Beggiatoa †,‡
Abstract
Beg.gi.a.to' a. M.L. fem. n. Beggiatoa a genus of bacteria; named in remembrance of F.S. Beggiato, a physician of Vicenza, (g.b. 1807), who authored the Delle Terme Euganea.
Proteobacteria / Gammaproteobacteria / Thiotrichales / Thiotrichaceae / Beggiatoa
Colorless cells, ~1.0–200 × 2.0–10.0 μm, occurring in filaments 5.0–10 cm in length. Filaments usually have a consistent width over the entire length. Freshwater strains mostly, if not universally, possess filament diameters less than 5.0 µm, whereas marine beggiatoas with filament diameters ranging from 1.0 to 200 µm have been observed microscopically. No strain wider than 5 µm has been isolated in axenic culture from any source. The filaments may contain up to 100 or more cells, and in rare cases, up to several thousand. Cells in filaments are cylindrical and are longer than they are wide in the thinner strains (i.e., those less than ~5 µm in diameter). In wider strains (i.e., those greater than ~7 µm in diameter), cells are usually disk-shaped and typically are wider than they are long. Filaments occur singly, in sheets of cottony masses on sediment surfaces, or in mats in which each filament retains its individuality. Reproduction is by transverse binary fission of cells within filaments; division occurs by septation, in which the peptidoglycan and cytoplasmic membranes close like the iris of a diaphragm. Filament dispersion is via sacrificial cell death (necridial cells), filament breakage, or simple disintegration. In some strains, the disintegration of filaments occurs until mostly single or double cell units (hormogonia) exist; a hormogonium then can grow to become a filament. Cells contain inclusions of sulfur when grown in the presence of H2S and, for some strains, thiosulfate. Intracellular inclusions of poly-β-hydroxybutyrate or polyphosphate may be present, particularly in freshwater strains. Marine or brackish water strains having a filament diameter of >10 μm contain a large (~80% of the cell volume), central liquid vacuole that contains concentrated nitrate. Resting stages are not known. Attachment holdfasts or sheaths are not present. Capsules are not formed, but filaments usually produce a slime matrix. Gram negative. Filaments and hormogonia have gliding motility. No motility organelles are known. Aerobic or microaerophilic, having a strictly respiratory type of metabolism, with oxygen and, in some instance, nitrate as the terminal electron acceptor. Anaerobic growth is not proven with pure cultures, but may occur with nitrate as the terminal electron acceptor for some strains studied in nature. Internally stored sulfur may also serve as an electron acceptor by freshwater strains for short-term maintenance in the absence of oxygen. Sulfate does not substitute as the terminal electron acceptor for anaerobic growth in strains thus far studied. Chemoorganotrophic (freshwater strains), and either facultatively or constitutively chemolithoautotrophic (marine strains). H2S or thiosulfate may be used as the electron donor for chemolithotrophic metabolism. Acetate is oxidized to CO2 by all freshwater strains tested thus far. Several C2, C3, and C4 organic acids and, sometimes, their amino acid equivalents are utilized as sole carbon and energy sources for heterotrophic growth. Growth factors are not required by most strains, although some strains may require vitamin B12. Gelatin and starch are not hydrolyzed. N2 is fixed by all freshwater and marine strains tested thus far. Nitrate, nitrite, ammonium, N2, or certain amino acids may be used as the sole nitrogen source. Oxidase positive. Catalase negative. Freshwater, estuarine, and marine strains are known. Beggiatoas are inherently gradient organisms, growing in horizontal layers in sediments at the interface between the underlying anoxic sulfide-liberating zone and the overlying oxic zone. Growth can occur in the range of 0–40°C. Obligately thermophilic strains have not been characterized, although some beggiatoas have been observed in high temperature runoffs associated with thermal springs, or in mats adjacent to thermal vents in the ocean floor.
The mol% G + C of the DNA is: 35–39.
Type species: Beggiatoa alba (Vaucher 1803) Trevisan 1842, 56.
References
- Ahmad, A.A., J.P. Barry and D.C. Nelson. 1999. Phylogenetic affinity of a wide, vacuolate, nitrate-accumulating Beggiatoa sp. from Monterey Canyon, California, with Thioploca spp. Appl. Environ. Microbiol. 65: 270–277.
