Micro- and Nanoscale Calorimetry for Biomedical Applications
Harishankar Natesan
Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
Search for more papers by this authorJohn C. Bischof*
Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
Search for more papers by this authorHarishankar Natesan
Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
Search for more papers by this authorJohn C. Bischof*
Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
Search for more papers by this authorDevashish Shrivastava
US Food and Drug Administration, Silver Spring, NY, 10903 USA
Search for more papers by this authorSummary
This chapter discusses the various parameters related to thermal analyses, phase change, enthalpy, and specific heat capacity, particularly in the cryogenic (<-40 °C) and hyperthermic (>40 °C) regimes where water, protein, and lipid phase changes occur. It focuses on differential scanning calorimetry (DSC) at the microscale. The chapter introduces nanocalorimetry for applications at the cellular, sub-cellular, and molecular level. Nanocalorimetry is developed generally on a silicon-based membrane with the ability to work with small sample weight (as low as 10 ng), and large heating rates (~105 °C/min). Currently, they are being developed for four major application areas: high-throughput calorimetry for the drug industry; protein conformational studies; label free biochemical sensing; and monitoring of cells. Another major application of nanocalorimetry is to study phase transitions such as glass transition and crystallization in polymers, which has important biomedical applications in the future.
References
- Abdelwahed, W., G. Degobert, S. Stainmesse and H. Fessi (2006). Freeze-drying of nanoparticles: Formulation, process and storage considerations. Advanced Drug Delivery Reviews, 58(15), pp. 1688–1713.
- Ahmad, L. M., B. Towe, A. Wolf, et al. (2010). Binding event measurement using a chip calorimeter coupled to magnetic beads. Sensors and Actuators B: Chemical, 145(1), pp. 239–245.
- Akiyama, M., N. Matsushita and Y. Terayama (1987). Kinetics of the subtransition of multilamellar dipalmitoylphosphatidylcholine. Japanese Journal of Applied Physics, 26(9R), pp. 1587–1591.
- Al-Sakere, B., F. André, C. Bernat, et al. (2007). Tumor Ablation with Irreversible Electroporation. PLoS ONE, 2(11), pp. e1135.
-
Alapati, R., K. Goff, H. M. Kubisch and R. V. Devireddy (2008). Water transport in epididymal and ejaculated rhesus monkey (Macaca mulatta) sperm during freezing. Cryobiology, 57(2), pp. 182–185.
10.1016/j.cryobiol.2008.07.005 Google Scholar
- Allen, T. M. and P. R. Cullis (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), pp. 36–48.
- Almagor, M. and R. D. Cole (1989). Differential scanning calorimetry of nuclei as a test for the effects of anticancer drugs on human chromatin. Cancer Research, 49(20), pp. 5561–5566.
- Anderson, C. R. and M. C. Flickinger (1993). Monitoring growth and acetic acid secretion by a thermotolerant Bacillus using conduction microcalorimetry. Journal of Industrial Microbiology, 12(2), pp. 114–120.
- Ando, S., D. Putnam, D. W. Pack and R. Langer (1999). PLGA microspheres containing plasmid DNA: Preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. Journal of Pharmaceutical Sciences, 88(1), pp. 126–130.
- Antonelli, M. L., M. Luciani and L. Silvestroni (1991). The microcalorimetric approach to human sperm physiology. Thermochimica Acta, 180, pp. 107–115.
-
Arvinte, T. and P. L. Steponkus (1988). Characterization of the pH-induced fusion of liposomes with the plasma membrane of rye protoplasts. Biochemistry, 27(15), pp. 5671–5677.
10.1021/bi00415a042 Google Scholar
- Avitall, B., D. Urboniene, G. Rozmus, D., et al. (2003). New Cryotechnology for Electrical Isolation of the Pulmonary Veins. Journal of Cardiovascular Electrophysiology, 14(3), pp. 281–286.
- Barbas, J. P. and R. D. Mascarenhas (2009). Cryopreservation of domestic animal sperm cells. Cell and Tissue Banking, 10(1), pp. 49–62.
- Bataillard, P., E. Steffgen, S. Haemmerli, et al. (1993). An integrated silicon thermopile as biosensor for the thermal monitoring of glucose, urea and penicillin. Biosensors and Bioelectronics, 8(2), pp. 89–98.
- Beck, K., S. J. Gill and M. Downing (1965). Heat of transition of ribonuclease A1. Journal of the American Chemical Society, 87(4), pp. 901–904.
- Bello, Y. M., D. A. F. Falabella and W. H. Eaglstein (2001). Tissue-Engineered Skin. American Journal of Clinical Dermatology, 2(5), pp. 305–313.
- Belzer, F. O. and J. H. Southard (1988). Principles of solid-organ preservation by cold storage. Transplantation, 45(4), pp. 673–676.
- Berger, R. L., W. S. Friauf and H. E. Cascio (1974). A low-noise thermistor bridge for use in calorimetry. Clinical Chemistry, 20(8), pp. 1009–1012.
- Biltonen R. L., Ye Q. (1993) Kinetics of the gel-to-liquid phase transition of binary lipid bilayers using volume perturbation calorimetry. In: P. Laggner, O. Glatter (eds) Trends in Colloid and Interface Science VII. Progress in Colloid & Polymer Science, 93. Steinkopff.
- Bischof, J. C., D. Smith, P. V. Pazhayannur, et al. (1997). Cryosurgery of Dunning AT-1 rat prostate tumor: Thermal, biophysical, and viability response at the cellular and tissue level. Cryobiology, 34(1), pp. 42–69.
- Bronshteyn, V. L. and P. L. Steponkus (1993). Calorimetric studies of freeze-induced dehydration of phospholipids. Biophysical journal, 65(5), pp. 1853–1865.
- Bryant, G. (1995). DSC measurement of cell suspensions during successive freezing runs: Implications for the mechanisms of intracellular ice formation. Cryobiology, 32(2), pp. 114–128.
-
Buchholz, A. C. and D. A. Schoeller (2004). Is a calorie a calorie? The American Journal of Clinical Nutrition, 79(5), pp. 899S–906S.
10.1093/ajcn/79.5.899S Google Scholar
-
Caffrey, M. (1987). Kinetics and mechanism of transitions involving the lamellar, cubic, inverted hexagonal, and fluid isotropic phases of hydrated monoacylglycerides monitored by time-resolved X-ray diffraction. Biochemistry, 26(20), pp. 6349–6363.
10.1021/bi00394a008 Google Scholar
- Caffrey, M. (1993). LIPIDAT A Database of Thermo Data and Association Information on Lipid, CRC Press, Boca Raton, FL.
- Caffrey, M. and A. Cheng (1995). Kinetics of lipid phase changes. Current Opinion in Structural Biology, 5(4), pp. 548–555.
