Non-Invasive Thermometry with Magnetic Resonance Imaging
Henrik Odéen
Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
Search for more papers by this authorDennis L. Parker*
Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
Search for more papers by this authorHenrik Odéen
Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
Search for more papers by this authorDennis L. Parker*
Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
Search for more papers by this authorDevashish Shrivastava
US Food and Drug Administration, Silver Spring, NY, 10903 USA
Search for more papers by this authorSummary
This chapter considers the mechanism of measuring temperature and temperature changes with magnetic resonance imaging (MRI). It first covers the basic principles and physics of MRI, and in more detail how the MRI signal is generated, detected, and localized using weak spatially varying magnetic fields called gradient fields. The chapter also covers magnetic resonance temperature imaging (MRTI) in detail. All currently used methods of MRTI, such as the proton resonance frequency shift (PRFS) method and the temperature dependence of the T1 and T2 relaxations times, are discussed. T2-based thermometry has recently been used in vivo to monitor the temperature in subcutaneous fat during MR-guided focused ultrasound treatments of uterine fibroids. Magnetic resonance spectroscopic imaging (MRSI) temperature measurement methods are based on the concept that the separation of peaks from different tissue components in a frequency spectrum is a function of temperature. The chapter concludes by discussing some practical MRTI considerations.
References
- Lauterbur PC. Image formation by induced local interactions- Examples employing nuclear magnetic resonance. Nature 1973; 242: 190–191.
- Chen J, Daniel BL, Butts Pauly K. Investigation of proton density for measuring tissue temperature. J. Magn. Reson. Imaging 2006; 23: 430–434.
- Bernstein MA, King KF, Zhou XJ. Handbook of MRI Pulse Sequences. London: Elsevier; 2004.
-
Fried MP, Morrison PR, Hushek SG, Kernahan GA, Jolesz FA. Dynamic T1-weighted magnetic resonance imaging of interstitial laser photocoagulation in the liver: Observations on in vivo temperature sensitivity. Lasers Surg. Med. 1996; 18: 410–9, doi: 10.1002/(SICI)1096-9101(1996)18: 4<410: : AID-LSM11>3.0.CO; 2–7.
10.1002/(SICI)1096-9101(1996)18:4<410::AID-LSM11>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- Matsumoto R, Oshio K, Jolesz F. Monitoring of laser and freezing-induced ablation in the liver with T1-weighted MR imaging. J. Magn. Reson. Imaging 1992; 2: 555–562.
-
Graham SJ, Stanisz GJ, Kecojevic A, Bronskill MJ, Henkelman RM. Analysis of changes in MR properties of tissues after heat treatment. Magn. Reson. Med. 1999; 42: 1061–1071.
10.1002/(SICI)1522-2594(199912)42:6<1061::AID-MRM10>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- Rieke V, Instrella R, Rosenberg J, Grissom W, Werner B, Martin E, Pauly KB. Comparison of temperature processing methods for monitoring focused ultrasound ablation in the brain. J. Magn. Reson. Imaging 2013; 38: 1462–1471, doi: 10.1002/jmri.24117.
- Hynynen K, Darkazanli A, Unger E, Schenck JF. MRI-guided noninvasive ultrasound surgery. Med. Phys. 1993; 20: 107–115, doi: 10.1118/1.597093.
- Cline HE, Hynynen K, Hardy CJ, Watkins RD, Schenck JF, Jolesz FA. MR temperature mapping of focused ultrasound surgery. Magn. Reson. Med. 1994; 31: 628–636.
- Mietzsch E, Koch M, Schaldach M, Werner J, Bellenberg B, Wentz KU. Non-invasive temperature imaging of muscles with magnetic resonance imaging using spin-echo sequences. Med. Biol. Eng. Comput. 1998; 36: 673–678.
- Hynynen K, McDannold N, Mulkern R V, Jolesz F a. Temperature monitoring in fat with MRI. Magn. Reson. Med. 2000; 43: 901–904.
