Azospirillum †,‡
José Ivo Baldani
Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Agrobiologia, Room 247-23851-970 Seropédica, Rio de Janeiro 465, Caixa Postal 74.505 Brazil
Search for more papers by this authorNoel R. Krieg
Virginia Polytechnic Institute & State University, Department of Biology, Blacksburg, VA, 24061-0406 USA
Search for more papers by this authorVera Lúcia Divan Baldani
Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Agrobiologia, Room 247-23851-970 Seropédica, Rio de Janeiro 465, Caixa Postal 74.505 Brazil
Search for more papers by this authorAnton Hartmann
GSF Research Center, Institute of Soil Ecology, Rhizosphere Biology Division, PO Box 1129, München, Neuherberg, D-85764 Germany
Search for more papers by this authorJohanna Döbereiner
Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Agrobiologia, Room 247-23851-970 Seropédica, Rio de Janeiro 465, Caixa Postal 74.505 Brazil
Search for more papers by this authorJosé Ivo Baldani
Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Agrobiologia, Room 247-23851-970 Seropédica, Rio de Janeiro 465, Caixa Postal 74.505 Brazil
Search for more papers by this authorNoel R. Krieg
Virginia Polytechnic Institute & State University, Department of Biology, Blacksburg, VA, 24061-0406 USA
Search for more papers by this authorVera Lúcia Divan Baldani
Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Agrobiologia, Room 247-23851-970 Seropédica, Rio de Janeiro 465, Caixa Postal 74.505 Brazil
Search for more papers by this authorAnton Hartmann
GSF Research Center, Institute of Soil Ecology, Rhizosphere Biology Division, PO Box 1129, München, Neuherberg, D-85764 Germany
Search for more papers by this authorJohanna Döbereiner
Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Agrobiologia, Room 247-23851-970 Seropédica, Rio de Janeiro 465, Caixa Postal 74.505 Brazil
Search for more papers by this authorAbstract
A.zo.spi.ril' lum. Fr. n. azote nitrogen; Gr. n. spira a spiral; M.L. dim. neut. n. spirillum a small spiral; Azospirillum a small nitrogen spiral.
Proteobacteria / Alphaproteobacteria / Rhodospirillales / Rhodospirillaceae / Azospirillum
Plump, slightly-curved and straight rods, 0.6–1.7 × 2.1–3.8 µm, often with pointed ends. Intracellular granules of poly-β-hydroxybutyrate are present. Enlarged, pleomorphic forms may occur in old, alkaline cultures, under conditions of excess oxygen or other stress. Gram negative to Gram variable. Motile in liquid media by a single polar flagellum; on solid media at 30°C, numerous lateral flagella of shorter wavelength may also be formed. Nitrogen fixers, exhibiting N2-dependent growth under microaerobic conditions. Grow well under an air atmosphere in the presence of a source of fixed nitrogen such as an ammonium or glutamate salts. Cells previously grown in presence of an inorganic nitrogen source may fix nitrogen in air provided that all added nitrogen is exhausted and nitrogenase is derepressed. Possess mainly a respiratory type of metabolism with oxygen and, with some strains, nitrate or nitrite as the terminal electron acceptor. Fermentative metabolism may also occur. Under severe oxygen limitation, some strains may dissimilate nitrate to nitrite or to nitrous oxide and nitrogen gas. Optimal temperature for growth varies from 33 to 41°C and pH from 5.5 to 7.5. Some strains may grow and form light or dark pink colonies, often wrinkled and non-slimy, on potato agar. Oxidase positive. Chemoorganotrophic; some strains are facultative hydrogen autotrophs. Grow well on salts of organic acids such as malate, succinate, lactate or pyruvate. d -fructose and certain carbohydrates may also serve as carbon sources. Some species require biotin. Growth in presence of 3% NaCl has been observed for some species. Occur free-living in the soil or associated with the roots, stems, leaves, and seeds mainly of cereals and forage grasses, although they have also been isolated from coconut plants, vegetables, fruits, legume, and tuber plants. May also be found in freshwater lakes. Root nodules are not induced.
The mol% G + C of the DNA is: 64–71.
Type species: Azospirillum lipoferum (Beijerinck 1925) Tarrand, Krieg and Döbereiner 1979, 79 (Effective publication: Tarrand, Krieg and Döbereiner 1978, 978) (Spirillum lipoferum Beijerinck 1925, 353.)
References
- Assmus, B., P. Hutzler, G. Kirchhof, R. Amann, J.R. Lawrence and A. Hartmann. 1995. In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl. Environ. Microbiol. 61: 1013–1019.
- Assmus, B., M. Schloter, G. Kirchhof, P. Hutzler and A. Hartmann. 1997. Improved in situ tracking of rhizosphere bacteria using dual staining with fluorescence-labeled antibodies and rRNA-targeted oligonucleotides. Microb. Ecol. 33: 32–40.
- Bachhawat, A.K. and S. Ghosh. 1987a. Iron transport in Azospirillum brasilense: role of the siderophore spirilobactin. J. Gen. Microbiol. 133: 1759–1765.
- Bachhawat, A.K. and S. Ghosh. 1987b. Isolation and characterization of the outer membrane proteins of Azospirillum brasilense . J. Gen. Microbiol. 133: 1751–1758.
- Balasubramanian, A. and S.R. Prabhu. 1989. Occurrence of the new species Azospirillum halopraeferens in association with rice roots. Curr. Sci. (Bangalore) 58: 1391–1392.
- Baldani, J.I., L.D. Baldani, L. Seldin and J. Döbereiner. 1986a. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int. J. Syst. Bacteriol. 36: 86–93.
- Baldani, J.I., L. Caruso, V.L.D. Baldani, S.R. Goi and J. Dobereiner. 1997. Recent advances in BNF with non-legume plants. Soil Biol. Biochem. 29: 911–922.
- Baldani, J.I., B. Pot, G. Kirchhof, E. Falsen, V.L.D. Baldani, F.L. Olivares, B. Hoste, K. Kersters, A. Hartmann, M. Gillis and J. Döbereiner. 1996. Emended description of Herbaspirillum: inclusion of “Pseudomonas” rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Int. J. Syst. Bacteriol. 46: 802–810.
- Baldani, V.L.D., M.A. Alvarez, J.I. Baldani and J. Dobereiner. 1986b. Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90: 35–46.
- Bally, R., D. Thomas-Bauzon, T. Heulin, J. Balandreau and C. Richard. 1983. Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. Can. J. Microbiol. 29: 881–887.
- Bar, T. and Y. Okon. 1995. Conversion of tryptophan, indole-3-pyruvic acid, indole-3-lactic acid and indole- to indole-3-acetic acid by Azospirillum brasilense Sp7. NATO ASI Ser. Ser. G Ecol. Sci. 37: 347–359.
- Bashan, Y. and G. Holguin. 1997. Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can. J. Microbiol. 43: 103–121.
-
Bazzicalupo, M. and E. Gallori. 1983. Genetic analysis in Azospirillum
. In
Klingmuller (Editor),
Azospirillum II: Genetics, Physiology, Ecology, Birkhauser-Verlag, Basel. pp. 24–28.
10.1007/978-3-0348-9361-9_2 Google Scholar
- Beijerinck, M. 1925. Über ein Spirillum, welches freien Stickstoff binden kann? Zentralbl Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 2 63: 353–359.
- Ben Dekhil, S., M. Cahill, E. Stackebrandt and L.I. Sly. 1997a. Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Syst. Appl. Microbiol. 20: 72–77.
-
Ben Dekhil, S., M. Cahill, E. Stackebrandt and L.I. Sly. 1997b.
In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 62. Int. J. Syst. Bacteriol.
47: 915–916.
10.1099/00207713-47-3-915 Google Scholar
- Berg, R.H., M.E. Tyler, N.J. Novick, V. Vasil and I.K. Vasil. 1980. Biology of Azospirillum-sugarcane association: enhancement of nitrogenase activity. Appl. Environ. Microbiol. 39: 642–649.
- Berg, R.H., V. Vasil and I.K. Vasil. 1979. The biology of Azospirillum-sugarcane association. II. Ultrastructure. Protoplasma. 101: 143–163.
- Berlier, Y.M. and P.A. Lespinat. 1980. Mass-spectrometric kinetic studies of the nitrogenase and hydrogenase activities in in vivo cultures of Azospirillum brasilense . Arch. Microbiol. 125: 67–72.
- Bothe, H., B. Klein, M.P. Stephan and J. Dobereiner. 1981. Transformations of inorganic nitrogen by Azospirillum spp. Arch. Microbiol. 130: 96–100.
- Bottini, R., M. Fulchieri, D. Pearce and R.P. Pharis. 1989. Identification of gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum . Plant Physiol. 90: 45–47.
- Bowien, B. and H.G. Schlegel. 1981. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu. Rev. Microbiol. 35: 405–452.
- Burdman, S., E. Jurkevitch, B. Schwartsburd, M. Hampel and Y. Okon. 1998. Aggregation in Azospirillum brasilense: Effects of chemical and physical factors and involvement of extracelullar components. Microbiology (Read.) 144: 1989–1999.
- Caballero-Mellado, J., L. López-Reyes and R. Bustillos-Cristales. 1999. Presence of 16S rRNA genes in multiple replicons in Azospirillum brasilense . FEMS Microbiol. Biol. Lett. 178: 283–288.
- Chakraborty, B. and K.R. Samaddar. 1995. Evidence for the occurrence of an alternative nitrogenase system in Azospirillum brasilense . FEMS Microbiol. Lett. 127: 127–131.
- Chan, Y.K., L.M. Nelson and R. Knowles. 1980. Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium. Can. J. Microbiol. 26: 1126–1131.
- Christiansen-Weniger, C. and J.A. Van Veen. 1991. NH4 +-excreting Azospirillum brasilense mutants enhance the nitrogen supply of a wheat host. Appl. Environ. Microbiol. 56: 3006–3012.
- Dahm, H., H. Rozycki, E. Strzelczyk and C.Y. Li. 1993. Production of B-group vitamins by Azospirillum spp. grown in media of different pH at different temperatures. Zentbl. Mikrobiol. 148: 195–203.
- De Ley, J. 1978. Modern molecular methods in bacterial taxonomy: evaluation, application, prospects. Proc. 4th Int. Conf. Plant Path. Bact., Tours, France.1978 Gilbert-Clarey. pp. 347–357.
- De Ley, J. 1992. The Proteobacteria ribosomal RNA cistron similarities and bacterial taxonomy. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 2, Springer-Verlag, New York. pp. 2111–2140.
- De Polli, H., B.B. Bohlool and J. Doebereiner. 1980. Serological differentiation of Azospirillum spp. belonging to different host-plant specificity groups. Arch. Microbiol. 126: 217–222.
- De Smedt, J., M. Banwens, R. Tijtgat and J. De Ley. 1980. Intra- and intergeneric similarities of ribosomal ribonucleic acid cistrons of free living, nitrogen-fixing bacteria. Int. J. Syst. Bacteriol. 30: 106–122.
- De Vos, P., A. Van Landschoot, P. Segers, R. Tytgat, M. Gillis, M. Bauwens, R. Rossau, M. Goor, B. Pot, K. Kersters, P. Lizzaraga and J. De Ley. 1989. Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid: ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39: 35–49.
- Del Gallo, M. and I. Fendrick. 1994. The rhizosphere and Azospirillum. In Okon (Editor), Azospirillum-plant associations, CRC Press, Boca Raton. pp. 57–75.
- Döbereiner, J. 1992a. The genera Azospirillum and Herbaspirillum. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 3, Springer-Verlag, New York. pp. 2236–2253.
- Döbereiner, J. 1992b. History and new perspective of diazotrophs in association with non-leguminous plants. Symbiosis 13: 1–13.
- Döbereiner, J. and V.L. Baldani. 1979. Selective infection of maize roots by streptomycin-resistant Azospirillum lipoferum and other bacteria. Can. J. Microbiol. 25: 1264–1269.
- Döbereiner, J., V.L.D. Baldani and J.I. Baldani. 1995. Como isolare identificar bacterias diazotroficas de plants nao-leguminosas, Embrapa-SPI: Itaguai, RJ: Embrapa-CNPAB, Brasilia.
- Döbereiner, J. and J.M. Day. 1976. Associative symbioses in tropical grasses: Characterization of microorganisms and dinitrogen fixing sites. In Newton and Nymans (Editors), Symposium on Nitrogen Fixation, Washington State University Press, Pullman, Washington. 518–538.
- Döbereiner, J. and F.O. Pedrosa. 1987. Nitrogen-Fixing Bacteria in Non-Leguminous Crop Plants. Brock/Springer Series in Contemporary Bioscience, Springer-Verlag, New York.
- Dreyfus, B.L., C. Elmerich and Y.R. Dommergues. 1983. Free-living Rhizobium strains able to grow on N2 as the sole nitrogen source. Appl. Environ. Microbiol. 45: 711–713.
- Eckert, B., O.B. Weber, G. Kirchhof, A. Halbritter, M. Stoffels and A. Hartmann. 2001. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int. J. Syst. Evol. Bacteriol. 51: 17–26.
- Elmerich, C., M. De Zamaroczy, F. Arsene, L. Pereg, A. Paquelin and A. Kaminski. 1997. Regulation of nif gene expression and nitrogen metabolism in Azospirillum. Soil Biol. Biochem. 29: 847–852.
- Elmerich, C., B. Quiviger, C. Rosenberg, C. Franche, P. Laurent and J. Dobereiner. 1982. Characterization of a temperate bacteriophage for Azospirillum. Virology 122: 29–37.
- Elmerich, C., W. Zimmer and C. Vieille. 1991. Associative nitrogen fixing bcteria. In Stacey, Evans and Burris (Editors), Biological Nitrogen Fixation, Chapman and Hill, New York. 212–258.
- Eskew, D.L., D.D. Focht and I.P. Ting. 1977. Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmented Spirillum lipoferum. Appl. Environ. Microbiol. 34: 582–585.
- Falk, E.C., J. Dobreiner, J.L. Johnson and N.R. Krieg. 1985. Deoxyribonucleic acid homology of Azospirillum amazonense Magalhaes et. al., 1984 and emendation of the description of the genus Azospirillum. Int. J. Syst. Bacteriol. 35: 117–118.
- Falk, E.C, J.L. Johnson, V.L.D. Baldani, J. Döbereiner and N.R. Krieg. 1986. Deoxyribonucleic and ribonucleic acid homology studies of the genera Azospirillum and Conglomeromonas. Int. J. Syst. Bacteriol. 36: 80–85.
- Fallik, E. and Y. Okon. 1996. Inoculants of Azospirillum brasilense: biomass production, survival and growth promotion of Setaria italica and Zea mays. Soil Biol. Biochem. 21: 123–126.
- Fallik, E., Y. Okon, E. Epstein, A. Goldman and M. Fischer. 1989. Identification and quantification of IAA and IBA in Azospirillum brasilense inoculated maize roots. Soil Biol. Biochem. 21: 147–154.
- Fani, R., C. Bandi, M. Bazzicalupo, M.T. Ceccherini, S. Fancelli, E. Gallori, L. Gerace, A. Grifoni, N. Miclaus and G. Damiani. 1995a. Phylogeny of the genus Azospirillum based on 16S rDNA sequence. FEMS Microbiol. Lett. 129: 195–200.
- Fani, R., C. Bandi, M. Bazzicalupo, G. Damiani, F. Di Cello, S. Fancelli, E. Gallori, L. Gerace, A. Grifoni and P. Lio. 1995b. Phylogenetic studies of the genus Azospirillum. NATO ASI ser, Ser G: Ecol. Sci. 37: 59–75.
- Fani, R., M. Bazzicalupo, P. Coianiz and M. Polsinelli. 1986. Plasmid transformation of Azospirillum brasilense. FEMS Microbiol. Lett. 35: 23–27.
- Faure, D., M.L. Bouillant, C. Jacoud and R. Bally. 1996. Phenolic derivatives related to lignin metabolism as substrates for Azospirillum laccase activity. Phytochemistry. 42: 357–359.
- Favinger, J., R. Stadtwald and H. Gest. 1989. Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie Leeuwenhoek 55: 291–296.
- Ferreira, M.C.B., M.S. Fernandes and J. Dobereiner. 1987. Role of Azospirillum brasilense nitrate reductase in nitrate assimilation by wheat plants. Biol. Fertil. Soils 4: 47–54.
- Franche, C., E. Canelo, D. Gauthier and C. Elmerich. 1981. Mobilization of the chromosome of Azospirillum brasilense by plasmid R68–45. FEMS Microbiol. Lett. 10: 199–202.
- Fu, C. and R. Knowles. 1988. H2 supports nitrogenase activity in carbon-starved Azospirillum lipoferum and A. amazonense. Can. J. Microbiol. 34: 825–829.
- Fu, C. and R. Knowles. 1989. Intracellular location and O2 sensitivity of uptake hydrogenase in Azospirillum sp. Appl. Environ. Microbiol. 55: 2315–2319.
- Germida, J.J. 1984. Spontaneous induction of bacteriophage during growth of Azospirillum brasilense in complex media. Can. J. Microbiol. 30: 805–808.
- Gillis, M. and B. Reinhold-Hurek. 1994. Taxonomy of Azospirillum. In Okon (Editor), Azospirillum/Plant Associations, CRC Press, Boca Raton. 1–14.
-
Givaudan, A., A. Effosse and R. Bally. 1991. Melanin production by Azospirillum lipoferum strains. In Polsinelli, Meterassi and Vincenzini (Editors), Nitrogen fixation, Kluwer Academic Publishers, Dordrecht. pp. 311–312.
10.1007/978-94-011-3486-6_60 Google Scholar
- Goebel, E.M. and N.R. Krieg. 1984. Fructose catabolism in Azospirillum brasilense and Azospirillum lipoferum. J. Bacteriol. 159: 86–92.
- Gonçalves, A.F.S. and R. Oliveira. 1998. Cyanide production by brazilian strains of Azospirillum. Rev. Microbiol. 29: 36–39.
- Grishanin, R.N., I.I. Chalmina and I.B. Zhulin. 1991. Behavoir of Azospirillum brasilense in a spatial gradient of oxygen an in a “redox” gradient of an artificial electron acceptor. J Gen Microbiol. 137: 2781–2785.
- Gündisch, C., G. Kirchhof, M. Baur, W. Bode and A. Hartmann. 1993. Identification of Azospirillum species by RFLP and pulsed-field gel electrophoresis. Microb. Releases. 2: 41–45.
- Hartmann, A. 1988. Ecophysiological aspects of growth and nitrogen fixation in Azospirillum spp. Plant Soil 110: 225–238.
- Hartmann, A. and R.H. Burris. 1987. Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum. J. Bacteriol. 169: 944–948.
- Hartmann, A., H. Fu and R.H. Burris. 1986. Regulation of nitrogenase activity of ammonium chloride in Azospirillum spp. J. Bacteriol. 165: 864–870.
- Hartmann, A., C. Gündisch and W. Bode. 1992. Azospirillum mutants improved in iron acquisition and osmotolerance as tools for the investigation of environmental fitness traits. Symbiosis 13: 271–279.
-
Hartmann, A., H.-A. Fu, S.-D. Song and R.H. Burris. 1985. Comparison of nitrogenase regulation in A. brasilense, A. lipoferum and A. amazonense. In Klingmuller (Editor), Azospirillum III: Genetics, Physiology and Ecology, Springer-Verlag, Berlin. pp. 116–126.
10.1007/978-3-642-70791-9_12 Google Scholar
- Hartmann, A. and T. Hurek. 1988. Effect of carotenoid overproduction on oxygen tolerance of nitrogen fixation in Azospirillum brasilense Sp7. J Gen. Microbiol. 143: 2449–2455.
- Hartmann, A., S.R. Prabhu and E.A. Galinski. 1991. Osmotolerance of diazotrophic rhizosphere bacteria. Plant Soil 48: 155–159.
- Hartmann, A., M. Singh and W. Klingmuller. 1983. Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can. J. Microbiol. 29: 916–923.
- Hartmann, A. and W. Zimmer. 1994. Physiology of Azospirillum. In Okon (Editor), Azospirillum-Plant Associations, CRC Press, Boca Raton. pp. 15–39.
- Hartzell, P. and D. Kaiser. 1991. Upstream gene of the Mgl operon controls the level of MglA protein in Myxococcus xanthus. J. Bacteriol. 173: 7625–7635.
- Hurek, T., B. Reinhold, I. Fendrik and E.G. Niemann. 1987. Root-zone-specific oxygen tolerance of Azospirillum spp. and diazotrophic rods closely associated with Kallar grass. Appl. Environ. Microbiol. 53: 163–169.
- Iosipenko, A. and V. Ignatov. 1995. Physiological aspects of phytohormone production by Azospirillum brasilense Sp7. NATO ASI Ser. Ser. G Ecol. Sci. 37: 271–278.
- Kabir, M.M., D. Faure, J. Haurat, P. Normand, C. Jacoud, P. Wadoux and R. Bally. 1995. Oligonucleotide probes based on 16S rRNA sequences for the identification of four Azospirillum species. Can. J. Microbiol. 41: 1081–1087.
- Katzy, E., L. Petrova, I. Borisov and V. Panasenko. 1995. Genetical aspects of indole acetate production in Azospirillum brasilense Sp245. NATO ASI Ser. Ser. G Ecol. Sci. 37: 113–119.
- Khammas, K.M., E. Ageron, P.A.D. Grimont and P. Kaiser. 1989. Azospirillum irakense, sp. nov.: a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res. Microbiol. 140: 679–694.
- Kirchhof, G., V.M. Reis, J.I. Baldani, B. Eckert, J. Dobereiner and A. Hartmann. 1997a. Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194: 45–55.
- Kirchhof, G., M. Schloter, B. Assmus and A. Hartmann. 1997b. Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes. Soil Biol. Biochem. 29: 853–862.
- Krieg, N.R. and J. Döbereiner. 1984. Genus Azospirillum . In Krieg and Holt (Editors), Bergey's Manual of Systematic Bacteriology, Vol. 1, The Williams & Wilkins Co., Baltimore. pp. 94–104.
- Lamm, R.B. and C.A. Neyra. 1981. Characterization and cyst production of azospirilla isolated from selected grasses growing in New Jersey and New York, U.S.A. Can. J. Microbiol. 27: 1320–1325.
- Ludden, P.W., Y. Okon and R.H. Burris. 1978. The nitrogenase system of Sprillum lipoferum . Biochem. J. 173: 1001–1003.
- Magalhães, F.M., J.I. Baldani, S.M. Souto, J.R. Kuykendall and J. Dobreiner. 1983. A new acid-tolerant Azospirillum species. Nac. Acad. Bras. Cienc. 55: 417–430.
- Magalhães, L.M.S., C.A. Neyra and J. Dobereiner. 1978. Nitrate and nitrite reductase negative mutants of N2-fixing Azospirillum spp. Arch. Microbiol. 117: 247–252.
- Martin-Didonet, C.C.G., L.S. Chubatsu, E.M. Souza, M. Kleina, F.G.M. Rego, L.U. Rigo, M.G. Yates and F.O. Pedrosa. 2000. Genome structure of the genus Azospirillum . J. Bacteriol. 182: 4113–4116.
- Martinez-Drets, G., E. Fabiano and A. Cardona. 1985. Carbohydrate catabolism in Azospirillum amazonense. Appl. Environ. Microbiol. 50: 183–185.
- Michiels, K.W., C.L. Croes and J. Vanderleyden. 1991. Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J. Gen. Microbiol. 137: 2241–2246.
- Michiels, K., J. Vanderleyden and C. Elmerich. 1994. Genetics and molecular biology of Azospirillum . In Okon (Editor), Azospirillum-plant associations, CRC Press, Boca Raton. pp. 41–56.
- Mishra, A.K., P. Roy and S. Bhattacharya. 1979. Deoxyribonucleic acid-mediated transformation of Sprillum lipoferum . J. Bacteriol. 137: 1425–1427.
-
Nair, S.K., P. Jara, B. Quiviger and C. Elmerich. 1983. Recent developments in the genetics of nitrogen fixation in Azospirillum
. In
Klingmuller (Editor),
Azospirillum II: Genetics, Physiology, Ecology, Birkhauser-Verlag, Basel. pp. 29–38.
10.1007/978-3-0348-9361-9_3 Google Scholar
- Nelson, L.M. and R. Knowles. 1978. Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Can. J. Microbiol. 24: 1395–1403.
- Neuer, G., A. Kronenberg and H. Bothe. 1985. Denitrification and nitrogen fixation by Azospirillum:3. Properties of a wheat and Azospirillum association. Arch. Microbiol. 141: 364–370.
- Neyra, C.A., A. Atkinson and O. Olubayi. 1995. Coaggregation of Azospirillum with other bacteria: basis for functional diversity. NATO ASI Ser. Ser. G Ecol. Sci. 37: 429–439.
- Neyra, C.A. and P. Van Berkum. 1977. Nitrate reduction and nitrogenase activity in Spirillum lipoferum . Can. J. Microbiol. 23: 306–310.
- Neyra, C.A., J. Dobereiner, R. Lalande and R. Knowles. 1977. Denitrification by N2-fixing Sprillum lipoferum . Can. J. Microbiol. 23: 300–305.
- Ngoc Dung, N., M. Kraut and W. Klingmuller. 1995. Isolation and characterization of Azospirillum strains from soil and rice plants in North Vietnam. NATO ASI Ser. Ser. G Ecol. Sci. 37: 559–566.
- Nosko, P., L.C. Bliss and F.D. Cook. 1994. The association of free-living nitrogen-fixing bacteria with the roots of high arctic graminoids. Arct. Alp. Res. 26: 180–186.
- Nur, I., Y. Okon and Y. Henis. 1980. Comparative studies of nitrogen-fixing bacteria associated with grasses in Israel with Azospirillum brasilense . Can. J. Microbiol. 26: 714–718.
- Nur, I., Y.L. Steinitz, Y. Okon and Y. Henis. 1981. Carotenoid composition and function in nitrogen-fixing bacteria of the genus Azospirillum . J. Gen. Microbiol. 122: 27–32.
- Okon, Y., S.L. Albrecht and R.H. Burris. 1976. Carbon and ammonia metabolism of Spirillum lipoferum . J. Bacteriol. 128: 592–597.
- Okon, Y. and R. Itzigsohn. 1992. Poly-β-hydroxybutyrate metabolism in Azospirillum brasilense and the ecological role of PHB in the rhizosphere. FEMS Microbiol. Lett. 103: 131–139.
- Okon, Y. and C.A. Labandera-Gonzalez. 1994. Agronomic applications of Azospirillum: An evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 26: 1591–1601.
- Oliveira, R.G.B. and A. Drozdowicz. 1981. Bacteriocins in the genus Azospirillum . Rev. Microbiol. 12: 42–47.
- Oliveira, R.G.B. and A. Drozdowicz. 1988. Are Azospirillum bacteriocins produced and active in soil? In Klingmuller (Editor), Azospirillum IV: Genetics, Physiology, Ecology, Springer-Verlag, Berlin. pp. 101–108.
- Olubayi, O., R. Caudales, A. Atkinson and C.A. Neyra. 1998. Differences in chemical composition between nonflocculated and flocculated Azospirillum brasilense Cd. Can. J. Microbiol. 44: 386–390.
- Onyeocha, I., C. Vielle, W. Zimmer, B.E. Baca, M. Flores, R. Palacios and C. Elmerich. 1990. Physical map and properties of a 90-MDa plasmid of Azospirillum brasilense Sp7. Plasmid 23: 169–182.
- Patriquin, D.G. and J. Dobereiner. 1978. Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can. J. Microbiol. 24: 734–742.
- Pedrosa, F.O. and M.G. Yates. 1984. Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nifA and ntr (gln) type gene products. FEMS Microbiol. Lett. 23: 95–101.
-
Pereg-Gerk, L., F. Arsene, P. Gounon, A. Paquelin, R. Carreno-Lopez, I.R. Kennedy and C. Elmerich. 1998. Colonization of wheat roots by Azospirillum brasilense wild type and by mutant strains impaired in flocculation and motility. In
Elmerich, Kondorosi and Newton (Editors), Biological Nitrogen Fixation for he 21st Century, Kluwer Academic Publishers, Dordrecht. p. 395.
10.1007/978-94-011-5159-7_240 Google Scholar
- Pfennig, N. 1974. Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae. Arch. Microbiol. 100: 197–206.
- Plazinski, J., P.J. Dart and B.G. Rolfe. 1983. Plasmid visualization and nif gene location in nitrogen-fixing Azospirillus strains. J. Bacteriol. 155: 1429–1433.
-
Rasul, G., M.S. Mirza, F. Latif and K.A. Malik. 1998. Identification of plant hormones produced by bacterial isolates from rice, wheat and kallar grass. In
Malik, Mirza and Ladha (Editors), Nitrogen Fixation with Non-legumes, Kluwer Academic Publishers, Dordrecht. pp. 25–37.
10.1007/978-94-011-5232-7_4 Google Scholar
- Reynders, L. and K. Vlassak. 1979. Conversion of tryptophan to indolacetic acid by Azospirillum brasilense . Soil Biol. Biochem. 11: 547–548.
- Riou, N. and D.L. Rudulier. 1990. Osmoregulation in Azospirillum brasilense glycine betaine transport enhances growth and nitrogen fixation under salt stress. NATO ASI ser, Ser G. 37: 271–278.
- Rodelas, B., V. Salmeron, M.V. Martinez-Toledo and J. Gonzalez-Lopez. 1993. Production of vitamins by Azospirillum brasilense in chemically-defined media. Plant Soil 153: 97–101.
- Russel, S. and S. Muszynski. 1995. Reduction of 4-chloronitrobenzene by Azospirillum lipoferum . NATO ASI Ser. Ser. G Ecol. Sci. 37: 549–554.
- Sampaio, M.J.A.M., F.O. Pedrosa and J. Dobreiner. 1982. Growth of Derxia gummosa and Azospirillum spp. on C1-compuonds. An. Acad. Bras. Cienc. 54: 457–458.
- Sampaio, M.J.A.M., E.M.R. Silva, J. Döobreiner, M.G. Yates and F.O. Pedrosa. 1981. Autotrophy and methylotrophy in Derxia gummosa, Azospirillum brasilense and A. lipoferum. Current Perspectives in Nitrogen Fixation, Proc. 4th Int. Symp. of Nitrogen Fixation, Australian Academy of Science. p. 444.
- Saxena, B., M. Modi and V.V. Modi. 1986. Isolation and characterization of siderophores from Azospirillum lipoferum D-2. J. Gen. Microbiol. 132: 2219–2224.
- Schank, S.C., R.L. Smith, G.C. Weiser, D.A. Zuberer, J.H. Bouton, K.H. Quesenberry, M.E. Tyler, J.R. Milam and R.C. Littell. 1979. Fluorescent antibody technique to identify Azospirillum brasilense associated with roots of grasses. Soil Biol. Biochem. 11: 287–295.
- Schloter, M. and A. Hartmann. 1998. Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis 25: 159–179.
- Schloter, M., S. Moens, C. Croes, G. Reidel, M. Esquenet, R. De Mot, A. Hartmann and K. Michiels. 1994. Characterization of cell surface components of Azospirillum brasilense Sp7 as antigen determinants for strain-specific monoclonal antibodies. Microbiology 140: 823–828.
- Schröder, M. 1932. Die assimilation des luftstickstoffs durch einige Bakterien. Zentbl. Bakteriol. Infektionskr. Hyg. Abst. 2 85: 177–212.
- Scott, D.B., C.A. Scott and J. Dobereiner. 1979. Nitrogenase activity and nitrate respiration in Azospirillum spp. Arch. Microbiol. 121: 141–145.
- Shah, S., V. Karkhanis and A. Desai. 1992. Isolation and characterization of siderophore, with antimicrobial activity, from Azospirillum lipoferum M. Curr. Microbiol. 25: 347–351.
- Skerman, V.B.D., L.I. Sly and M.L. Williamson. 1983. Conglomeromonas largomobilis, gen. nov., sp. nov., a sodium-sensitive, mixed-flagellated organism from fresh waters. Int. J. Syst. Bacteriol. 33: 300–308.
- Tarrand, J.J., N.R. Krieg and J. Dobereiner. 1978. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24: 967–980.
- Tien, T.M., H.G. Diem, M.H. Gaskins and D.H. Hubbell. 1981. Polygalacturonic acid transeliminase production by Azospirillum species. Can. J. Microbiol. 27: 426–431.
- Tien, T.M., M.H. Gaskins and D.H. Hubbell. 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet. Appl. Environ. Microbiol. 37: 1016–1024.
- Tilak, K.V.B.R., M. Lakshmi-Kumari and C.S. Nautiyal. 1979. Survival of Azospirillum brasilense in different carriers. Curr. Sci. (Bangalore) 48: 412–413.
- Tran Van, V., S. Ngôkê, O. Berge, D. Faure, R. Bally, P. Hebbar and T. Heulin. 1997. Isolation of Azospirillum lipoferum from the rhizosphere of rice by a new, simple method. Can. J. Microbiol. 43: 486–490.
- Umali-Garcia, M., D.H. Hubbell, M.H. Gaskins and F.B. Dazzo. 1980. Association of Azospirillum brasilense with grass roots. Appl. Environ. Microbiol. 39: 219–226.
- van Rhijn, P. and J. Vanderleyden. 1995. The Rhizobium-plant symbiosis. Microbiol. Rev. 59: 124–142.
-
Vande Broek, A., A.M. Bekri, F. Dosselaere, D. Fuaure, M. Lambrecht, Y. Okon, A. Costacurta, E. Prinsen, P. De Troch, J. Desair, V. Keijers and J. Vanderleyden. 1998.