- Carpenter, J. F., M. J. Pikal, B. S. Chang and T. W. Randolph (1997). Rational design of stable lyophilized protein formulations: Some practical advice. Pharmaceutical research, 14(8), pp. 969–975.
- Carpenter, J. F., S. J. Prestrelski and T. Arakawa (1993). Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization. I. Enzyme activity and calorimetric studies. Archives of Biochemistry and Biophysics, 303(2), pp. 456–464.
-
Chagovetz, A. A., C. Quinn, N. Damarse, et al. (2013). Differential scanning calorimetry of gliomas: A new tool in brain cancer diagnostics? Neurosurgery, 73(2), pp. 289–295; discussion 295.
10.1227/01.neu.0000430296.23799.cd Google Scholar
- Chakrabarti, S. M. and W. H. Johnson (1972). Specific heat of flue cured tobacco by differential scanning calorimetry. Transactions of the American Society of Agricultural Engineers, 15(5), pp. 928–931.
- Chancellor, E. B., J. P. Wikswo, F. Baudenbacher, et al.(2004). Heat conduction calorimeter for massively parallel high throughput measurements with picoliter sample volumes. Applied Physics Letters, 85(12), pp. 2408.
- Chapman, D., J. Urbina and K. M. Keough (1974). Biomembrane phase transitions studies of lipid-water systems using differential scanning calorimetry. Journal of Biological Chemistry, 249(8), pp. 2512–2521.
-
Chapman, D., R. M. Williams and B. D. Ladbrooke (1967). Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines (lecithins). Chemistry and Physics of Lipids, 1(5), pp. 445–475.
10.1016/0009-3084(67)90023-0 Google Scholar
- Cheng, A., B. Hummel, A. Mencke and M. Caffrey (1994). Kinetics and mechanism of the barotropic lamellar gel/lamellar liquid crystal phase transition in fully hydrated dihexadecylphosphatidylethanolamine: A time-resolved x-ray diffraction study using pressure jump. Biophysical Journal, 67(1), pp. 293–303.
- Chi, E. Y., S. Krishnan, T. W. Randolph and J. F. Carpenter (2003). Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation. Pharmaceutical Research, 20(9), pp. 1325–1336.
- Choi, J. and J. C. Bischof (2010). Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology. Cryobiology, 60(1), pp. 52–70.
-
Choi, J. H. and J. C. Bischof (2008a). A quantitative analysis of the thermal properties of porcine liver with glycerol at subzero and cryogenic temperatures. Cryobiology, 57(2), pp. 79–83.
10.1016/j.cryobiol.2008.05.004 Google Scholar
- Choi, J. H. and J. C. Bischof (2008b). A quantitative analysis on the thermal properties of phosphate buffered saline with glycerol at subzero temperatures. International Journal of Heat and Mass Transfer, 51(3–4), pp. 640–649.
- Clarke, D. M., J. M. Baust, R. G. Van Buskirk and J. G. Baust (2001). Chemo-cryo combination therapy: An adjunctive model for the treatment of prostate cancer. Cryobiology, 42(4), pp. 274–285.
- Clas, S.-D., C. R. Dalton and B. C. Hancock (1999). Differential scanning calorimetry: Applications in drug development. Pharmaceutical Science & Technology Today, 2(8), pp. 311–320.
-
Crescenzo, D. G., S. L. Hilbert, R. H. Messier Jr, et al. (1993). Human cryopreserved homografts: Electron microscopic analysis of cellular injury. The Annals of Thoracic Surgery, 55(1), pp. 25–31.
10.1016/0003-4975(93)90469-X Google Scholar
- Crowe, J. H., F. A. Hoekstra and L. M. Crowe (1992). Anhydrobiosis. Annual Review of Physiology, 54(1), pp. 579–599.
- Crowe, L. M., J. H. Crowe, A. Rudolph, C. Womersley and L. Appel (1985). Preservation of freeze-dried liposomes by trehalose. Archives of Biochemistry and Biophysics, 242(1), pp. 240–247.
- Danforth, R., H. Krakauer and J. M. Sturtevant (1967). Differential calorimetry of thermally induced processes in solution. Review of Scientific Instruments, 38(4).
- Davalos, R. and B. Rubinsky (2011). Tissue ablation with irreversible electroporation , The Regents of the University of California.
- Davis, D. L., E. P. O'Brie and C. M. Bentzley (2000). Analysis of the Degradation of Oligonucleotide Strands During the Freezing/Thawing Processes Using MALDI-MS. Analytical Chemistry, 72(20), pp. 5092–5096.
- de Kanter, R., P. Olinga, I. Hof, M. de Jager, W. A. Verwillegen, M. J. H. Slooff, H. J. Koster, D. K. F. Meijer and G. M. M. Groothuis (1998). A rapid and simple method for cryopreservation of human liver slices. Xenobiotica, 28(3), pp. 225–234.
- Devireddy, R. v., B. Fahrig, R. a. Godke and S. p. Leibo (2004). Subzero water transport characteristics of boar spermatozoa confirm observed optimal cooling rates. Molecular Reproduction and Development, 67(4), pp. 446–457.
- Devireddy, R. v., G. Li and S. p. Leibo (2006). Suprazero cooling conditions significantly influence subzero permeability parameters of mammalian ovarian tissue. Molecular Reproduction and Development, 73(3), pp. 330–341.
- Devireddy, R. V., D. Raha and J. C. Bischof (1998). Measurement of Water Transport during Freezing in Cell Suspensions Using a Differential Scanning Calorimeter. Cryobiology, 36(2), pp. 124–155.
- Devireddy, R. V., D. J. Smith and J. C. Bischof (1999). Mass transfer during freezing in rat prostate tumor tissue. AIChE Journal, 45(3), pp. 639–654.
-
Devireddy, R. V., D. J. Smith and J. C. Bischof (2002a). Effect of microscale mass transport and phase change on numerical prediction of freezing in biological tissues. Journal of heat transfer, 124(2), pp. 365–374.
10.1115/1.1445134 Google Scholar
- Devireddy, R. V., D. J. Swanlund, T. Olin, W. Vincente, M. H. T. Troedsson, J. C. Bischof and K. P. Roberts (2002b). Cryopreservation of Equine Sperm: Optimal Cooling Rates in the Presence and Absence of Cryoprotective Agents Determined Using Differential Scanning Calorimetry. Biology of Reproduction, 66(1), pp. 222–231.
- Devireddy, R. V., D. J. Swanlund, K. P. Roberts, et al. (2000). The effect of extracellular ice and cryoprotective agents on the water permeability parameters of human sperm plasma membrane during freezing. Human Reproduction, 15(5), pp. 1125–1135.
- Diederich, Chris J. (2005). Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. International Journal of Hyperthermia, 21(8), pp. 745–753.
- Diller, K. R, J. W. Valvano and J.A. Pearce (2000), Bioheat transfer, in The CRC Handbook of Thermal Engineering, CRC Press, Boca Raton, FL, Kreith, F. (ed.).
- Donnelly, B. J., J. C. Saliken, D. S. Ernst, N. Ali-Ridha, P. M. A. Brasher, J. W. Robinson and J. C. Rewcastle (2002). Prospective trial of cryosurgical ablation of the prostate: Five-year results. Urology, 60(4), pp. 645–649.
- Donnez, J., M. M. Dolmans, D. Demylle, et al. (2004). Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. The Lancet, 364(9443), pp. 1405–1410.
- Donovan, J. W. and E. Mihalyi (1974). Conformation of Fibrinogen: Calorimetric Evidence for a Three-Nodular Structure. Proceedings of the National Academy of Sciences, 71(10), pp. 4125–4128.
- Duck, F. A. (1990). Physical Properties of Tissue, Academic Press, London, pp. 167–223.
- Epand, R. M. and R. F. Epand (1994). Calorimetric detection of curvature strain in phospholipid bilayers. Biophysical Journal, 66(5), pp. 1450–1456.
- Esfandyarpour, H., B. Zheng, R. F. W. Pease and R. W. Davis (2008). Structural optimization for heat detection of DNA thermosequencing platform using finite element analysis. Biomicrofluidics, 2(2), pp. 024102.
- Fahy, G. M. (1986). The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiology, 23(1), pp. 1–13.
- Fahy, G. M. and S. E. Ali (1997). Cryopreservation of the mammalian kidney. II. Demonstration of immediate ex vivo function after introduction and removal of 7.5 M cryoprotectant. Cryobiology, 35(2), pp. 114–131.
- Fahy, G. M., D. R. MacFarlane, C. A. Angell and H. T. Meryman (1984). Vitrification as an approach to cryopreservation. Cryobiology, 21, pp. 407–426.
- Fekecs, T., I. Zapf, A. Ferencz and D. Lőrinczy (2011). Differential scanning calorimetry (DSC) analysis of human plasma in melanoma patients with or without regional lymph node metastases. Journal of Thermal Analysis and Calorimetry, 108(1), pp. 149–152.
- Fennema, O. R., W. D. Powrie, and E. H. Marth (1973). Low Temperature Preservation of Foods and Living Matter, Marcel Dekker, Inc.
- Franco, W., A. Kothare, S. J. Ronan, et al. (2010). Hyperthermic injury to adipocyte cells by selective heating of subcutaneous fat with a novel radiofrequency device: Feasibility studies. Lasers in Surgery and Medicine, 42(5), pp. 361–370.
- Freeman, M. L., M. J. Borrelli, K. Syed, et al. (1995). Characterization of a signal generated by oxidation of protein thiols that activates the heat shock transcription factor. Journal of Cellular Physiology, 164(2), pp. 356–366.
- Fuller, B. J. and B. W. W. Grout (1991). Clinical Applications of Cryobiology, CRC Press, Boca Raton, FL.
- Gage, A. A. and J. Baust (1998). Mechanisms of Tissue Injury in Cryosurgery. Cryobiology, 37(3), pp. 171–186.
-
Gall, K. L., S. E. Smith, C. A. Willmette and M. F. O'Brien (1998). Allograft heart valve viability and valve-processing variables. The Annals of Thoracic Surgery, 65(4), pp. 1032–1038.
10.1016/S0003-4975(98)00085-X Google Scholar
-
Garbett, N. C., C. S. Mekmaysy, C. W. Helm, et al. (2009). Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring. Experimental and Molecular Pathology, 86(3), pp. 186–191.
10.1016/j.yexmp.2008.12.001 Google Scholar
- Garden, J. L., E. Chateau and J. Chaussy (2004). Highly sensitive ac nanocalorimeter for microliter-scale liquids or biological samples. Applied Physics Letters, 84(18), pp. 3597–3599.
- Gertz, F., R. Azimov and A. Khitun (2012). Biological cell positioning and spatially selective destruction via magnetic nanoparticles. Applied Physics Letters, 101(1), pp. 013701.
- Giering, K., I. Lamprecht and O. Minet (1996). Specific heat capacities of human and animal tissues. Laser-Tissue Interaction and Tissue Optics. Vol. 2624. International Society for Optics and Photonics, 1996.
- Giering, K., et al. (1995). Determination of the specific heat capacity of healthy and tumorous human tissue. Thermochimica acta, 251, pp. 199–205.
-
Goel, R., K. Anderson, F. Schmidlin, et al. (2009). Adjuvant approaches to enhance cryosurgery. Journal of Biomechanical Engineering, 131(7), pp. 074003–074003.
10.1115/1.3156804 Google Scholar
-
Góralski, P., M. Rogalińska, J. Z. Błoński, et al. (2014). The differences in thermal profiles between normal and leukemic cells exposed to anticancer drug evaluated by differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 118(2), pp. 1339–1344.
10.1007/s10973-014-3957-2 Google Scholar
- Guan, M., D. M. Rawson and T. Zhang (2008). Cryopreservation of zebrafish (Danio rerio) oocytes using improved controlled slow cooling protocols. Cryobiology, 56(3), pp. 204–208.
- Hagedorn, M., F. W. Kleinhans, D. E. Wildt and W. F. Rall (1997). Chill sensitivity and cryoprotectant permeability of dechorionated zebrafish embryos, Brachydanio rerio. Cryobiology, 34(3), pp. 251–263.
- Haïssaguerre, M., D. C. Shah, P. Jaïs, et al. (2000). Electrophysiological breakthroughs from the left atrium to the pulmonary veins. Circulation, 102(20), pp. 2463–2465.
- Hammerstedt, R. H. and R. E. Lovrien (1983). Calorimetric techniques for metabolic studies of cells and organisms under normal conditions and stress. Journal of Experimental Zoology, 228(3), pp. 459–469.
- Han, B., J. H. Choi, J. A. Dantzig and J. C. Bischof (2005). A quantitative analysis on latent heat of an aqueous binary mixture. Cryobiology, 52, pp. 146–151.
- Han, X., D. Luo, X. Cui, S. Heimfeld and D. Gao (2007). A modified differential scanning calorimetry method for determining water transport properties in biological cells during the freezing process. Cell Preservation Technology, 5(1), pp. 25–32.
- Hanai, A., W.-L. Yang and T. S. Ravikumar (2001). Induction of apoptosis in human colon carcinoma cells HT29 by sublethal cryo-injury: Mediation by cytochrome c release. International Journal of Cancer, 93(4), pp. 526–533.