- Auling, G., M. Reh, C.M. Lee and H.G. Schlegel. 1978. Pseudomonas pseudoflava a new species of hydrogen-oxidizing bacteria: its differentiation from Pseudomonas flava and other yellow-pigmented, Gram-negative, hydrogen oxidizing species. Int. J. Syst. Bacteriol. 28: 82–95.
- Baas-Becking, L.G.M. 1925. Studies on the sulphur bacteria. Ann. Bot. 39: 613–650.
- Barnett, T.C., S.M. Kirov, M.S. Strom and K. Sanderson. 1997. Aeromonas spp. possess at least two distinct type IV pilus families. Microb. Pathog. 23: 241–247.
- Bernard, C. and T. Fenchel. 1995. Mats of colourless sulphur bacteria. II. Structure, composition of biota and successional patterns. Mar. Ecol. Prog. Ser. 128: 171–179.
- Buchanan, R.E. 1957. Order VII. Beggiatoales Buchanan, Ordo nov. In Breed, Murray and Smith (Editors), Bergey's Manual of Determinative Bacteriology, The Williams & Wilkins Co., Baltimore. 837–851.
- Burton, S.D. and R.Y. Morita. 1964. Effect of catalase and cultural conditions on growth of Beggiatoa . J. Bacteriol. 88: 1755–1761.
- Burton, S.D., R.Y. Morita and W. Miller. 1966. Utilization of acetate by Beggiatoa . J. Bacteriol. 91: 1192–1200.
- Cannon, G.C., W.R. Strohl, J.M. Larkin and J.M. Shively. 1979. Cytochromes in Beggiatoa alba . Curr. Microbiol. 2: 263–266.
- Carlton, R.G. and L.L. Richardson. 1995. Oxygen and sulfide dynamics in a horizontally migrating cyanobacterial mat: Black band disease of corals. FEMS Microbiol. Ecol. 18: 155–162.
- Cataldi, M.S. 1940. Aislamiento de Beggiatoa alba en cultivo puro. Rev. Inst. Bacteriol. Dep. Nacion. Hig. 9: 393–423.
- De Boer, W.E., J.W. La Riviere and K. Schmidt. 1971. Some properties of Achromatium oxaliferum . Antonie Leeuwenhoek 37: 553–563.
- Dorsch, M., D. Lane and E. Stackebrandt. 1992. Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences. Int. J. Syst. Bacteriol. 42: 58–63.
- Faust, L. and R.S. Wolfe. 1961. Enrichment and cultivation of Beggiatoa alba . J. Bacteriol. 81: 99–106.
- Fossing, H., V.A. Gallardo, B.B. Jørgensen, M. Hüttel, L.P. Nielsen, H. Schulz, D.E. Canfield, S. Forster, R.N. Glud, J.K. Gundersen, J. Küver, N.B. Ramsing, A. Teske, B. Thamdrup and O. Ulloa. 1995. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca . Nature 374: 713–715.
- Fukui, M., A. Teske, B. Assmus, G. Muyzer and F. Widdel. 1999. Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema). Arch. Microbiol. 172: 193–203.
- Genthner, F.J., L.A. Hook and W.R. Strohl. 1985. Determination of the molecular mass of bacterial genomic DNA and plasmid copy number by high-pressure liquid chromatography. Appl. Environ. Microbiol. 50: 1007–1013.
- Güde, H., W.R. Strohl and J.M. Larkin. 1981. Mixotrophic and heterotrophic growth of Beggiatoa alba in continuous culture. Arch. Microbiol. 129: 357–360.
- Hagen, K.D. and D.C. Nelson. 1996. Organic carbon utilization by obligately and facultatively autotrophic Beggiatoa strains in homogeneous and gradient cultures. Appl. Environ. Microbiol. 62: 947–953.
- Hagen, K.D. and D.C. Nelson. 1997. Use of reduced sulfur compounds by Beggiatoa spp.: enzymology and physiology of marine and freshwater strains in homogeneous and gradient cultures. Appl. Environ. Microbiol. 63: 3957–3964.
- Hinze, H. 1901. Über den Bau der Zellen von Beggiatoa mirabilis Cohn. Ber. Dtsch. Bot. Ges. 19: 369–374.
