Applications
Stefano Berretti
Dipartimento di Sistemi e Informatica, University of Firenze, Firenze, Italy
Search for more papers by this authorBoulbaba Ben Amor
Institut Mines-Télécom/Télécom Lille 1, France
Search for more papers by this authorAnuj Srivastava
Department of Statistics, Florida State University, Tallahassee, USA
Search for more papers by this authorAlberto del Bimbo
Dipartimento di Sistemi e Informatica, University of Firenze, Firenze, Italy
Search for more papers by this authorPietro Pala
Dipartimento di Sistemi e Informatica, University of Firenze, Firenze, Italy
Search for more papers by this authorStefano Berretti
Dipartimento di Sistemi e Informatica, University of Firenze, Firenze, Italy
Search for more papers by this authorBoulbaba Ben Amor
Institut Mines-Télécom/Télécom Lille 1, France
Search for more papers by this authorAnuj Srivastava
Department of Statistics, Florida State University, Tallahassee, USA
Search for more papers by this authorAlberto del Bimbo
Dipartimento di Sistemi e Informatica, University of Firenze, Firenze, Italy
Search for more papers by this authorPietro Pala
Dipartimento di Sistemi e Informatica, University of Firenze, Firenze, Italy
Search for more papers by this authorSummary
This chapter provides an overview of emerging 3D face processing applications and new trends of research interest. First an overview of the 3D face databases that are released for public use are presented, evidencing their main characteristics in terms of expression variations, pose changes, and presence of occlusions. A section deals with the state-of-the-art methods for 3D facial recognition. This is followed by a discussion on the challenges related to face recognition using 3D scans with non-frontal pose, missing parts, and occlusions. Methods that address this applicative scenario are reviewed. Another section reviews the state-of-the-art methods for facial expression recognition, and talks about two specific solutions that include a semi-automatic approach and a fully automatic solution. This section addresses the new challenges posed by the analysis of 3D dynamic face sequences for the purpose of facial expression recognition, and presents a recent method giving effective solution to this problem.
Controlled Vocabulary Terms
three-dimensional displays; visual databases
References
- Alyüz N, Gökberk B, Akarun L. 3D face recognition system for expression and occlusion invariance. In: Proceedings of the IEEE 2nd International Conference on Biometrics: Theory, Applications, and Systems; 2008 Sept 29–Oct 1, Washington, DC. 2008a. New York: IEEE. p. 1–7.
- Alyüz N, Gökberk B, Dibeklioglu H, Savran A, Salah AA, Akarun L, Sankur B. 3d face recognition benchmarks on the bosphorus database with focus on facial expressions. In: Biometrics and Identity Management: 1st European Workshop, BIOID; 2008 May 7–9, Roskilde, Denmark. 2008b. Heidelberg: Springer-Verlag. 2008. p. 57–66.
10.1007/978-3-540-89991-4_7 Google Scholar
- Berretti S, Ben Amor B, Daoudi M, del Bimbo A. Person independent 3D facial expression recognition by a selected ensemble of SIFT descriptors. In: Proceedings of the 3rd Eurographics/ACM SIGGRAPH Symposium on 3D Object Retrieval, 2010a May 2, Norrköping, Sweden. New York: ACM Press/Addison-Wesley Publishing Company. 2010. p. 47–54.
- Berretti S, Bimbo AD, Pala P. 3d face recognition using isogeodesic stripes. IEEE Transactions on Pattern Analysis and Machine Intelligence 2010b; 32(12): 2162–2177.
- Berretti S, del Bimbo A, Pala P. 3D face recognition using iso-geodesic stripes. IEEE Transactions on Pattern Analysis and Machine Intelligence 2010c; 32(12): 2162–2177.
- Berretti S, del Bimbo A, Pala P. Recognition of 3D faces with missing parts based on profile networks. In: Proceedings of the 1st ACM Workshop on 3D Object Retrieval; 2010 Oct 25–29, Firenze, Italy. New York: ACM Press. 2010d. p. 81–86.
- Berretti S, Ben Amor B, Daoudi M, del Bimbo A. 3d facial expression recognition using sift descriptors of automatically detected keypoints. The Visual Computer 2011a; 27(11): 1021–1036.