- He, X., W. F. Wolkers, J. H. Crowe, et al. (2004). In situ thermal denaturation of proteins in Dunning AT-1 prostate cancer cells: Implication for hyperthermic cell injury. Annals of Biomedical Engineering, 32(10), pp. 1384–1398.
- Hey, J., P. Mehl and D. MacFarlane (1997). A combined differential scanning calorimeter-optical video microscope for crystallization studies. Journal of Thermal Analysis and Calorimetry, 49(2), pp. 991–998.
-
Higuera-Guisset, J., J. Rodríguez-Viejo, M. Chacón, et al. (2005). Calorimetry of microbial growth using a thermopile based microreactor. Thermochimica Acta, 427(1–2), pp. 187–191.
10.1016/j.tca.2004.09.010 Google Scholar
- Hobbs, P. V. (1974). Ice Physics. New York, Oxford: Clarendon Press.
- Hoffmann, N. E. and J. C. Bischof (2002). The cryobiology of cryosurgical injury. Urology, 60(2, Supplement 1), pp. 40–49.
-
Höhne, G., W. F. Hemminger and H. J. Flammersheim (2003). Differential Scanning Calorimetry, Springer.
10.1007/978-3-662-06710-9 Google Scholar
- Hovatta, O., R. Silye, T. Krausz, et al. (1996). Cryopreservation of human ovarian tissue using dimethylsulphoxide and propanediol-sucrose as cryoprotectants. Human Reproduction, 11(6), pp. 1268–1272.
-
Huang, J., J. Park, W. Wang, et al. (2013). Ultrafast thermal analysis of surface functionalized gold nanorods in aqueous solution. ACS Nano, 7(1), pp. 589–597.
10.1021/nn304738u Google Scholar
- Huettmann, G., B. Radt, J. Serbin and R. Birngruber (2003). Inactivation of proteins by irradiation of gold nanoparticles with nano- and picosecond laser pulses.
-
Irimia, D. and J. O. M. Karlsson (2002). Kinetics and mechanism of intercellular ice propagation in a micropatterned tissue construct. Biophysical Journal, 82(4), pp. 1858–1868.
10.1016/S0006-3495(02)75536-7 Google Scholar
- Jin, B., F. W. Kleinhans and P. Mazur (2014). Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse. Cryobiology, 68(3), pp. 419–430.
- Johannessen, E. A., J. M. R. Weaver, L. Bourova, et al. (2002). Micromachined nanocalorimetric sensor for ultra-low-volume cell-based assays. Analytical Chemistry, 74(9), pp. 2190–2197.
- Jung, Y. K., T. W. Kim, C. Jung, et al. (2008). A polydiacetylene microchip based on a biotin–streptavidin interaction for the diagnosis of pathogen infections. Small, 4(10), pp. 1778–1784.
- Karlsson, J. O., E. G. Cravalho, I. H. Borel Rinkes, R. G. Tompkins, M. L. Yarmush and M. Toner (1993a). Nucleation and growth of ice crystals inside cultured hepatocytes during freezing in the presence of dimethyl sulfoxide. Biophysical Journal, 65(6), pp. 2524–2536.
-
Karlsson, J. O. M., E. G. Cravalho and M. Toner (1994). A model of diffusion-limited ice growth inside biological cells during freezing. Journal of Applied Physics, 75(9), pp. 4442–4455.
10.1063/1.355959 Google Scholar
- Karlsson, J. O. M., J. O. M. Karlsson, E. G. Cravalho and M. Toner (1993b). Intracellular ice formation: Causes and consequences. Cryo-Letters, 14, pp. 323–334.
- Karlsson, J. O. M. and M. Toner (1996). Long-term storage of tissues by cryopreservation: Critical issues. Biomaterials, 17(3), pp. 243–256.
- Katayama, D. S., J. F. Carpenter, M. C. Manning, et al. (2008). Characterization of amorphous solids with weak glass transitions using high ramp rate differential scanning calorimetry. Journal of Pharmaceutical Sciences, 97(2), pp. 1013–1024.
- Kim, B. Y. S., J. T. Rutka and W. C. W. Chan (2010). Nanomedicine. New England Journal of Medicine, 363(25), pp. 2434–2443.
- Klein, K. B., B. Zelickson, J. G. Riopelle, et al. (2009). Non-invasive cryolipolysis™ for subcutaneous fat reduction does not affect serum lipid levels or liver function tests. Lasers in Surgery and Medicine, 41(10), pp. 785–790.
-
Kleinhans, F. W., J. F. Guenther, D. M. Roberts and P. Mazur (2006). Analysis of intracellular ice nucleation in Xenopus oocytes by differential scanning calorimetry. Cryobiology, 52(1), pp. 128–138.
10.1016/j.cryobiol.2005.10.008 Google Scholar
- Kleinschuster, S. J., K. R. Van Kampen , R. et al. (1979). Cryopreservation of bovine mononuclear leukocytes. American Journal of Veterinary Research, 40(11), pp. 1649–1651.
- Kleman, M. I., K. Oellers and E. Lullau (2008). Optimal conditions for freezing CHO-S and HEK293-EBNA cell lines: Influence of Me2SO, freeze density, and PEI-mediated transfection on revitalization and growth of cells, and expression of recombinant protein. Biotechnology and Bioengineering, 100(5), pp. 911–922.
- Körber, C., S. Englich and G. Rau (1991). Intracellular ice formation: Cryomicroscopical observation and calorimetric measurement. Journal of Microscopy, 161(2), pp. 313–325.
- Kristiansen, J. and A. Hvidt (1990). Lipid bilayers at subzero temperatures studied by differential scanning calorimetry. Cryo-Letters, 11(2), pp. 137–142.
- Kuo, T.-C., C.-W. Tsai, P.-C. Lee and W.-Y. Chen (2015). Revisiting the streptavidin–biotin binding by using an aptamer and displacement isothermal calorimetry titration. Journal of Molecular Recognition, 28(3), pp. 125–128.
- Ladbrooke, B. D. and D. Chapman (1969). Thermal analysis of lipids, proteins and biological membranes a review and summary of some recent studies. Chemistry and Physics of Lipids, 3(4), pp. 304–356.
- Larson, T. R., D. W. Rrobertson, A. Corica and D. G. Bostwick (2000). In vivo interstitial temperature mapping of the human prostate during cryosurgery with correlation to histopathologic outcomes. Urology, 55(4), pp. 547–552.
- Lee, W., W. Fon, B. W. Axelrod and M. L. Roukes (2009). High-sensitivity microfluidic calorimeters for biological and chemical applications. Proc Natl Acad Sci USA, 106(36), pp. 15225–15230.
- Lee, W., Lee and Koh (2012). Development and applications of chip calorimeters as novel biosensors. Nanobiosensors in Disease Diagnosis, pp. 17.
