 265–279.
- Kadota, A. and Wada, M. (1992b) Photoinduction of formation of circular structures by microfilaments on chloroplast during intracellular orientation in protonemal cells of the fern Adiantum capillus-veneris . Protoplasma, 167, 97–107.
- Kagawa, T., Sakai, T., Suetsugu, N. et al. (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science, 291, 2138–2141.
- Kagawa, T. and Wada, M. (2000) Blue light-induced chloroplast relocation in Arabidopsis thaliana as analyzed by microbeam irradiation. Plant Cell Physiol., 41, 84–93.
- Kagawa, T. and Wada, M. (2002) Blue light-induced chloroplast relocation. Plant Cell Physiol., 43, 367–371.
-
Kandasamy, M.K. and Meagher, R.B. (1999) Actin–organelle interaction: association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil. Cytoskeleton, 44, 110–118.
10.1002/(SICI)1097-0169(199910)44:2<110::AID-CM3>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- Kasahara, M., Kagawa, T., Oikawa, K., Suetsugu, N., Miyao, M. and Wada, M. (2002a) Chloroplast avoidance movement reduces photodamage in plants. Nature, 420, 829–832.
- Kasahara, M., Kagawa, T., Sato, Y., Kiyosue, T. and Wada, M. (in press) Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol .
- Kasahara, M., Swartz, T.E., Olney, M.A. et al. (2002b) Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii . Plant Physiol., 129, 762–773.
- Kawai, H., Kanegae, T., Christensen, S. et al. (2003) Responses of ferns to red light are mediated by an unconventional photoreceptor. Nature, 421, 287–290.
-
Lechowski, Z. (1974) Chloroplast arrangement as a factor of photosynthesis in multilayered leaves. Acta Soc. Bot. Pol., 43, 531–540.
10.5586/asbp.1974.052 Google Scholar
- Malec, P., Rinaldi, R.A. and Gabrys, H. (1996) Light-induced chloroplast movements in Lemna trisulca: identification of the motile system. Plant Sci., 120, 127–137.
- Niyogi, K.K. (1999) Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 333–359.
- Nozue, K., Kanegae, T., Imaizumi, T. et al. (1998) A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc. Natl. Acad. Sci. U.S.A., 95, 15826–15830.
- Oikawa, K., Kasahara, M., Kiyosue, T. et al. (2003) CHLOROPLAST UNUSUAL POSITIONING1 is essential for proper chloroplast positioning. Plant Cell., 15, 2805–2815.
- Park, Y.I., Chow, W.S. and Anderson, J.M. (1996) Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol., 111, 867–875.
- Sakai, T., Kagawa, T., Kasahara, M. et al. (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. U.S.A., 98, 6969–6974.
- Sakamoto, K. and Briggs, W.R. (2002) Cellular and subcellular localization of phototropin 1. Plant Cell, 14, 1723–1735.
- Salomon, M., Christie, J.M., Knieb, E., Lempert, U. and Briggs, W.R. (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry, 39, 9401–9410.
- Sato, Y., Kadota, A. and Wada, M. (2003) Chloroplast movement: dissection of events downstream of photo- and mechano-perception. J. Plant Res., 116, 1–5.
- Sato, Y., Wada, M. and Kadota, A. (2001a) Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J. Cell Sci., 114, 269–279.
- Sato, Y., Wada, M. and Kadota, A. (2001b) External Ca2+ is essential for chloroplast movement induced by mechanical stimulation but not by light stimulation. Plant Physiol., 127, 497–504.
-
Schönbohm, E. (1980) Phytochrome and non-phytochrome dependent blue light effects on intracellular movements in fresh-water algae. In The Blue Light Syndrome (ed. H. Senger), Springer-Verlag, Berlin, pp. 69–96.
10.1007/978-3-642-67648-2_7 Google Scholar
- Senn, G. (1908) Die Gestalts- und Lageveranderung der Pflanzen-Chromatophoren, Engelmann, Stuttgart.
- Stoelzle, S., Kagawa, T., Wada, M., Hedrich, R. and Dietrich, P. (2003) Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc. Natl. Acad. Sci. U.S.A., 100, 1456–1461.
- Swartz, T.E., Corchnoy, S.B., Christie, J.M. et al. (2001) The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J. Biol. Chem., 276, 36493–36500.
- Taylor, B.L. and Zhulin, I.B. (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev., 63, 479–506.
- Terashima, I. and Hikosaka, K. (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ., 18, 1111–1128.
- Tlalka, M. and Fricker, M. (1999) The role of calcium in blue-light-dependent chloroplast movement in Lemna trisulca L. Plant J., 20, 461–473.
- Tlalka, M. and Gabrys, H. (1993) Influence of calcium on blue-light-induced chloroplast movement in Lemna trisulca L. Planta, 189, 491–498.
- Trojan, A. and Gabrys, H. (1996) Chloroplast distribution in Arabidopsis thaliana (L.) depends on light conditions during growth. Plant Physiol., 111, 419–425.
- Wada, M., Kadota, A. and Furuya, M. (1983) Intracellular localization and dichronic orientation of phytochrome in plasma membrane and/or ectoplasm of a centrifuged protonema of fern Adiantum capillus-veneris L. Plant Cell Physiol., 24, 1441–1447.
-
Wada, M. and Kagawa, T. (2001) Light-controlled chloroplast movement. In Photomovement (eds D.-H. Häder and M. Lebert), Elsevier, Amsterdam, pp. 897–924.
10.1016/S1568-461X(01)80030-2 Google Scholar
- Wada, M., Kagawa, T. and Sato, Y. (2003) Chloroplast movement. Annu. Rev. Plant Biol., 54, 455–468.
- Wagner, G., Haupt, W. and Laux, A. (1972) Reversible inhibition of chloroplast movement by cytochalasin B in the green alga Mougeotia . Science, 176, 808–809.
- Yatsuhashi, H., Kadota, A. and Wada, M. (1985) Blue- and red-light action in photoorientation of chloroplasts in Adiantum protonemata. Planta, 165, 43–50.
-
Zurzycki, J. (1955) Chloroplasts arrangement as a factor in photosynthesis. Acta Soc. Bot. Pol., 24, 27–63.
10.5586/asbp.1955.003 Google Scholar
- Zurzycki, J. (1957) The destructive effect of intense light on the photosynthetic apparatus. Acta Soc. Bot. Pol., 26, 157–175.
-
Zurzycki, J. (1980) Blue light-induced intracellular movements. In The Blue Light Syndrome (ed. H. Senger), Springer-Verlag, Berlin, pp. 50–68.
10.1007/978-3-642-67648-2_6 Google Scholar
Citing Literature
Browse other articles of this reference work: