Aggregation of Recombinant Proteins
Understanding Basic Issues to Overcome Production Bottlenecks
Marina Lotti
Search for more papers by this authorLoredano Pollegioni
Search for more papers by this authorMarina Lotti
Search for more papers by this authorLoredano Pollegioni
Search for more papers by this authorSilvia Maria Doglia
Search for more papers by this authorMarina Lotti
Search for more papers by this authorSummary
The study of cell responses to protein misfolding and aggregation, boosted by the evidence of similarities between aggregation in bacteria and the formation of amyloids in eukaryotic cells, has stimulated the interest of the scientific community toward responses to protein aggregation in bacterial systems. The chapter emphasizes that even when the foreign protein is not toxic, its expression raises important physiological challenges to which bacterial cells react by activating their reaction potential toward physiological stress, which consists of different and somehow overlapping responses. Analysis of the structure of aggregated proteins is consistent with such a nonstatic view and accounts for the observation that inclusion bodies can be biologically active. Many recombinant proteins in inclusion bodies maintain their biological activity. The main advantages of in vivo immobilization include high yields, low production cost, and high tolerance to lyophilization.
References
- Ami D, Natalello A, Schultz T, Gatti-Lafranconi P, Lotti M, Doglia SM, de Marco A (2009) Effects of recombinant protein misfolding and aggregation on bacterial membranes. Biochim Biophys Acta 1794: 263–269.
- An Y, Yumerefendi H, Mas PJ, Chesneau A, Hart DJ (2011) ORF-selector ESPRIT: a second generation library screen for soluble protein expression employing precise open reading frame selection. J Struct Biol 175(2): 189–197.
- Arsène F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli . Int J Food Microbiol 55: 3–9.
- Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli . Nat Biotechnol 22(11): 1399–1408.
- Benita Y, Wise MJ, Lok MC, Humphery-Smith I, Oosting RS (2006) Analysis of high throughput protein expression in Escherichia coli . Mol Cell Proteomics 5(9): 1567–1580.
- Cabantous S, Rogers Y, Terwilliger TC, Waldo GS (2008) New molecular reporters for rapid protein folding assays. PLoS One 3(6): e2387.
- Calloni G, Zoffoli S, Stefani M, Dobson CM, Chiti F (2005) Investigating the effects of mutations on protein aggregation in the cell. J Biol Chem. 280(11): 10607–10613.
- Carrió M, Villaverde A (2001) Protein aggregation as bacterial inclusion bodies is reversible. FEBS Lett 489: 29–33.
- Carrió M, González-Montalbán N, Vera A, Villaverde A, Ventura S (2005) Amyloid-like properties of bacterial inclusion bodies, J. Mol. Biol. 347: 1025–1037.
- Cheng CH, Lee WC (2010) Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins. Microb Cell Fact. 9: 63.
- Cornvik T, Dahlroth SL, Magnusdottir A, Flodin S, Engvall B, Lieu V, Ekberg M, Nordlund P (2006) An efficient and generic strategy for producing soluble human proteins and domains in E. coli by screening construct libraries. Proteins 65: 266–273.
- Dahlroth SL, Nordlund P, Cornvik T (2006) Colony filtration blotting for screening soluble expression in Escherichia coli . Nat Protoc 1: 253–258.
- de Marco A, de Marco V (2004) Bacteria co-transformed with recombinant proteins and chaperones cloned in independent plasmids are suitable for expression tuning. J Biotechnol 109(1–2): 45–52.
- de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B (2007). Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol 7: 32.
- Durrschmid K, Reischer H, Schmidt-Heck W, Hrebicek T, Guthke R, Rizzi A, Bayer K (2008) Monitoring of transcriptome and proteome profiles to investigate the cellular response of E. coli towards recombinant protein expression under defined chemostat conditions. J Biotechnol 135: 34–44.
- Dyson MR, Perera RL, Shadbolt SP, Biderman L, Bromek K, Murzina NV, McCafferty J (2008) Identification of soluble protein fragments by gene fragmentation and genetic selection Nucleic Acids Res 36: e51.
- Gallant JA (1979) Stringent control in E. coli . Annu Rev Genet 13: 393–415.
- García-Fruitós E, Vázquez E, Díez-Gil C, Corchero JL, Seras-Franzoso J, Ratera I, Veciana J, Villaverde A (2012) Bacterial inclusion bodies: making gold from waste. Trends Biotechnol 30(2): 65–70.
- Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodriguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C, Porro D, Ferrer P, Tutino ML, Mattanovich D, Villaverde A (2008) Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 7: 11.
- Gill RT, Valdes JJ, Bentley WE (2000) A comparative study of global stress gene regulation in response to overexpression of recombinant proteins in Escherichia coli . Metab Eng 2: 178–189.
- González-Montalbán N, García-Fruitós E, Ventura S, Arís A, Villaverde A (2006) The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells. Microb Cell Fact 5: 26.
- Gräslund S, Sagemark J, Berglund H, Dahlgren LG, Flores A, Hammarström M, Johansson I, Kotenyova T, Nilsson M, Nordlund P, Weigelt J (2008) The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expr Purif 58(2): 210–221.
- Gustafsson C, Minshull J, Govindarajan S, Ness J, Villalobos A, Welch M (2012) Engineering genes for predictable protein expression. Protein Expr Purif 83(1): 37–46.
- Hansted JG, Pietikäinen L, Hög F, Sperling-Petersen HU, Mortensen KK (2011) Expressivity tag: a novel tool for increased expression in Escherichia coli . J Biotechnol 155(3): 275–283.
- Harcum SW, Haddadin FT (2006) Global transcriptome response of recombinant Escherichia coli to heat shock and dual heat-shock recombinant protein induction. J Ind Microbiol Biotechnol 33: 801–814.
- Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, Dvir H, Ravelli RB, McCarthy A, Toker L, Silman I, Sussman JL, Tawfik DS (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11(5): 412–419.
- Heddle C, Mazaleyrat SL (2007) Development of a screening platform for directed evolution using the reef coral fluorescent protein ZsGreen as a solubility reporter. Protein Eng Des Sel 20: 327–337.
- Hoffmann F, Rinas U (2004) Stress induced by recombinant protein production in Escherichia coli . Adv Biochem Eng Biotechnol 89: 73–92.
- Huang H, Liu J, de Marco A (2006) Induced fit of passenger proteins fused to archaea maltose binding proteins. Biochem Biophys Res Commun 344(1): 25–29.
- Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli . Appl Microbiol Biotechnol 67(3): 289–298.
- Kolaj O, Spada S, Robin S, Wall JG (2009) Use of folding modulators to improve heterologous protein production in Escherichia coli . Microb Cell Fact 8: 9.
- Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10: 524–530.
- Kosinski MJ, Rinas U, Bailey JE (1992) Isopropyl–β-thiogalactopyranoside influences the metabolism of Escherichia coli . Appl Microbiol Biotechnol 36: 782–784.
- Krueger SK, Siddens LK, Henderson MC, VanDyke JE, Karplus PA, Pereira CB, Williams DE (2006) C-Terminal truncation of rabbit flavin-containing monooxygenase isoform 2 enhances solubility. Arch Biochem Biophys 450(2): 149–156.
- Lethanh H, Neubauer P, Hoffmann F (2005) The small heat-shock proteins IbpA and IbpB reduce the stress load of recombinant Escherichia coli and delay degradation of inclusion bodies. Microb Cell Fact 4: 6.
- Liu JW, Boucher Y, Stokes HW, Ollis DL (2006) Improving protein solubility: the use of the Escherichia coli dihydrofolate reductase gene as a fusion reporter. Protein Expr Purif 47(1): 258–263.
- Martínez-Alonso M, García-Fruitós E, Ferrer-Miralles N, Rinas U, Villaverde A (2010) Side effects of chaperone gene co-expression in recombinant protein production. Microb Cell Fact 9: 64.
- Martinez-Alonso M, Toledo-Rubio V, Noad R, Unzueta U, Ferrer-Miralles N, Roy P, Villaverde A (2009) Rehosting of bacterial chaperones for high-quality protein production. Appl Environ Microbiol 75(24): 7850–7854.
- Mitra A, Chakrabarti KS, Shahul Hameed MS, Srinivas KV, Senthil Kumar G, Sarma SP (2005) High level expression of peptides and proteins using cytochrome b5 as a fusion host. Protein Expr Purif 41(1): 84–97.
- Morell M, Bravo R, Espargaró A, Sisquella X, Avilés FX, Fernàndez-Busquets X, Ventura S (2008) Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta 1783: 1815–1825.
- Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24(1): 79–88.
- Peternel S, Grdadolnik J, Gaberc-Porekar V, Komel R (2008) Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact 7: 34.
- Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62: 35–51.
- Reich S, Puckey LH, Cheetham CL, Harris R, Ali AA, Bhattacharyya U, Maclagan K, Powell KA, Prodromou C, Pearl LH, Driscoll PC, Savva R (2006) Combinatorial domain hunting: an effective approach for the identification of soluble protein domains adaptable to high-throughput applications Protein Sci 15: 2356–2365.
- Rinas U, Hoffmann F, Betiku E, Estapé D, Marten S (2007) Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli . J Biotechnol 127(2): 244–257.
- Rodriguez F, Arsène-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B (2008) Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol Cell 32(3): 347–358.
- Rosini E, Nossa S, Valentino M, D'Arrigo P, Marinesco S, Pollegioni L (2012) Expression of rat diamine oxidase in Escherichia coli . J Mol Catal B82: 115–120.
- Romano D, Molla G, Pollegioni L, Marinelli F (2009) Optimization of human D-amino acid oxidase expression in Escherichia coli . Prot Expr Purif 68: 72–78.
- Savva R, C. Prodromou C, Driscoll PC (2007) DNA fragmentation based combinatorial approaches to soluble protein expression: II. Library expression, screening and scale-up. Drug Discov Today 12: 939–947.
- Schlapschy M, Grimm S, Skerra A (2006) A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli . Protein Eng Des Sel 19(8): 385–390.
- Schlieker C, Bukau B, Mogk A (2002) Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J Biotechnol 96(1): 13–21.
- Schrödel A, de Marco A (2005) Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem 6: 10.
- Shi PY, Kung WM, Chen JC, Yeh CH, Wang AHJ, Wang TF (2002) Highthroughput screening of soluble recombinant proteins. Protein Sci 11: 1714–1719.
- Sieber V, Plückthun A, Schmid FX (1998) Selecting proteins with improved stability by a phage-based method. Nat Biotechnol 16(10): 955–960.
- Smith HE (2007) The transcriptional response of Escherichia coli to recombinant protein insolubility. J Struct Funct Genomics 8: 27–35.
- Sørensen HP, Mortensen KK (2005a) Advanced genetic strategies for recombinant protein expression in Escherichia coli . J Biotechnol 115(2): 113–128.
- Sørensen HP, Mortensen KK (2005b) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli . Microb Cell Fact 4(1): 1.
- Speed MA, Wang DI, King J (1996) Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol 14: 1283–1287.
- Tallarita E, Pollegioni L, Servi S, Molla G (2012) Expression in Escherichia coli of the catalytic domain of human proline oxidase. Protein Expr Purif 82(2): 345–351.
- Trevino SR, Scholtz JM, Pace CN (2007) Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa. J Mol Biol 366(2): 449–460.
- Tsvetkova NM, Horvath I, Török Z, Wolkers WF, Balogi Z, Shigapova N, Crowe LM, Tablin F, Vierling E, Crowe JH, Vigh L (2002) Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Soc U S A 99: 13504–13509.
- Upadhyay AK, Murmu A, Singh A, Panda AK (2012) Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli . PlosONE 7(3): e33951.
- Vigh L, Nakamoto H, Landry J, Gomez-Munoz A, Harwood JL, Horvath I (2007) Membrane regulation of the stress response from prokaryotic models to mammalian cells. Ann NY Acad Sci 1113: 40–51.
- Villa R, Lotti M, Gatti-Lafranconi P (2009) Components of the E. coli envelope are affected by and can react to protein over-production in the cytoplasm. Microb Cell Fact 8: 32.
- Volontè F, Pollegioni L, Molla G, Frattini L, Marinelli F, Piubelli L (2010) Production of recombinant cholesterol oxidase containing covalently bound FAD in Escherichia coli . BMC Biotechnol 21(10): 33.
- Volontè F, Pisanelli I, D'Arrigo P, Viani F, Molla G, Servi S, Pollegioni L (2011) Overexpression of a bacterial chymotrypsin: application for l-amino acid ester hydrolysis. Enz Microb Technol 49(6–7): 560–566.
- Vostiar I, Tkac J, Mandenius CF (2004) Off-line monitoring of bacterial stress response during recombinant protein production using an optical biosensor. J Biotechnol 111(2): 191–201.
- Waldo GS (2003) Genetic screens and directed evolution for protein solubility. Curr Opin Chem Bio 7: 33–38.
- Waldo GS, Standish BM, Berendzen J, Terwilliger TC (1999) Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17(7): 691–695.
- Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23: 316–320.
- Wegrzyn G, Wegrzyn A (2002) Stress responses and replication of plasmids in bacterial cells. Microb Cell Fact 1: 2.
- Wigley WC, Stidham RD, Smith NM, Hunt JF, Thomas PJ (2001) Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein. Nat Biotechnol 19(2): 131–136.
- Xu Y, Weng CL, Narayanan N, Hsieh MY, Anderson WA, Scharer JM, Moo-Young M, Chou CP (2005) Chaperone-mediated folding and maturation of the penicillin acylase precursor in the cytoplasm of Escherichia coli . Appl Environ Microbiol 71(10): 6247–6253.
- Yumerefendi H, Tarendeau F, Mas PJ, Hart DJ (2010) ESPRIT: an automated, library-based method for mapping and soluble expression of protein domains from challenging targets. J Struct Biol 172(1): 66–74.
- Yumerefendi H, Desravines DC, Hart DJ (2011). Library-based methods for identification of soluble expression constructs. Methods 55(1): 38–43.
- Zhao Y, Liu W-F, Liu C-C, Feng l-K, Sun L, Yan Y-B, Hang J-Y (2012) Two distinct states of Escherichia coli cells that overexpress recombinant heterogeneous β-galactosidase. J Biol Chem 287: 9259–9268.