- Lepock, J. R. (2003). Cellular effects of hyperthermia: Relevance to the minimum dose for thermal damage. Int J Hyperthermia, 19(3), pp. 252–266.
- Lepock, J. R., H. E. Frey and K. P. Ritchie (1993). Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock. The Journal of cell biology, 122(6), pp. 1267–1276.
- Lepock, J. R., H. E. Frey, A. M. Rodahl and J. Kruuv (1988). Thermal analysis of CHL V79 cells using differential scanning calorimetry: Implications for hyperthermic cell killing and the heat shock response. Journal of Cellular Physiology, 137(1), pp. 14–24.
- Lepock, J. R., A. M. Rodahl, C. Zhang, M. L. Heynen, B. Waters and K. H. Cheng (1990). Thermal denaturation of the calcium ATPase of sarcoplasmic reticulum reveals two thermodynamically independent domains. Biochemistry, 29(3), pp. 681–689.
- Lerchner, J., D. Mueller-Hagen, H. Roehr, et al. (2011). Chip-calorimetric evaluation of the efficacy of antibiotics and bacteriophages against bacteria on a minute-timescale. Journal of Thermal Analysis and Calorimetry, 104(1), pp. 31–36.
-
Lerchner, J., A. Wolf, F. Buchholz, et al. (2008a). Miniaturized calorimetry: A new method for real-time biofilm activity analysis. Journal of Microbiological Methods, 74(2–3), pp. 74–81.
10.1016/j.mimet.2008.04.004 Google Scholar
- Lerchner, J., A. Wolf, H. J. Schneider, et al. (2008b). Nano-calorimetry of small-sized biological samples. Thermochimica Acta, 477(1–2), pp. 48–53.
- Lerchner, J., A. Wolf and G. Wolf (1999). Recent Developments in Integrated Circuit Calorimetry. Journal of Thermal Analysis and Calorimetry, 57(1), pp. 241–251.
- Lerchner, J., A. Wolf, G. Wolf, et al. (2006). A new micro-fluid chip calorimeter for biochemical applications. Thermochimica Acta, 445(2), pp. 144–150.
- Li, G., S. Thirumala, S. P. Leibo and R. V. Devireddy (2006). Subzero water transport characteristics and optimal rates of freezing rhesus monkey (Macaca mulatta) ovarian tissue. Molecular Reproduction and Development, 73(12), pp. 1600–1611.
- Liu, X.-H., T. Zhang and D. M. Rawson (2001). Differential scanning calorimetry studies of intraembryonic freezing and cryoprotectant penetration in zebrafish (Danio rerio) embryos. Journal of Experimental Zoology, 290(3), pp. 299–310.
- Lyscov, V. N. and Y. S. Moshkovsky (1969). DNA cryolysis. Biochimica et Biophysica Acta (BBA): Nucleic Acids and Protein Synthesis, 190(1), pp. 101–110.
- Maas, W. J. M., W. R. Leeman, J. P. Groten and J. J. M. van de Sandt (2000). Cryopreservation of precision-cut rat liver slices using a computer-controlled freezer. Toxicology in Vitro, 14(6), pp. 523–530.
- Manstein, D., H. Laubach, K. Watanabe, et al. (2008). Selective cryolysis: A novel method of non-invasive fat removal. Lasers in Surgery and Medicine, 40(9), pp. 595–604.
- Mares-Guia, M., V. V. do Nascimento, R. Lovrien and M. N. Melo (1990). Microcalorimetric determination of glucose utilization by leishmania. Thermochimica Acta, 172, pp. 203–211.
- Mazur P. (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol, 47, pp. 347–369.
-
Mazur, P. (1984). Freezing of living cells: Mechanisms and implications. The American Journal of Physiology, 247(3 Pt 1), pp. C125–142.
10.1152/ajpcell.1984.247.3.C125 Google Scholar
- McMillan, J. A. and S. C. Los (1965). Vitreous Ice: Irreversible Transformations During Warm-Up. Nature, 206(4986), pp. 806–807.
-
Mehl, P. M. (1990). Experimental dissection of devitrification in aqueous solutions of 1,3-butanediol. Cryobiology, 27(4), pp. 378–400.
10.1016/0011-2240(90)90016-W Google Scholar
- Meryman, H. T. (1971). Cryoprotective agents. Cryobiology, 8(2), pp. 173–183.
-
Meryman, H. T. (1989). Frozen red cells. Transfusion Medicine Reviews, 3(2), pp. 121–127.
10.1016/S0887-7963(89)70073-0 Google Scholar
- Merzlyakov, M. (2003). Integrated circuit thermopile as a new type of temperature modulated calorimeter. Thermochimica Acta, 403(1), pp. 65–81.
- Michnik, A., Z. Drzazga, K. Michalik, et al. (2009). Differential scanning calorimetry study of blood serum in chronic obstructive pulmonary disease. Journal of Thermal Analysis and Calorimetry, 102(1), pp. 57–60.
- Moffat, R. J. and J. Kim (2004). Temperature and Heat Transfer Measurements, Boca Ratan, FL, CRC Press.
-
Mori, S., J. Choi, R. V. Devireddy and J. Bischof (2012). Calorimetric measurement of water transport and intracellular ice formation during freezing in cell suspensions. Cryobiology, 65(3), 242–255.
10.1016/j.cryobiol.2012.06.010 Google Scholar
-
Morley, M. J. and G. A. J. Fursey (1988). The apparent specific heat and enthalpy of fatty tissue during cooling. International Journal of Food Science & Technology, 23(5), pp. 467–477.
10.1111/j.1365-2621.1988.tb00603.x Google Scholar
- Muldrew, K., M. Hurtig, K. Novak, et al. (1994). Localization of freezing injury in articular cartilage. Cryobiology, 31(1), pp. 31–38.
- Murata, S., A. Tagawa and S. Ishibashi (1987). The effect of moisture content and temperature on specific heat of cereal grains measured by DSC. Journal of the Japanese Society of Agricultural Machinery, 46(6), pp. 547–554.
-
Myers, S. P., R. E. Pitt, D. V. Lynch and P. L. Steponkus (1989). Characterization of intracellular ice formation in Drosophila melanogaster embryos. Cryobiology, 26(5), pp. 472–484.
10.1016/0011-2240(89)90071-0 Google Scholar
-
Natesan, H. and Bischof, J. C. (2017). Multiscale thermal property measurements for biomedical applications. ACS Biomaterials Science & Engineering, 3(11), pp 2669–2691.
10.1021/acsbiomaterials.6b00565 Google Scholar
- Niwaya, K., H. Sakaguchi, K. Kawachi and S. Kitamura (1995). Effect of warm ischemia and cryopreservation on cell viability of human allograft valves. The Annals of Thoracic Surgery, 60(suppl. 2), pp. S114–S117.