- Allegretti G, Saccomandi P, Giurazza F, Caponero MA, Frauenfelder G, Di Matteo FM, Beomonte Zobel B, Silvestri S, Schena E. Magnetic resonance-based thermometry during laser ablation on ex-vivo swine pancreas and liver. Med. Eng. Phys. 2015; 37: 631–641, doi: 10.1016/j.medengphy.2015.04.001.
- Hindman JC. Proton resonance shift of water in the gas and liquid states. J. Chem. Phys. 1966; 44: 4582–4592.
- McDannold N. Quantitative MRI-based temperature mapping based on the proton resonant frequency shift: Review of validation studies. Int. J. Hyperth. 2005; 21: 533–546.
- Peters RD, Hinks RS, Henkelman RM. Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry. Magn. Reson. Med. 1998; 40: 454–459, doi: DOI 10.1002/mrm.1910400316.
- Rieke V, Butts Pauly K. MR thermometry. J. Magn. Reson. Imaging 2008; 27: 376–90, doi: 10.1002/jmri.21265.
-
Wolbarst AB, Capasso P, Wyant AR. Medical Imaging: Essentials for Physicians. John Wiley & Sons; 2013.
10.1002/9781118480267 Google Scholar
- Bloembergen N, Purcell EM, Pound R V. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys. Rev. 1948; 73: 679–712.
-
Slichter CP. Principles of Magnetic Resonance. Springer Science & Business Media; 1990.
10.1007/978-3-662-09441-9 Google Scholar
- Parker DL. Applications of NMR imaging in hyperthermia: An evaluation of the potential for localized tissue heating and noninvasive temperature monitoring. IEEE Trans. Biomed. Eng. 1984; 31: 161–7.
- Lewa CJ, Majewska Z. Temperature relationships of proton spin-lattice relaxation time T1 in biological tissues. Bull. Cancer 1980; 67: 525–530.
- Parker DL, Smith V, Sheldon P, Crooks LE, Fussell L. Temperature distribution measurements in two-dimensional NMR imaging. Med. Phys. 1983; 10: 321–325.
- Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: Dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med. Phys. 11: 425–448.
- Kuroda KK, Iwabuchi TI, Obara MO, Honda MH. Temperature Dependence of Relaxation Times in Proton Components of Fatty Acids. Magn Reson Med Sci 2011; 10: 177–183.
- Hey S, de Smet M, Stehning C, Grüll H, Keupp J, Moonen CTW, Ries M. Simultaneous T1 measurements and proton resonance frequency shift based thermometry using variable flip angles. Magn. Reson. Med. 2012; 67: 457–463, doi: 10.1002/mrm.22987.
- Todd N, Diakite M, Payne A, Parker DL. Hybrid proton resonance frequency/T1 technique for simultaneous temperature monitoring in adipose and aqueous tissues. Magn. Reson. Med. 2013; 69: 62–70.
- Diakite M, Odéen H, Todd N, Payne A, Parker DL. Toward real-time temperature monitoring in fat and aqueous tissue during magnetic resonance-guided high-intensity focused ultrasound using a three-dimensional proton resonance frequency T1 method. Magn. Reson. Med. 2014; 72: 178–187.
- Baron P, Deckers R, Knuttel FM, Bartels LW. T1 and T2 temperature dependence of female human breast adipose tissue at 1.5 T: Groundwork for monitoring thermal therapies in the breast. NMR Biomed. 2015, doi: 10.1002/nbm.3410.
- Peller M, Reinl HM, Weigel A, Meininger M, Issels RD, Reiser M. T1 relaxation time at 0.2 Tesla for monitoring regional hyperthermia: Feasibility study in muscle and adipose tissue. Magn. Reson. Med. 2002; 47: 1194–1201, doi: 10.1002/mrm.10155.
- Peller M, Kurze V, Loeffler R, Pahernik S, Dellian M, Goetz AE, Issels R, Reiser M. Hyperthermia induces T1 relaxation and blood flow changes in tumors. A MRI thermometry study in vivo . Magn. Reson. Imaging 2003; 21: 545–551, doi: 10.1016/S0730-725X(03)00070-5.
-
Han M, Rieke V, Scott SJ, Ozhinsky E, Salgaonkar VA, Jones PD, Larson PEZ, Diederich CJ, Krug R. Quantifying temperature-dependent T 1 changes in cortical bone using ultrashort echo-time MRI. Magn. Reson. Med. 2015; 00: n/a–n/a, doi: 10.1002/mrm.25994.
10.1002/mrm.25994 Google Scholar
- Baron P, Ries M, Deckers R, de Greef M, Tanttu J, Köhler M, Viergever M a, Moonen CTW, Bartels LW. In vivo T2 -based MR thermometry in adipose tissue layers for high-intensity focused ultrasound near-field monitoring. Magn. Reson. Med. 2014; 72: 1057–1064, doi: 10.1002/mrm.25025.
-
Ozhinsky E, Kohi MP, Ghanouni P, Rieke V. T2-based temperature monitoring in abdominal fat during MR-guided focused ultrasound treatment of patients with uterine fibroids. J. Ther. Ultrasound 2015; 3: 1–10, doi: 10.1186/s40349-015-0036-5.
10.1186/s40349-015-0036-5 Google Scholar
- Le Bihan D, Delannoy J, Levin R. Temperature mapping with MR imaging of molecular diffusion: Application to hyperthermia. Radiology 1989; 171: 853–857.
- Quesson B, de Zwart J a, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy. J. Magn. Reson. Imaging 2000; 12: 525–533.
- Delannoy J, Chen CN, Turner R, Levin RL, Le Bihan D. Noninvasive temperature imaging using diffusion MRI. Magn. Reson. Med. 1991; 19: 333–339.
- Il'yasov KA, Hennig J. Single-shot diffusion-weighted RARE sequence: Application for temperature monitoring during hyperthermia session. J. Magn. Reson. Imaging 1998; 8: 1296–1305.
- Bleier AR, Jolesz FA, Cohen MS, Weisskoff RM, Dalcanton JJ, Higuchi N, Feinberg DA, Rosen BR M. Real-time magnetic resonance imaging of laser heat deposition in tissue. Magn. Reson. Med. 1991; 21: 132–7.
- Morvan D, Leroy-Willig A, Malgouyres A, Cuenod CA, Jehenson P, Syrota A. Simultaneous temperature and regional blood volume measurements in human muscle using an MRI fast diffusion technique. Magn. Reson. Med. 1993; 29: 371–377.
- Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994; 66: 259–267, doi: 10.1016/S0006-3495(94)80775-1.
- van Gelderen P, de Vleeschouwer MH, DesPres D, Pekar J, van Zijl PC, Moonen CT. Water diffusion and acute stroke. Magn. Reson. Med. 1994; 31: 154–163.
- Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF WP. Early detection of regional cerebral ischemia in cats: Comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn. Reson. Med. 1990; 14: 330–346.
- Sumida K, Sato N, Ota M, et al. Intraventricular cerebrospinal fluid temperature analysis using MR diffusion-weighted imaging thermometry in Parkinson's disease patients, multiple system atrophy patients, and healthy subjects. Brain Behav 2015; 5: e00340, doi: 10.1002/brb3.340.
- Sakai K, Yamada K, Mori S, Sugimoto N, Nishimura T. Age-dependent brain temperature decline assessed by diffusion-weighted imaging thermometry. NMR Biomed. 2011; 24: 1063–1067, doi: 10.1002/nbm.1656.
- Kozak LR, Bango M, Szabo M, Rudas G, Vidnyanszky Z, Nagy Z. Using diffusion MRI for measuring the temperature of cerebrospinal fluid within the lateral ventricles. Acta Paediatr. 2010; 99: 237–243, doi: 10.1111/j.1651-2227.2009.01528.x.
- Kuroda K, Oshio K, Chung a H, Hynynen K, Jolesz F a. Temperature mapping using the water proton chemical shift: A chemical shift selective phase mapping method. Magn. Reson. Med. 1997; 38: 845–851, doi: 10.1002/mrm.1910380523.
- Cady EB, D'Souza PC, Penrice J, Lorek A. The estimation of local brain temperature by in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 1995; 33: 862–867.
- Marshall I, Karaszewski B, Wardlaw JM, Cvoro V, Wartolowska K, Armitage PA, Carpenter T, Bastin ME, Farrall A, Haga K. Measurement of regional brain temperature using proton spectroscopic imaging: Validation and application to acute ischemic stroke. Magn. Reson. Imaging 2006; 24: 699–706, doi: 10.1016/j.mri.2006.02.002.
-
Kuroda K, Mulkern R, Oshio K, Panych L, Nakai T, Moriya T, Okuda S, Hynynen K, Jolesz F. Temperature mapping using the water proton chemical shift: Self-referenced method with echo-planar spectroscopic imaging. Magn. Reson. Med. 2000; 43: 220–225.
10.1002/(SICI)1522-2594(200002)43:2<220::AID-MRM8>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- Kuroda K. Non-invasive MR thermography using the water proton chemical shift. Int. J. Hyperth. 2005; 21: 547–560, doi: 10.1080/02656730500204495.
- Fossheim SL, Il'yasov KA, Hennig J, Bjørnerud A. Thermosensitive paramagnetic liposomes for temperature control during MR imaging-guided hyperthermia: In vitro feasibility studies. Acad. Radiol. 2000; 7: 1107–1115, doi: 10.1016/S1076-6332(00)80064-1.
- Lindner LH, Reinl HM, Schlemmer M, Stahl R, Peller M. Paramagnetic thermosensitive liposomes for MR-thermometry. Int. J. Hyperth. 2005; 21: 575–588, doi: 10.1080/02656730500158410.
- McDannold N, Fossheim SL, Rasmussen H, Martin H, Vykhodtseva N, Hynynen K. Heat-activated liposomal MR contrast agent: Initial in vivo results in rabbit liver and kidney. Radiology 2004; 230: 743–752, doi: 10.1148/radiol.2303021713.
- Frich L, Bjørnerud A, Fossheim S, Tillung T, Gladhaug I. Experimental application of thermosensitive paramagnetic liposomes for monitoring magnetic resonance imaging guided thermal ablation. Magn. Reson. Med. 2004; 52: 1302–1309, doi: 10.1002/mrm.20289.
- Bartholet A, Goudemant JF, Laurent S, Kahn 0, Vander Elst L, Muller RN. Spin Transition Molecular Materials: Intelligent Contrast Agents for Magnetic Resonance Thermometry. In: International Society for Magnetic Resonance in Medicine, 2000, p. 380.
- Muller RN, Vander Elst L, Laurent S. Spin transition molecular materials: Intelligent contrast agents for magnetic resonance imaging. J. Am. Chem. Soc. 2003; 125: 8405–8407, doi: 10.1021/ja0349599.
-
Settecase F, Sussman M, Roberts T. A new temperature-sensitive contrast mechanism for MRI: Curie temperature transition-based imaging. Contrast Media Mol. Imaging 2007; 2: 229–239, doi: 10.1002/cmmi.
10.1002/cmmi Google Scholar
- Young IR, Hand JW, Oatridge A, Prior M V. Modeling and observation of temperature changes in vivo using MRI. Magn. Reson. Med. 1994; 32: 358–369.
- De Poorter J. Noninvasive MRI thermometry with the proton resonance frequency method Study of susceptibility effects. Magn. Reson. Med. 1995; 43: 359–367.
- Young IR, Hajnal J V, Roberts IG, Ling JX, Hill-cottingham RJ, Oatridge A, Wilson JA. An evaluation of Ettects of Susceptibility Changes on the Water Chemical Shift Method of Temerature Measurement in Human Peripheral Muscle. Magn. Reson. Med. 1996; 36: 366–374.
- Sprinkhuizen SM, Konings MK, van der Bom MJ, Viergever M a, Bakker CJG, Bartels LW. Temperature-induced tissue susceptibility changes lead to significant temperature errors in PRFS-based MR thermometry during thermal interventions. Magn. Reson. Med. 2010; 64: 1360–1372.
- Baron P, Deckers R, de Greef M, Merckel LG, Bakker CJG, Bouwman JG, Bleys RL a W, van den Bosch M a a J, Bartels LW. Correction of proton resonance frequency shift MR-thermometry errors caused by heat-induced magnetic susceptibility changes during high intensity focused ultrasound ablations in tissues containing fat. Magn. Reson. Med. 2014; 72: 1580–1589, doi: 10.1002/mrm.25063.
- Streicher MN, Schafer A, Reimer E, Dhital B, Trampel R, Ivanov D, Turner R. Effects of air susceptibility on proton resonance frequency MR thermometry. Magma 2012; 25: 41–47, doi: 10.1007/s10334-011-0249-8.
- Boss A, Graf H, Muller-Bierl B, Clasen S, Schmidt D, Pereira PL, Schick F. Magnetic susceptibility effects on the accuracy of MR temperature monitoring by the proton resonance frequency method. J. Magn. Reson. Imaging 2005; 22: 813–820, doi: 10.1002/jmri.20438.
- Webb AG, Neuberger T, Park EJ, Smith N. Temperature mapping near the surface of ultrasound transducers using susceptibility- compensated magnetic resonance imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009; 56: 1145–1150, doi: 10.1109/TUFFC.2009.1156.
-
Peters RD, Hinks RS, Henkelman RM. Heat-source orientation and geometry dependence in proton-resonance frequency shift magnetic resonance thermometry. Magn. Reson. Med. 1999; 41: 909–918.
10.1002/(SICI)1522-2594(199905)41:5<909::AID-MRM9>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- De Poorter J, Dewagter C, Dedeene Y, Thomsen C, Stahlberg F, Achten E. The Proton-Resonance-Frequency-Shift Method Compared with Molecular Diffusion for Quantitative Measurement of Two-Dimensional Time-Dependent Temperature Distribution in a Phantom. J. Magn. Reson. Ser. B 1994; 103: 234–241.
- Shmatukha A V, Harvey PR, Bakker CJG. Correction of proton resonance frequency shift temperature maps for magnetic field disturbances using fat signal. J. Magn. Reson. Imaging 2007; 25: 579–587, doi: 10.1002/jmri.20835.
- Hofstetter LW, Yeo DTB, Dixon WT, Kempf JG, Davis CE, Foo TK. Fat-referenced MR thermometry in the breast and prostate using IDEAL. J. Magn. Reson. Imaging 2012; 36: 722–732.
- Das SK, Macfall J, McCauley R, Craciunescu O, Dewhirst MW, Samulski T V. Improved magnetic resonance thermal imaging by combining proton resonance frequency shift (PRFS) and apparent diffusion coefficient (ADC) data. Int. J. Hyperth. 2005; 21: 657–667, doi: 10.1080/02656730500186346.
- de Senneville BD, Roujol S, Jaïs P, Moonen CTW, Herigault G, Quesson B. Feasibility of fast MR-thermometry during cardiac radiofrequency ablation. NMR Biomed 2012; 25: 556–562, doi: 10.1002/nbm.1771.
- Auboiroux V, Petrusca L, Viallon M, Muller A, Terraz S, Breguet R, Montet X, Becker CD, Salomir R. Respiratory-gated MRgHIFU in upper abdomen using an MR-compatible in-bore digital camera. Biomed Res Int 2014; 2014: 421726, doi: 10.1155/2014/421726.