Azospirillum–plant root association: genetics of IAA biosynthesis and plant cell wall degradation. In
Elmerich, Kondorosi and Newton (Editors), Biological Nitrogen Fixation for the 21st Century, Kluwer Academic Publishers, Dordrecht. p. 375.
10.1007/978-94-011-5159-7_225 Google Scholar
- Vande Broek, A., V. Keijers and J. Vanderleyden. 1996. Effect of oxygen on the free-living nitrogen fixation activity and expression of the Azospirillum brasilense nifH gene in various plant-associated diazotrophs. Symbiosis 21: 25–40.
- Vande Broek, A., J. Michiels, A. Van Gool and J. Vanderleyden. 1993. Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during association. Mol. Plant-Microbe Interact. 6: 592–600.
- Vande Broek, A., A. van Gool and J. Vanderleyden. 1989. Electroporation of Azospirillum brasilense with plasmid DNA. FEMS Microbiol. Lett. 61: 177–182.
- Volpon, A.G.T., J. Dobereiner and H. De Polli. 1981. Physiology of nitrogen fixation in Azospirillum lipoferum Br 17 (ATCC 29709). Arch. Microbiol. 128: 371–375.
- Weber, O.B., V.L.D. Baldani, K.R.S. Teixeira, G. Kirchhof, J.I. Baldani and J. Dobereiner. 1999. Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210: 103–113.
- Winkelmann, G., B. Busch, A. Hartmann, G. Kirchhof, R. Suessmuth and G. Jung. 1999. Degradation of desferrioxamines by Azospirillum irakense: assignment of metabolites by HPLC/electrospray mass spectrometry. Biometals 12: 255–264.
- Winkelmann, G., K. Schmidtkunz and F.A. Rainey. 1996. Characterization of a novel Spirillum-like bacterium that degrades ferrioxamine-type siderophores. BioMetals. 9: 78–83.
- Woese, C.R., E. Stackebrandt, W. Weisburg, B.J. Paster, M.T. Madigan, V.J. Fowler, C.M. Hahn, P. Blanz, R. Gupta, K.H. Nealson and G.E. Fox. 1984b. The phylogeny of purple bacteria: the alpha subdivision. Syst. Appl. Microbiol. 5: 315–326.
- Wong, P.P., N.E. Stenberg and L. Edgar. 1980a. Characterization of a bacterium of the genus Azospirillum from cellulolytic nitrogen-fixing mixed cultures. Can. J. Microbiol. 26: 291–296.
- Wood, A.G., E.M. Menezes, C. Dykstra and D.E. Duggan. 1982. Methods to demonstrate the megaloplasmids (or minichromosomes) in Azospirillum . In Klingmuller (Editor), Azospirillum: Genetics, Physiology, Ecology, Birkhauser, Basel. pp. 18–34.
- Xia, Y., T.M. Embley and A.G. O'Donnell. 1994. Phylogenetic analysis of Azospirillum by direct sequencing of PCR amplified 16S rDNA. Syst. Appl. Microbiol. 17: 197–201.
-
Yamada, Y., K. Hoshino and T. Ishikawa. 1998a.
In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 64. Int. J. Syst. Bacteriol.
48: 327–328.
10.1099/00207713-48-1-327 Google Scholar
-
Zimmer, W., K. Kloos, B. Hundeshagen, E. Niederau and H. Bothe. 1995. Auxin biosynthesis and denitrification in plant growth promoting bacteria. In
Fendrik, Del Gallo, Vanderleyden and de Zamaroczy (Editors),
Azospirillum VI and Plant Related Microorganisms, Vol. G. 37, Springer-Verlag, Berlin. pp. 121–128.
10.1007/978-3-642-79906-8_11 Google Scholar
- Zimmer, W., M.P. Stephan and H. Bothe. 1984. Denitrification by Azospirillum brasilense Sp 7. 1. Growth with nitrite as respiratory electron acceptor. Arch. Microbiol. 138: 206–211.
Further Reading
- De Ley, J. 1992. The Proteobacteria: ribosomal RNA cistron similarities and bacterial taxonomy. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications., 2nd Ed., Vol. 2, Springer-Verlag, New York. pp. 2111–2140.
- Döbereiner, J. 1992. The genera Azospirillum and Herbaspirillum . In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 3, Springer-Verlag, New York. pp. 2236–2253.
- Döbereiner, J. 1992. History and new perspective of diazotrophs in association with non-leguminous plants. Symbiosis 13: 1–13.
- Döbereiner, J. and F.O. Pedrosa. 1987. Nitrogen-Fixing Bacteria in Non-Leguminous Crop Plants. Brock/Springer Series in Contemporary Bioscience, Springer-Verlag, New York.
- Gillis, M. and B. Reinhold-Hurek. 1994. Taxonomy of Azospirillum . In Okon (Editor), Azospirillum/Plant Associations, CRC Press, Boca Raton. pp. 1–14.
- Tarrand, J.J., N.R. Krieg and J. Döbereiner. 1978. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24: 967–980.