-
Nogueira-Machado, J. A., M. L. Mares-Guia, F. C. Lima e Silva, et al. (1999). Calorimetry: A highly sensitive technique for evaluating the effect of IL-2, IFN-γ and IL-10 on the response of peripheral blood mononuclear cells. Thermochimica Acta, 327(1–2), pp. 57–62.
10.1016/S0040-6031(98)00659-5 Google Scholar
- Nordmark, M. G., J. Laynez, A. Schön, Jet al. (1984). Design and testing of a new microcalorimetric vessel for use with living cellular systems and in titration experiments. Journal of Biochemical and Biophysical Methods, 10(3–4), pp. 187–202.
- O'Connell, M., N. McClure and S. E. M. Lewis (2002). The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Human Reproduction, 17(3), pp. 704–709.
- O'Neal, D. P., L. R. Hirsch, N. J. Halas, et al. (2004). Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letters, 209(2), pp. 171–176.
- O'Neill, M. J. (1964). The analysis of a temperature-controlled scanning calorimeter. Analytical Chemistry, 36(7), pp. 1238–1245.
- Oktay, K., E. Buyuk, L. Veeck, et al. (2004). Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. The Lancet, 363(9412), pp. 837–840.
- Olson, E. A., M. Y. Efremov, A. T. Kwan, (2000). Scanning calorimeter for nanoliter-scale liquid samples. Applied Physics Letters, 77(17), pp. 2671–2673.
-
Onik, G. M., J. K. Cohen, G. D. Reyes, et al. (1993). Transrectal ultrasound-guided percutaneous radical cryosurgical ablation of the prostate. Cancer Philadelphia, 72, pp. 1291–1291.
10.1002/1097-0142(19930815)72:4<1291::AID-CNCR2820720423>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- Oral, H., B. P. Knight, H. Tada, et al. (2002). Pulmonary vein isolation for paroxysmal and persistent atrial fibrillation. Circulation, 105(9), pp. 1077–1081.
- Paynter, S. J. (2000). Current status of the cryopreservation of human unfertilized oocytes. Human Reproduction Update, 6(5), pp. 449–456.
-
Pegg, D. E. (1972). Perfusion of rabbit kidneys with cryoprotective agents. Cryobiology, 9(5), pp. 411–419.
10.1016/0011-2240(72)90158-7 Google Scholar
-
Pegg, D. E., L. Wang, D. Vaughan and C. J. Hunt (2006a). Cryopreservation of articular cartilage. Part 2: Mechanisms of cryoinjury. Cryobiology, 52(3), pp. 347–359.
10.1016/j.cryobiol.2006.01.007 Google Scholar
-
Pegg, D. E., M. C. Wusteman and L. Wang (2006b Cryopreservation of articular cartilage. Part 1: Conventional cryopreservation methods. Cryobiology, 52(3), pp. 335–346.
10.1016/j.cryobiol.2006.01.005 Google Scholar
-
Pinisetty, D., C. Huang, Q. Dong, et al. (2005). Subzero water permeability parameters and optimal freezing rates for sperm cells of the southern platyfish, Xiphophorus maculatus
. Cryobiology, 50(3), pp. 250–263.
10.1016/j.cryobiol.2005.02.003 Google Scholar
- Pitt, R. E. (1990). Cryobiological implications of different methods of calculating the chemical-potential of water in partially frozen suspending media. Cryo-Letters, 11(3), pp. 227–240.
- Privalov, P. L. (1990). Cold denaturation of protein. Critical Reviews in Biochemistry and Molecular Biology, 25(4), pp. 281–306.
- Privalov, P. L. and A. I. Dragan (2007). Microcalorimetry of biological macromolecules. Biophysical Chemistry, 126(1–3), pp. 16–24.
- Privalov, P. L. and N. N. Khechinashvili (1974). A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study. Journal of Molecular Biology, 86(3), pp. 665–684.
- Privalov, P. L., D. R. Monaselidze, G. M. Mrevlishvili and V. A. Magaldadze (1965). “Intramolecular” heat of fusion of macromolecules. Soviet Physics JETP, 20(6).
- Purdy, P. H. (2006). A review on goat sperm cryopreservation. Small Ruminant Research, 63(3), pp. 215–225.
- Pyne, A., K. Chatterjee and R. Suryanarayanan (2003). Solute crystallization in mannitol–glycine systems: Implications on protein stabilization in freeze-dried formulations. Journal of Pharmaceutical Sciences, 92(11), pp. 2272–2283.
-
Qin, Z., S. K. Balasubramanian, W. F. Wolkers, et al. (2014). Correlated parameter fit of Arrhenius model for thermal denaturation of proteins and cells. Annals of Biomedical Engineering, 42(12), pp. 2392–2404.
10.1007/s10439-014-1100-y Google Scholar
- Qin, Z. and J. C. Bischof (2012). Thermophysical and biological responses of gold nanoparticle laser heating. Chem Soc Rev, 41(3), pp. 1191–1217.
- Reading, M., A. Luget and R. Wilson (1994). Modulated differential scanning calorimetry. Thermochimica Acta, 238, pp. 295–307.
- Recht, M. I., D. D. Bruyker, A. G. Bell, et al. (2008). Enthalpy array analysis of enzymatic and binding reactions. Analytical Biochemistry, 377(1), pp. 33–39.
- Recht, M. I., F. E. Torres, D. D. Bruyker, et al. (2009). Measurement of enzyme kinetics and inhibitor constants using enthalpy arrays. Analytical Biochemistry, 388(2), pp. 204–212.
-
Reid, D. S. (1984). Cryomicroscopic studies of the freezing of model solutions of cryobiological interest. Cryobiology, 21(1), pp. 60–67.
10.1016/0011-2240(84)90023-3 Google Scholar
-
Rogalińska, M., P. Góralski, A. Kobylińska, et al. (2005). Changes in leukemic cell nuclei revealed by differential scanning calorimetry. Leukemia & Lymphoma, 46(1), pp. 121–128.
10.1080/10428190412331283170 Google Scholar
-
Rogalińska, M., P. Goralski, K. Wozniak, J. D. Bednarek, J. Z. Blonski, T. Robak, H. Piekarski, M. Hanausek, Z. Walaszek and Z. M. Kilianska (2009). Calorimetric study as a potential test for choosing treatment of B-cell chronic lymphocytic leukemia. Leukemia Research, 33(2), pp. 308–314.
10.1016/j.leukres.2008.06.032 Google Scholar
- Rowe, A. W. (1994). Cryopreservation of Red Blood Cells. Vox Sanguinis, 67, pp. 201–206.
- Rowe, A. W. (1995). Cryopreservation of Blood an Historical Perspective. Transfusion Medicine and Hemotherapy, 22(1), pp. 36–40.