- Hey S, Maclair G, de Senneville BD, Lepetit-Coiffe M, Berber Y, Kohler MO, Quesson B, Moonen CT, Ries M. Online correction of respiratory-induced field disturbances for continuous MR-thermometry in the breast. Magn. Reson. Med. 2009; 61: 1494–1499, doi: 10.1002/mrm.21954.
-
Svedin BT, Payne A, Parker DL. Respiration artifact correction in three-dimensional proton resonance frequency MR thermometry using phase navigators. Magn. Reson. Med. 2015; 00: n/a–n/a, doi: 10.1002/mrm.25860.
10.1002/mrm.25860 Google Scholar
- Grissom WA, Rieke V, Holbrook AB, Medan Y, Lustig M, Santos J, McConnell M V, Pauly KB. Hybrid referenceless and multibaseline subtraction MR thermometry for monitoring thermal therapies in moving organs. Med Phys 2010; 37: 5014–5026.
- De Senneville BD, Roujol S, Moonen C, Ries M. Motion correction in MR thermometry of abdominal organs: A comparison of the referenceless vs. the multibaseline approach. Magn. Reson. Med. 2010; 64: 1373–1381, doi: 10.1002/mrm.22514.
- Roujol S, Ries M, Quesson B, Moonen C, Denis de Senneville B. Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs. Magn. Reson. Med. 2010; 63: 1080–1087.
- Rieke V, Vigen KK, Sommer G, Daniel BL, Pauly JM, Butts K. Referenceless PRF shift thermometry. Magn. Reson. Med. 2004; 51: 1223–1231, doi: 10.1002/mrm.20090.
- Kuroda K, Kokuryo D, Kumamoto E, Suzuki K, Matsuoka Y, Keserci B. Optimization of self-reference thermometry using complex field estimation. Magn. Reson. Med. 2006; 56: 835–843, doi: 10.1002/mrm.21016.
- Rieke V, Kinsey AM, Ross AB, Nau WH, Diederich CJ, Sommer G, Pauly KB. Referenceless MR thermometry for monitoring thermal ablation in the prostate. IEEE Trans. Med. Imaging 2007; 26: 813–821, doi: 10.1109/TMI.2007.892647.
- McDannold N, Tempany C, Jolesz F, Hynynen K. Evaluation of referenceless thermometry in MRI-guided focused ultrasound surgery of uterine fibroids. J. Magn. Reson. Imaging 2008; 28: 1026–1032, doi: 10.1002/jmri.21506.
- Grissom W a, Lustig M, Holbrook AB, Rieke V, Pauly JM, Butts-Pauly K. Reweighted ℓ1 referenceless PRF shift thermometry. Magn. Reson. Med. 2010; 64: 1068–77, doi: 10.1002/mrm.22502.
- Holbrook AB, Santos JM, Kaye E, Rieke V, Butts Pauly K. Real-time MR thermometry for monitoring HIFU ablations of the liver. Magn. Reson. Med. 2010; 63: 365–373.
- Salomir R, Viallon M, Kickhefel A, et al. Reference-free PRFS MR-thermometry using near-harmonic 2-D reconstruction of the background phase. IEEE Trans. Med. Imaging 2012; 31: 287–301, doi: 10.1109/TMI.2011.2168421.
- Zou C, Shen H, He M, Tie C, Chung Y-C, Liu X. A fast referenceless PRFS-based MR thermometry by phase finite difference. Phys. Med. Biol. 2013; 58: 5735–51, doi: 10.1088/0031-9155/58/16/5735.
- Pisani LJ, Ross AB, Diederich CJ, Nau WH, Sommer FG, Glover GH, Butts K. Effects of spatial and temporal resolution for MR image-guided thermal ablation of prostate with transurethral ultrasound. J. Magn. Reson. Imaging 2005; 22: 109–118, doi: 10.1002/jmri.20339.
- Todd N, Adluru G, Payne A, DiBella EVR, Parker D. Temporally constrained reconstruction applied to MRI temperature data. Magn. Reson. Med. 2009; 62: 406–419.