- Berretti S, del Bimbo A, Pala P. Facial curves between keypoints for recognition of 3d faces with missing parts. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops: Workshop on Multi Modal Biometrics; 2011b Jun 20, Colorado Springs, CO. New York: IEEE. 2010. p. 49–54.
- Berretti S, del Bimbo A, Pala P, Ben Amor B, Daoudi M. Selected SIFT features for 3d facial expression recognition. In: Proceedings of 20th International Conference on Pattern Recognition; 2010, Aug 23–26, Istanbul, Turkey. New York: IEEE. 2010e. p. 4125–4128.
- Bishop C. Pattern Recognition and Machine Learning Information Science and Statistics. New York: Springer; 2006.
- Bowyer KW, Chang K, Flynn P. A survey of approaches and challenges in 3d and multi-modal 3d + 2d face recognition. Computer Vision and Image Understanding 2006; 101(1): 1–15.
- Breiman L. Random forests. Machine Learning 2001; 45(1): 5–32.
- Bronstein AM, Bronstein MM, Kimmel R. Three-dimensional face recognition. International Journal of Computer Vision 2005; 64(1): 5–30.
- Bronstein AM, Bronstein MM, Kimmel R. Robust expression-invariant face recognition from partially missing data. In: Leonardis A, Bischof H, Pinz A, editors. Proceedings of the 9th European Conference on Computer Vision; 2006 May 7–13, Gratz, Austria. Hedielberg: Springer. 2006a. p. 396–408.
- Bronstein EM, Bronstein MM, Kimmel R. Robust expression-invariant face recognition from partially missing data. In: Leonardis A, Bischof H, Pinz A, editors. Proceedings of the 9th European Conference on Computer Vision. Lecture Notes on Computer Science; 2006 May 7–13, Gratz, Austria. Heidelberg: Springer. 2006b. p. 396–408.
- Bronstein AM, Bronstein MM, Kimmel R. Expression-invariant representations of faces. IEEE Transactions on Image Processing 2007; 16(1): 188–197.
- Chang K, Bowyer W, Flynn P. Multiple nose region matching for 3d face recognition under varying facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence 2006; 28(10): 1695–1700.
- Cook J, McCool C, Chandran V, Sridharan S. Combined 2d/3d face recognition using Log–Gabor templates. In: Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS); 2006, Nov 22–24, Sydney, Australia. New York: IEEE. 2006. p. 83.
- Daoudi M, ter Haar F, Veltkamp R. 3D face models. SHREC contest session on retrieval of 3D face scans. IEEE International Conference on Shape Modeling and Applications; 2008 Jun 4–6, Stony Brook, NY. New York: IEEE. p. 215–216.
- Di3D 2006 http://www.di3d.com.
- Drira H, Amor BB, Daoudi M, Srivastava A, Berretti S. 3d dynamic expression recognition based on a novel deformation vector field and random forest. In: Proceedings of the 21th International Conference on Pattern Recognition; 2012 nov 11–15, Tsukuba, Japan. 2012. p. 1104–1107.
- Drira H, Amor BB, Srivastava A, Daoudi M, Slama R. 3d face recognition under expressions, occlusions and pose variations. IEEE Trans. Pattern Anal. Mach. Intell. Minor revision. To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence.
- Drira H, Ben Amor B, Daoudi M, Srivastava A. Pose and expression-invariant 3D face recognition using elastic radial curves. In: Proceedings of the British Machine Vision Conference; 2010 Aug 30–2 Sept, Aberystwyth, UK. Edinburgh: BMVA Press. 2010. p. 1–11.
- Ekman P. Universals and cultural differences in facial expressions of emotion. In: J. Cole, editor. Nebraska Symposium on Motivation, 1971. Volume 19. Lincoln: University of Nebraska Press; 1972. p. 207–282.
- Ekman P, Friesen WV. Manual for the the Facial Action Coding System. Palo Alto, CA: Consulting Psychologist Press; 1977.