- Hollis, D.G., R.E. Weaver, C.N. Baker and C. Thornsberry. 1976. Halophilic Vibrio species isolated from blood cultures. J. Clin. Microbiol. 3: 426–431.
- Jannasch, H.W., D.C. Nelson and C.O. Wirsen. 1989. Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site. Nature 342: 834–836.
- Jørgensen, B.B. 1978. Distribution of colorless sulfur bacteria (Beggiatoa spp.) n a coastal marine sediment. Mar. Biol. 41: 19–28.
- Jørgensen, B.B. and V.A. Gallardo. 1999. Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol. 28: 301–313.
- Jørgensen, B.B. and J.R. Postgate. 1982. Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Philos. Trans. R. Soc. Lond. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 298: 543–561.
- Jørgensen, B.B. and N.P. Revsbech. 1983. Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp. in oxygen and hydrogen sulfide microgradients. Appl. Environ. Microbiol. 45: 1261–1270.
- Joshi, M.M. and J.P. Hollis. 1977. Interaction of Beggiatoa and rice plant: detoxification of hydrogen sulfide in the rice rhizosphere. Science 195: 179–180.
-
Klas, Z.
1936. Über den Formenkreis von Beggiatoa mirabilis
. Arch. Mikrobiol.
8: 312–320.
10.1007/BF00407204 Google Scholar
- Kowallik, U. and E.G. Pringsheim. 1966. The oxidation of hydrogen sulfide by Beggiatoa . Am. J. Bot. 53: 801–806.
- Kuenen, J.G. and R.F. Beudeker. 1982. Microbiology of thiobacilli and other sulphur-oxidizing autotrophs, microtrophs and heterotrophs. Philos. Trans. R. Soc. Lond. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 298: 473–497.
- Lackey, J.B. and E.W. Lackey 1961. The habitat and description of a new genus of sulphur bacterium. J. Gen. Microbiol. 26: 29–39.
- Lackey, J.B., E.W. Lackey and G.B. Morgan. 1965. Taxonomy and ecology of the sulfur bacteria. Engineering Progress at the University of Florida 19: 2–23.
- Larkin, J.M. 1980. Isolation of Thiothrix in pure culture and observation of a filamentous epiphyte on Thiothrix . Curr. Microbiol. 4: 155–158.
- Larkin, J., P. Aharon and M.C. Henk. 1994. Beggiatoa in microbial mats at hydrocarbon vents in the Gulf of Mexico and Warm Mineral Springs, Florida. Geo-Mar. Lett. 14: 97–103.
- Larkin, J. and M.C. Henk. 1989. Is “hollowness” an adaptation of large prokaryotes to their largeness? Microbios Lett. 42: 69–72.
-
Larkin, J.M. and M.C. Henk. 1996. Filamentous sulfide-oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico. Microsc. Res. Tech.
33: 23–31.
10.1002/(SICI)1097-0029(199601)33:1<23::AID-JEMT4>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- Larkin, J.M. and W.R. Strohl. 1983. Beggiatoa, Thiothrix, and Thioploca . Ann. Rev. Microbiol. 37: 341–367.
- Lawry, N.H., V. Jani and T.E. Jensen. 1981. Identification of the sulfur inclusion body in Beggiatoa alba B18LD by energy -dispersive x-ray microanalysis. Curr. Microbiol. 6: 71–74.
- Leadbetter, E.R. 1974a. Family II. Beggiatoaceae . In Karmali and Goglio (Editors), Bergey's Manual of Determinative Bacteriology, 8th Ed., The Williams & Wilkins Co., Baltimore. 112–116.
- Maier, S. and V.A. Gallardo. 1984b. Thioploca araucaesp. nov. and Thioploca chileae sp. nov. Int. J. Syst. Bacteriol. 34: 414–418.
- Maier, S. and R.G.E. Murray. 1965. The fine structure of Thioploca ingrica and a comparison with Beggiatoa . Can. J. Microbiol. 11: 645–655.
- McHatton, S.C., J.P. Barry, H.W. Jannasch and D.C. Nelson. 1996. High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl. Environ. Microbiol. 62: 954–958.
- Mezzino, M.J., W.R. Strohl and J.M. Larkin. 1984. Characterization of Beggiatoa alba . Arch. Microbiol. 137: 139–144.