- Todd N, Vyas U, de Bever J, Payne A, Parker DL. The effects of spatial sampling choices on MR temperature measurements. Magn. Reson. Med. 2011; 65: 515–521.
- Mei CS, Panych LP, Yuan J, McDannold NJ, Treat LH, Jing Y, Madore B. Combining two-dimensional spatially selective RF excitation, parallel imaging, and UNFOLD for accelerated MR thermometry imaging. Magn. Reson. Med. 2011; 66: 112–122.
- Yuan J, Mei CS, Madore B, McDannold NJ, Panych LP. Fast fat-suppressed reduced field-of-view temperature mapping using 2DRF excitation pulses. J. Magn. Reson. 2011; 210: 38–43, doi: 10.1016/j.jmr.2011.02.004.
- Payne A, Vyas U, Todd N, de Bever J, Christensen DA, Parker DL. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating. Med. Phys. 2011; 38: 4971–4981.
- Mougenot C, Köhler MO, Enholm J, Quesson B, Moonen C. Quantification of near-field heating during volumetric MR-HIFU ablation. Med. Phys. 2011; 38: 272, doi: 10.1118/1.3518083.
- McDannold N, Moss M, Killiany R, Rosene DL, King RL, Jolesz F, Hynynen K. MRI-guided focused ultrasound surgery in the brain: Tests in a primate model. Magn. Reson. Med. 2003; 49: 1188–1191, doi: 10.1002/mrm.10453.
- McDannold N, Clement G, Black P, Jolesz F, Hynynen K. Transcranial MRI-guided focused ultrasound surgery of brain tumors: Initial findings in three patients. Neurosurgery 2010; 66: 323–332.
- Weidensteiner C, Quesson B, Caire-Gana B, Kerioui N, Rullier A, Trillaud H, Moonen CTW. Real-time MR temperature mapping of rabbit liver in vivo during thermal ablation. Magn. Reson. Med. 2003; 50: 322–30, doi: 10.1002/mrm.10521.
- Stafford RJ, Price RE, Diederich CJ, Kangasniemi M, Olsson LE, Hazle JD. Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy. J. Magn. Reson. Imaging 2004; 20: 706–714, doi: 10.1002/jmri.20157.
- Köhler MO, Mougenot C, Quesson B, Enholm J, Le Bail B, Laurent C, Moonen CTW, Ehnholm GJ. Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry. Med. Phys. 2009; 36: 3521–3535, doi: 10.1118/1.3152112.
- Kickhefel A, Roland J, Weiss C, Schick F. Accuracy of real-time MR temperature mapping in the brain: A comparison of fast sequences. Phys. Medica 2010; 26: 192–201, doi: 10.1016/j.ejmp.2009.11.006.
- Quesson B, Laurent C, Maclair G, de Senneville BD, Mougenot C, Ries M, Carteret T, Rullier A, Moonen CTW. Real-time volumetric MRI thermometry of focused ultrasound ablation in vivo: A feasibility study in pig liver and kidney. NMR Biomed. 2011; 24: 145–153, doi: 10.1002/nbm.1563.
- Todd N, Vyas U, de Bever J, Payne A, Parker DL. Reconstruction of fully three-dimensional high spatial and temporal resolution MR temperature maps for retrospective applications. Magn. Reson. Med. 2012; 67: 724–730.
- Scheffler K. Fast frequency mapping with balanced SSFP: Theory and application to proton-resonance frequency shift thermometry. Magn. Reson. Med. 2004; 51: 1205–1211.
- Paliwal V, El-Sharkawy A-M, Du X, Yang X, Atalar E. SSFP-based MR thermometry. Magn. Reson. Med. 2004; 52: 704–708.
- Stafford RJ, Hazle JD, Glover GH. Monitoring of high-intensity focused ultrasound-induced temperature changes in vitro using an interleaved spiral acquisition. Magn. Reson. Med. 2000; 43: 909–912.