- Faltemier TC, Bowyer KW, Flynn PJ. A region ensemble for 3-d face recognition. IEEE Transactions on Information Forensics and Security 2008a; 3(1): 62–73.
- Faltemier TC, Bowyer KW, Flynn PJ. A region ensemble for 3D face recognition. IEEE Transactions on Information Forensics and Security 2008b; 3(1): 62–73.
- Fang T, Zhao X, Shah S, Kakadiaris I. 4d facial expression recognition. In: Proceedings of the IEEE International Conference on Computer Vision Workshops; 2011 Nov 6–13, Barcelona, Spain. New York: IEEE. 2011. p. 1594–1601.
- Farkas LG. Anthropometry of the Head and Face. New York: Raven Press; 1994.
- Gong B, Wang Y, Liu J, Tang X. Automatic facial expression recognition on a single 3D face by exploring shape deformation In: Proceedings of the ACM International Conference on Multimedia; 2009 Oct 19–22, Beijing, China. New York: ACM Press. 2009. p. 569–572.
- Gordon G. Face recognition based on depth and curvature features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 1992 Jun 15–18, Champaign, IL. New York: IEEE. 1992. p. 108–110.
- Grenander U. General Pattern Theory. Oxford: Oxford University Press; 1993.
- Grenander U, Miller MI. Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics 1998; 56(4): 617–694.
- Gupta S, Aggarwal JK, Markey MK, Bovik AC. 3d face recognition founded on the structural diversity of human faces. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition; 2007 Jun 18–23, Minneapolis, MN. New York: IEEE. 2007. p. 1–7.
- Gupta S, Markey MK, Bovik AC. Anthropometric 3D face recognition. International Journal of Computer Vision 2010; 90(3): 331–349.
- Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter 2009; 11(1): 10–18.
10.1145/1656274.1656278 Google Scholar
- Huang D, Ardabilian M, Wang Y, Chen L. 3D face recognition using eLBP-based facial representation and local feature hybrid matching. IEEE Transactions on Information Forensics and Security 2012; 7(5): 1551–1564.
- Huang D, Zhang G, Ardabilian M, Wang Y, Chen L. 3d face recognition using distinctiveness enhanced facial representations and local feature hybrid matching Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS); 2010 Sep 27–29, Washington, DC. New York: IEEE. 2010. p. 1–7.
10.1109/BTAS.2010.5634497 Google Scholar
- Joshi SH, Klassen E, Srivastava A, Jermyn IH. An efficient representation for computing geodesics between n-dimensional elastic shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2007 Jun 18–23, Minneapolis, MN. New York: IEEE. 2007.
- Kakadiaris IA, Passalis G, Toderici G, Murtuza MN, Lu Y, Karampatziakis N, Theoharis T. Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 2007a; 29(4): 640–649.
- Kakadiaris IA, Passalis G, Toderici G, Murtuza MN, Lu Y, Karampatziakis N, Theoharis T. Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 2007b; 29(4): 640–649.
- Kakadiaris IA, Passalis G, Toderici G, Murtuza MN, Lu Y, Karampatziakis N, Theoharis T. Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 2007c; 29(4): 640–649.
- Klassen E, Srivastava A. Geodesics between 3D closed curves using path-straightening. In: Leonardis A, Bischof H, Pinz A, editors. Proceedings of the 9th European Conference on Computer Vision, Volume 1; 2006 May 7–13, Gratz, Austria. Hedielberg: Springer. 2006. p. 95–106.
- Kotropoulos C, Tefas A, Pitas I. Frontal face authentication using morphological elastic graph matching. IEEE Transactions on Image Processing 2000; 9(4): 555–560.
- Le V, Tang H, Huang TS. Expression recognition from 3d dynamic faces using robust spatio-temporal shape features. In: Proceedings of the IEEE Conference on Automatic Face and Gesture Recognition; 2011 Mar 21–25, Santa Barbara, CA. New York: IEEE. 2011. p. 414–421.
- Lee Y, Song H, Yang U, Shin H, Sohn K. Local feature based 3d face recognition. In: Kanade T, Jain AK, Ratha NK, editors. Proceedings of the 5th International Conference on Audio and Video-Based Biometric Person Authentication; 2005 Jul 20–22, Hilton Rye Town, NY. 2005. Heidelber: Springer. 2005. p. 909–918.