- Minges, C.G., J.A. Titus and W.R. Strohl. 1983. Plasmid DNA in colorless filamentous gliding bacteria. Arch. Microbiol. 134: 38–44.
- Möller, M.M., L.P. Nielsen and B.B. Jørgensen. 1985. Oxygen responses and mat formation by Beggiatoa spp. Appl. Environ. Microbiol. 50: 373–382.
- Morita, R.Y. and P.W. Stave. 1963. Electron micrograph of an ultrathin section of Beggiatoa . J. Bacteriol. 85: 940–942.
-
Nelson, D.C.
1992. The Genus Beggiatoa
. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 4, Springer-Verlag, New York. 3171–3180.
10.1007/978-1-4757-2191-1_4 Google Scholar
- Nelson, D.C. and R.W. Castenholz. 1981a. Organic nutrition of Beggiatoa sp. J. Bacteriol. 147: 236–247.
- Nelson, D.C. and R.W. Castenholz. 1981b. Use of reduced sulfur compounds by Beggiatoa sp. J. Bacteriol. 147: 140–154.
- Nelson, D.C. and R.W. Castenholz. 1982. Light responses of Beggiatoa . Arch. Microbiol. 131: 146–155.
- Nelson, D.C., B.B. Jørgensen and N.P. Revsbech. 1986a. Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients. Appl. Environ. Microbiol. 52: 225–233.
- Nelson, D.C. and H.W. Jannasch. 1983. Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch. Microbiol. 136: 262–269.
- Nelson, D.C., N.P. Revsbach and B.B. Jørgensen. 1986b. The microoxic/anoxic niche of Beggiatoa: a microelectrode survey of marine and freshwater strains. Appl. Environ. Microbiol. 52: 161–168.
- Nelson, D.C., C.A. Williams, B.A. Farah and J.M. Shively. 1989a. Occurrence and regulation of Calvin cycle enzymes in non-autotrophic Beggiatoa strains. Arch. Microbiol. 151: 15–19.
- Nelson, D.C., C.O. Wirsen and H.W. Jannasch. 1989b. Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin, (Gulf of California, USA). Appl. Environ. Microbiol. 55: 2909–2917.
- Otte, S., J.G. Kuenen, L.P. Nielsen, H.W. Paerl, J. Zopfi, H.N. Schulz, A. Teske, B. Strotmann, V.A. Gallardo and B.B. Jørgensen. 1999. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. Appl. Environ. Microbiol. 65: 3148–3157.
- Pitts, G., A.I. Allam and J.P. Hollis. 1972. Beggiatoa: occurrence in the rice rhizosphere. Science 178: 990–992.
- Polman, J.K. and J.M. Larkin. 1988. Properties of in vivo nitrogenase activity in Beggiatoa alba . Arch. Microbiol. 150: 126–130.
- Polz, M.F., E.V. Odintsova and C.M. Cavanaugh. 1996. Phylogenetic relationships of the filamentous sulfur bacterium Thiothrix ramosa based 16s rRNA sequence analysis. Int. J. Syst. Bacteriol. 46: 94–97.
- Prince, R.C., K.E. Stokley, C.E. Haith and H.W. Jannasch. 1988. The cytochromes of a marine Beggiatoa . Arch. Microbiol. 150: 193–196.
- Pringsheim, E.G. 1949. The relationship between bacteria and the Myxophyceae . Bacteriol. Rev. 13: 47–91.
- Pringsheim, E.G. 1951. The Vitreoscillaceae. a family of colourless, gliding, filamentous organisms. J. Gen. Microbiol. 5: 124–149.
- Pringsheim, E.G. 1964. Heterotrophism and species concepts in Beggiatoa . Am. J. Bot. 51: 898–913.
- Pringsheim, E.G. 1967. Die Mixotrophie von Beggiatoa . Arch. Mikrobiol. 59: 247–254.
- Pringsheim, E.G. 1970. Prefatory chapter: contributions toward the development of general microbiology. Annu. Rev. Microbiol. 24: 1–16.
- Pringsheim, E.G. and W. Wiessner. 1963. Minimum requirements for heterotrophic growth and reserve substance in Beggiatoa . Nature 197: 102.