- Fielden S, Zhao L, Miller W, Feng X, Wintermark M, Pauly KB, Meyer C. Accelerating 3D spiral MR thermometry with Kalman filter. In: International Society for Magnetic Resonance in Medicine. Vol. 22. Milan; 2014, p. 2346.
-
Marx M, Plata J, Butts Pauly K. Toward Volumetric MR Thermometry With the MASTER Sequence. IEEE Trans. Med. Imaging 2014; 62: 1–9, doi: 10.1109/TMI.2014.2349912.
10.1109/TMI.2014.2349912 Google Scholar
- Vallo S, Eichler K, Kelly K, Schulz B, Bartsch G, Haferkamp A, Vogl TJ, Zangos S. MR-guided laser-induced thermotherapy in ex vivo porcine kidney: Comparison of four different imaging sequences. Lasers Surg. Med. 2014; 46: 558–562, doi: 10.1002/lsm.22262.
-
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity encoding for fast MRI. Magn. Reson. Med. 1999; 42: 952–962.
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 2002; 47: 1202–1210.
- Weidensteiner C, Kerioui N, Quesson B, Denis de Senneville B, Trillaud H, Moonen CTW. Stability of real-time MR temperature mapping in healthy and diseased human liver. J. Magn. Reson. Imaging 2004; 19: 438–446.
- Bankson JA, Stafford RJ, Hazle JD. Partially parallel imaging with phase-sensitive data: Increased temporal resolution for magnetic resonance temperature imaging. Magn. Reson. Med. 2005; 53: 658–665.
- Guo JY, Kholmovski EG, Zhang L, Jeong E-K, Parker DL. k-space inherited parallel acquisition (KIPA): Application on dynamic magnetic resonance imaging thermometry. Magn. Reson. Imaging 2006; 24: 903–915.
- Streicher MN, Schäfer A, Müller D, et al. Frequency-selective asymmetric spin-echo EPI with parallel imaging for fast internally referenced MR Thermometry. In: International Society for Magnetic Resonance in Medicine. Vol. 19, 2011, p. 529.
- Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 2007; 58: 1182–1195.
- Leonard P, Chopra R, Nachman A. Compressed Sensing for Accelerated MR Thermometry in MRI-Controlled Transurethral Ultrasound Therapy. In: Proceedings of the 20th Scientific Meeting of ISMRM, Melbourne. Melbourne; 2012. p. 2918.
- Marx M, Butts Pauly K. Use of Compressed Sensing for Acceleration of Volumetric MR Thermometry. In: 9th International Interventional MRI Symposium. Vol. c. Boston, 2012, p. 110.
- Cao Z, Oh S, Otazo R, Sica CT, Griswold MA, Collins CM. Complex difference constrained compressed sensing reconstruction for accelerated PRF thermometry with application to MRI-induced RF heating. Magn. Reson. Med. 2015; 73: 1420–1431, doi: 10.1002/mrm.25255.
- Fuentes D, Yung J, Hazle JD, Weinberg JS, Stafford RJ. Kalman filtered MR temperature imaging for laser induced thermal therapies. IEEE Trans. Med. Imaging 2012; 31: 984–994.
- Roujol S, Denis de Senneville B, Hey S, Moonen C, Ries M. Robust adaptive extended Kalman filtering for real time MR-thermometry guided HIFU interventions. IEEE Trans. Med. Imaging 2012; 31: 533–542.
- Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948; 1: 93–122.
- Todd N, Payne A, Parker DL. Model predictive filtering for improved temporal resolution in MRI temperature imaging. Magn. Reson. Med. 2010; 63: 1269–1279, doi: 10.1002/mrm.22321.
- Gaur P, Grissom W a. Accelerated MRI thermometry by direct estimation of temperature from undersampled k-space data. Magn. Reson. Med. 2015; 73: 1914–25, doi: 10.1002/mrm.25327.