-
Rudolph, A. S. (1988). The freeze-dried preservation of liposome encapsulated hemoglobin: A potential blood substitute. Cryobiology, 25(4), pp. 277–284.
10.1016/0011-2240(88)90036-3 Google Scholar
- Salcman, M. and G. M. Samaras (1981). Hyperthermia for brain tumors: Biophysical rationale: Neurosurgery. LWW, 9(3), pp. 327–335.
- Salvetti, G., E. Tombari, L. Mikheeva and G. P. Johari (2002). The endothermic effects during denaturation of lysozyme by temperature modulated calorimetry and an intermediate reaction equilibrium. Journal of Physical Chemistry B, 106(23), pp. 6081–6087.
- Sapareto, S. A. and W. C. Dewey (1984). Thermal dose determination in cancer therapy. International Journal of Radiation Oncology*Biology*Physics, 10(6), pp. 787–800.
- Sarabanda, A. V., T. J. Bunch, S. B. Johnson, et al. (2005). Efficacy and Safety of Circumferential Pulmonary Vein Isolation Using a Novel Cryothermal Balloon Ablation System. Journal of the American College of Cardiology, 46(10), pp. 1902–1912.
- Sarge, S. M., E. Gmelin, G. W. H. Höhne, et al. (1994). The caloric calibration of scanning calorimeters. Thermochimica Acta, 247(2), pp. 129–168.
-
Schiffres, S. N. and J. A. Malen (2011). Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber. Review of Scientific Instruments, 82(6), pp. 064903.
10.1063/1.3593372 Google Scholar
- Seki, S., F. W. Kleinhans and P. Mazur (2009). Intracellular ice formation in yeast cells vs. cooling rate: Predictions from modeling vs. experimental observations by differential scanning calorimetry. Cryobiology, 58(2), pp. 157–165.
- Shenoi, M. M., J. K. Anderson and J. C. Bischof (2009). Nanoparticle enhanced thermal therapies. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009.
-
Shenoi, M. M., N. B. Shah, R. J. Griffin, G. M. Vercellotti and J. C. Bischof (2011). Nanoparticle preconditioning for enhanced thermal therapies in cancer. Nanomedicine, 6(3), pp. 545–563.
10.2217/nnm.10.153 Google Scholar
- Shitzer, A., B. R. Becker, and B. A. Fricke (2006). Refrigeration, 2006 ASHRAE Handbook, O. M. S., 9 Thermal Properties of Foods, ASHRAE, pp. 9.1–9.31.
-
Silani, V., A. Pizzuti, O. Strada, et al. (1988). Human neuronal cell viability demonstrated in culture after cryopreservation. Brain Research, 473(1), pp. 169–174.
10.1016/0006-8993(88)90331-9 Google Scholar
- Song, Y. C., B. S. Khirabadi, F. Lightfoot, et al. (2000). Vitreous cryopreservation maintains the function of vascular grafts. Nature Biotechnology, 18, pp. 296–299.
- Stehr, J., C. Hrelescu, R. A. Sperling, et al. (2008). Gold NanoStoves for microsecond DNA melting analysis. Nano Letters, 8(2), pp. 619–623.
- Steponkus, P. L. (1996). Advances in Low-Temperature Biology, Oxford, Elsevier.
- Steven, L. N. and A. G. Larry (2010). Pharmaceutical Dosage Forms: Parenteral Medications. Volume 2: Facility Design, Sterilization and Processing, Freeze-drying: Principles and practice, Informa Healthcare. pp. 353–382.
- Sturtevant, J. M. (1987). Biochemical applications of differential scanning calorimetry. Annual Review of Physical Chemistry, 38(1), pp. 463–488.
- Suquet, M., C. Dreanno, C. Fauvel, et al. (2000). Cryopreservation of sperm in marine fish. Aquaculture Research, 31(3), pp. 231–243.
- Svanidze, A. V., H. Huth, S. G. Lushnikov, et al. (2009). Phase transition in tetragonal hen egg-white lysozyme crystals. Applied Physics Letters, 95(26).
-
Svanidze, A. V., H. Huth, S. G. Lushnikov and C. Schick (2012). Study of phase transition in tetragonal lysozyme crystals by AC-nanocalorimetry. Thermochimica Acta, 544, pp. 33–37.
10.1016/j.tca.2012.06.013 Google Scholar
- Swaminathan, P., B. G. Burke, A. E. Holness, et al. (2011). Optical calibration for nanocalorimeter measurements. Thermochimica Acta, 522(1), pp. 60–65.
- Talsma, H., M. J. V. Steenbergen, P. J. M. Salemink and D. J. A. Crommelin (1991). The cryopreservation of liposomes: 1: A differential scanning calorimetry study of the thermal behavior of a liposome dispersion containing mannitol during freezing/thawing. Pharmaceutical Research, 8(8), pp. 1021–1026.
- Tang, X. and M. J. Pikal (2004). Design of freeze-drying processes for pharmaceuticals: Practical advice. Pharmaceutical Research, 21(2), pp. 191–200.
- Thirumala, S., W. T. Campbell, M. R. Vicknair, et al. (2006). Freezing response and optimal cooling rates for cryopreserving sperm cells of striped bass, Morone saxatilis. Theriogenology, 66(4), pp. 964–973.
- Thirumala, S., J. M. Gimble and R. V. Devireddy (2005). Transport phenomena during freezing of adipose tissue derived adult stem cells. Biotechnology and Bioengineering, 92(3), pp. 372–383.
- Toner, M., E. G. Cravalho and M. Karel (1990). Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. Journal of Applied Physics, 67(3), pp. 1582–1593.
- Tong, L., Y. Zhao, T. B. Huff, et al. (2007). Gold nanorods mediate tumor cell death by compromising membrane integrity. Advanced Materials, 19(20), pp. 3136–3141.
- Torres, F. E., P. Kuhn, D. De Bruyker, et al. (2004). Enthalpy arrays. Proceedings of the National Academy of Sciences of the United States of America, 101(26), pp. 9517–9522.
- Torres, F. E., M. I. Recht, J. E. Coyle, R. H. Bruce and G. Williams (2010). Higher throughput calorimetry: Opportunities, approaches and challenges. Curr Opin Struct Biol, 20(5), pp. 598–605.
- Tristram-Nagle, S., R. M. Suter, W. J. Sun and J. F. Nagle (1994). Kinetics of subgel formation in DPPC: X-ray diffraction proves nucleation-growth hypothesis. BBA: Biomembranes, 1191(1), pp. 14–20.
- Uchida, M., Y. Imaide, K. Sugimoto, et al. (1995). Percutaneous cryosurgery for renal tumours. British Journal of Urology, 75(2), pp. 132–137.