- Reichenbach, H., W. Ludwig and E. Stackebrandt. 1986. Lack of relationship between gliding cyanobacteria and filamentous gliding heterotrophic eubacteria: comparison of 16S ribosomal RNA catalogues of Spirulina, Saprospira, Vitreoscilla, Leucothrix, and Herpetosiphon . Arch. Microbiol. 145: 391–395.
- Richardson, L.L. 1996. Horizontal and vertical migration patterns of Phormidium corallyticum and Beggiatoa spp. associated with black-band disease of corals. Microb. Ecol. 32: 323–335.
- Schmidt, T.M., B. Arieli, Y. Cohen, E. Padan and W.R. Strohl. 1987. Sulfur metabolism in Beggiatoa alba . J. Bacteriol. 169: 5466–5472.
- Schmidt, T.M. and A.A. Dispirito. 1990. Spectral characterization of c-type cytochromes purified from Beggiatoa alba . Arch. Microbiol. 154: 453–458.
- Schmidt, T.M., V.A. Vinci and W.R. Strohl. 1986. Protein synthesis by Beggiatoa alba B18LD in the presence and absence of sulfide. Arch. Microbiol. 144: 158–162.
- Schulz, H.N., T. Brinkhoff, T.G. Ferdelman, M. Hernández Mariné, A. Teske and B.B. Jørgensen. 1999a. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284: 493–495.
- Scotten, H.L. and J.L. Stokes. 1962. Isolation and properties of Beggiatoa . Arch. Mikrobiol. 42: 353–368.
- Skerman, V.B.D., V. McGowan and P.H.A. Sneath. 1980. Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30: 225–420.
- Stahl, D.A., D.J. Lane, G.J. Olsen, D.J. Heller, T.M. Schmidt and N.R. Pace. 1987. Phylogenetic analysis of certian sulfide-oxidizing and related morphologically conspicuous bacteria by 5S ribosomal ribonucleic acid sequences. Int. J. Syst. Bacteriol. 37: 116–122.
- Steele, W., P. Larock and J.M. Larkin. 1995. Radioisotopic labeling and microautoradiography of Beggiatoa bacterial mats from Warm Mineral Springs. 95th Annual Meeting of the American Society for Microbiology, American Society for Microbiology. p. 340.
- Stouthamer, A.H., W. de Vries and H.G.D. Niekus. 1979. Microaerophily. Antonie Leeuwenhoek J. Microbiol. Serol. 45: 5–12.
- Strohl, W.R. 1989. Genus I. Beggiatoa . In Bryant Staley, Karmali and Goglio (Editors), Bergey's Manual of Systematic Bacteriology, 1st Ed., Vol. 3, The Williams & Wilkins Co., Baltimore. 2091–2097.
- Strohl, W.R., G.C. Cannon, J.M. Shively, H. Güde, L.a. Hook, C.M. Lane and J.M. Larkin. 1981a. Heterotrophic carbon metabolism by Beggiatoa alba . J. Bacteriol. 148: 572–583.
- Strohl, W.R., I. Geffers and J.M. Larkin. 1981b. Structure of the sulfur inclusion envelopes from four beggiatoas. Curr. Microbiol. 6: 75–79.
- Strohl, W.R., K.S. Howard and J.M. Larkin. 1982. Ultrastructure of Beggiatoa alba strain B15LD. J. Gen. Microbiol. 128: 73–84.
- Strohl, W.R. and J.M. Larkin. 1978a. Cell division and trichome breakage in Beggiatoa . Curr. Microbiol. 1: 151–155.
- Strohl, W.R. and J.M. Larkin. 1978b. Enumeration, isolation and characterization of Beggiatoa from freshwater sediments. Appl. Environ. Microbiol. 36: 755–770.
- Strohl, W.R. and T.M. Schmidt. 1984. Mixotrophy of the colorless, sulfide-oxidizing, gliding bacteria Beggiatoa and Thiothrix . In Karmali and Goglio (Editors), Microbial Chemoautotrophy, Ohio State University Press, Columbus. pp. 79–95.
- Strohl, W.R., T.M. Schmidt, N.H. Lawry, M.J. Mezzino and J.M. Larkin. 1986a. Characterization of Vitreoscilla beggiatoides and Vitreoscilla filiforms sp. nov., nom. rev., and comparison with Vitreoscilla stercoraria and Beggiatoa alba . Int. J. Syst. Bacteriol. 36: 302–313.
- Strohl, W.R., T.M. Schmidt, V.A. Vinci and J.M. Larkin. 1986b. Electron transport and respiration in Beggiatoa and Vitreoscilla . Arch. Microbiol. 145: 71–75.
- Sweerts, J.-P.R.A., D. De Beer, L.P. Nielsen, H. Verdouw, J.C. Van den Heuvel, Y. Cohen and T.E. Cappenberg. 1990. Denitrification by sulphur oxidzing Beggiatoa spp. mats on freshwater sediments. Nature 344: 762–763.
- Trevisan, V. 1842. Prospetto della flora Euganea. In Coi tipi Del Seminario, Padova. 1–68.
- Trevisan, V. 1845. Nomenclator algarum. In 1mpr. du seminaire, Padova. 58–59.
- Uphof, J.C.T. 1927. Zur Oekologie der Schwefelbakterien in den Schwefelquellen Mittelfloridas. Arch. Mikrobiol. 18: 71–84.
- Vargas, A. and W.R. Strohl. 1985a. Ammonium assimilation and metabolism by Beggiatoa alba. Arch. Microbiol. 142: 272–278.
- Vargas, A. and W.R. Strohl. 1985b. Utilization of nitrate by Beggiatoa alba . Arch. Microbiol. 142: 279–284.
- Vaucher, J.P. 1803. Histoire des conferves d' eau douce, contenant leurs different modes de reproduction, et la description de leurs principales especes, J. Paschoud, Geneva. 1–285.
-
Wiessner, W.
1981. The family Beggiatoaceae
. In
Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria, Springer-Verlag, Berlin. 380–389.
10.1007/978-3-662-13187-9_22 Google Scholar
- Williams, T.M. and R.F. Unz. 1985a. Filamentous sulfur bacteria of activated sludge: characterization of Thiothrix, Beggiatoa and Eikelboom type 021N strains. Appl. Environ. Microbiol. 49: 887–898.
- Winogradsky, S. 1887. Über Schwefelbakterien. Bot. Ztg. 45: 489–610.
- Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221–271.
Further Reading
- Ahmad, A.A., J.P. Barry and D.C. Nelson. 1999. Phylogenetic affinity of a wide, vacuolate, nitrate-accumulating Beggiatoa sp. from Monterey Canyon, California, with Thioploca spp. Appl. Environ. Microbiol. 65: 270–277.
- Hagen, K.D. and D.C. Nelson. 1996. Organic carbon utilization by obligately and facultatively autotrophic Beggiatoa strains in homogeneous and gradient cultures. Appl. Environ. Microbiol. 62: 947–953.
- Hagen, K.D. and D.C. Nelson. 1997. Use of reduced sulfur compounds by Beggiatoa spp.: enzymology and physiology of marine and freshwater strains in homogeneous and gradient cultures. Appl. Environ. Microbiol. 63: 3957–3964.
- Larkin, J.M. and W.R. Strohl. 1983. Beggiatoa, Thiothrix, and Thioploca . Annu. Rev. Microbiol. 37: 341–367.
- McHatton, S.C., J.P. Barry, H.W. Jannasch and D.C. Nelson. 1996. High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl. Environ. Microbiol. 62: 954–958.
- Nelson, D.C. 1989. Physiology and biochemistry of filamentous bacteria. In Schlegel and Bowien (Editors), Autotrophic Bacteria, Science Tech Publishers, Madison. 219–238.
- Nelson, D.C. 1992. The Genus Beggiatoa. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 4, Springer-Verlag, New York. 3171–3180.
- Nelson, D.C. and H.W. Jannasch. 1983. Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch. Microbiol. 136: 262–269.
- Nelson, D.C., C.O. Wirsen and H.W. Jannasch. 1989. Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin, (Gulf of California, USA). Appl. Environ. Microbiol. 55: 2909–2917.
- Teske, A., M.L. Sogin, L.P. Nielsen and H.W. Jannasch. 1999. Phylogenetic relationships of a large marine Beggiatoa . Syst. Appl. Microbiol. 22: 39–44.