- van Herwaarden, A. W., P. M. Sarro, J. W. Gardner and P. Bataillard (1994). Liquid and gas micro-calorimeters for (bio)chemical measurements. Sensors and Actuators A: Physical, 43(1–3), pp. 24–30.
- Verhaegen, K., K. Baert, J. Simaels and W. Van Driessche (2000). A high-throughput silicon microphysiometer. Sensors and Actuators A: Physical, 82(1–3), pp. 186–190.
- Wacker, R., H. Schröder and C. M. Niemeyer (2004). Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin–biotin attachment: A comparative study. Analytical Biochemistry, 330(2), pp. 281–287.
- Wainwright, D. J. (1995). Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns, 21(4), pp. 243–248.
- Walkey, C. D. and W. C. W. Chan (2012). Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chemical Society Reviews, 41(7).
- Walkey, C. D., J. B. Olsen, H. Guo, et al. (2012). Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc, 134(4), pp. 2139–2147.
- Wang, L. and Q. Lin (2006). A MEMS nanocalorimeter for biomolecular characterization. In Nano/Micro Engineered and Molecular Systems, 1st IEEE International Conference, pp. 349–352
- Wang, L., D. M. Sipe, Y. Xu and Q. Lin (2008a). A MEMS Thermal Biosensor for Metabolic Monitoring Applications. Journal of Microelectromechanical Systems, 17(2), pp. 318–327.
- Wang, L., B. Wang and Q. Lin (2008b). Demonstration of MEMS-based differential scanning calorimetry for determining thermodynamic properties of biomolecules. Sensors and Actuators B: Chemical, 134(2), pp. 953–958.
- Wang, N. and J. G. Brennan (1993). The influence of moisture content and temperature on the specific heat of potato measured by differential scanning calorimetry. Journal of Food Engineering, 19(3), pp. 303–310.
- Watson, E. S., M. J. O'Neill, J. Justin and N. Brenner (1964). A differential scanning calorimeter for quantitative differential thermal analysis. Analytical Chemistry, 36(7), pp. 1233–1238.
- WeiB, T., G. Igel and G. Urban (2007). Chip-based scanning nano-calorimeter for protein stability analysis in biosensor membranes. Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International.
-
Wharton, D. A. and W. Block (1997). Differential scanning calorimetry studies on an Antarctic nematode (Panagrolaimus davidi) which survives intracellular freezing. Cryobiology, 34(2), pp. 114–121.
10.1006/cryo.1996.1989 Google Scholar
- Wolf, A., T. Hartmann, M. Bertolini, et al. (2015). Toward high-throughput chip calorimetry by use of segmented-flow technology. Thermochimica Acta, 603, pp. 172–183.
- Wright, D. J., I. B. Leach and P. Wilding (1977). Differential scanning calorimetric studies of muscle and its constituent proteins. Journal of the Science of Food and Agriculture, 28(6), pp. 557–564.
- Wust, P., B. Hildebrandt, G. Sreenivasa, et al. (2002). Hyperthermia in combined treatment of cancer. The Lancet Oncology, 3(8), pp. 487–497.
- Xie, B., M. Mecklenburg, B. Danielsson, et al. (1995). Development of an integrated thermal biosensor for the simultaneous determination of multiple analytes. Analyst, 120(1), pp. 155–160.
- Xu, J., R. Reiserer, J. Tellinghuisen, et al. (2008). A microfabricated nanocalorimeter: Design, characterization, and chemical calibration. Analytical Chemistry, 80(8), pp. 2728–2733.
-
Yabuki, T. and O. Nakabeppu (2014). Heat transfer mechanisms in isolated bubble boiling of water observed with MEMS sensor. International Journal of Heat and Mass Transfer, 76, pp. 286–297.
10.1016/j.ijheatmasstransfer.2014.04.012 Google Scholar
-
Yan, C., V. Pattani, J. W. Tunnell and P. Ren (2010). Temperature-induced unfolding of epidermal growth factor (EGF): Insight from molecular dynamics simulation. Journal of Molecular Graphics and Modelling, 29(1), pp. 2–12.
10.1016/j.jmgm.2010.03.011 Google Scholar
- Yang, W.-L., T. Addona, D. G. Nair, et al. (2003). Apoptosis induced by cryo-injury in human colorectal cancer cells is associated with mitochondrial dysfunction. International Journal of Cancer, 103(3), pp. 360–369.
- Ye, Q., W. W. van Osdol and R. L. Biltonen (1991). Gel-liquid crystalline transition of some multilamellar lipid bilayers follows classical kinetics with a fractional dimensionality of approximately two. Biophysical Journal, 60(5), pp. 1002–1007.
- Yi, F., I. K. Kim, S. Li and D. A. Lavan (2014). Hydrated/dehydrated lipid phase transitions measured using nanocalorimetry. Journal of Pharmaceutical Sciences, 103(11), pp. 3442–3447.
- Yi, F. and D. A. La Van (2012). Nanoscale thermal analysis for nanomedicine by nanocalorimetry. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 4(1), pp. 31–41.
- Yılmaz, M. T. and M. Karakaya (2009). Thermal analysis of lipids isolated from various tissues of sheep fats. Journal of Thermal Analysis and Calorimetry, 101(1), pp. 403–409.
-
Yokoyama, H., K. Ikeda, M. Wakabayashi, et al. (2013). Effects of lipid membrane curvature on lipid packing state evaluated by isothermal titration calorimetry. Langmuir, 29(3), pp. 857–860.
10.1021/la304532k Google Scholar
- Yoon, S.-I., S.-C. Park and Y.-J. Kim (2008). A micromachined microcalorimeter with split-flow microchannel for biochemical sensing applications. Sensors and Actuators B: Chemical, 134(1), pp. 158–165.
- Yuan, S. and K. R. Diller (2005). An optical differential scanning calorimeter cryomicroscope. Journal of Microscopy, 218(2), pp. 85–93.
- Zhang, W., K. Gilstrap, L. Wu, et al. (2010). Synthesis and characterization of thermally responsive Pluronic F127−chitosan nanocapsules for controlled release and intracellular delivery of small molecules. ACS Nano, 4(11), pp. 6747–6759.
- Zhang, Y. and S. Tadigadapa (2004). Calorimetric biosensors with integrated microfluidic channels. Biosens Bioelectron, 19(12), pp. 1733–1743.
- Zharov, V. P. and D. O. Lapotko (2005). Photothermal imaging of nanoparticles and cells. IEEE Journal of Selected Topics in Quantum Electronics, 11(4), pp. 733–751.
-
Zharov, V. P., R. R. Letfullin and E. N. Galitovskaya (2005). Microbubbles: Overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. Journal of Physics D: Applied Physics, 38(15), pp. 2571.
10.1088/0022-3727/38/15/007 Google Scholar