- Li X, Jia T, Zhang H. Expression-insensitive 3d face recognition using sparse representation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2009 Jun 20–26, Miami, FL. New York: IEEE. 2009. p. 2575–2582.
- Lowe D. Distinctive image features from scale-invariant key points. International Journal of Computer Vision 2004; 60(2): 91–110.
- Lu X, Jain AK. Deformation modeling for robust 3d face matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2008; 30(8): 1346–1357.
- Lu X, Jain AK. Deformation modeling for robust 3d face matching. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2006 Jun 17–22, New York, NY. New York: IEEE. p. 1377–1383.
- Maalej A, Ben Amor B, Daoudi M, Srivastava A, Berretti S. Local 3D shape analysis for facial expression recognition. In: Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey. p. 4129–4132, 2010.
- Maalej A, Ben Amor B, Daoudi M, Srivastava A, Berretti S. Shape analysis of local facial patches for 3d facial expression recognition. Pattern Recognition 2011; 44(8): 1581–1589.
- Mahoor MH, Abdel-Mottaleb M. Face recognition based on 3d ridge images obtained from range data. Pattern Recognition 2009; 42(3): 445–451.
- Matuszewski B, Quan W, Shark LK. High-resolution comprehensive 3-d dynamic database for facial articulation analysis. In: Proceedings of the IEEE International Conference on Computer Vision Workshops; 2011 Nov 6–13, Barcelona, Spain. New York: IEEE. 2011. p. 2128–2135.
- Matuszewski BJ, QuanW, Shark LK, McLoughlin AS, Lightbody CE, Emsley HC and Watkins CL. Hi4d-adsip 3-d dynamic facial articulation database. Image and Vision Computing 2012; 30(10): 713–727.
- Maurer T, Guigonis D, Maslov I, Pesenti B, Tsaregorodtsev A, West D, Medioni G. Performance of geometrix activeid 3D face recognition engine on the FRGC data. In: Proceedings of the IEEE Workshop on Face Recognition Grand Challenge Experiments; 2005 Jun 20–25, San Diego, CA. New York: IEEE. p. 154.
- Mayo M, Zhang E. 3D face recognition using multiview key point matching. In: Proceedings of the 6th IEEE International Conference on Advanced Video and Signal Based Surveillance; 2009 Sept 2–4, Genoa, Italy. New York: IEEE. p. 290–295.
- McKeon R, Russ T. Employing region ensembles in a statistical learning framework for robust 3d facial recognition. In: Proceedings of the 4th IEEE International Conference on Biometrics: Theory Applications and Systems; 2010 Sep 23–26, Washington, DC. New York: IEEE. 2010. p. 1–7.
- Mian A, Bennamoun M, Owens R. An efficient multimodal 2d-3d hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2007a; 29(11): 1927–1943.
- Mian AS, Bennamoun M, Owens R. An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2007b; 29(11): 1927–1943.
- Mian AS, Bennamoun M, Owens R. Keypoint detection and local feature matching for textured 3D face recognition. International Journal of Computer Vision 2008; 79(1): 1–12.
- Miller MI, Younes L. Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision 2001; 41(1/2): 61–84.
- Moorthy A, Mittal A, Jahanbin S, Grauman K, Bovik A. 3d facial similarity: automatic assessment versus perceptual judgments. Fourth IEEE International Conference on Biometrics: Theory Applications and Systems; 2010 Sep 27–29, Washington, DC. New York: IEEE. 2010. p. 1–7. 2010
- Moreno AB, Sánchez A 2004a Gavabdb: A 3D face database. In: Proceedings of the 2nd COST 275 Workshop on Biometrics on the Internet; 2004 Mar 25–26, Vigo, Spain. Luxembourg: COST European Cooperation in Science and Technology. 2004a. p. 75–80.
- Moreno AB and Sanchez A 2004b Gavabdb: A 3d face database. In: Proceedings of the 2nd COST 275 Workshop on Biometrics on the Internet; 2004 Mar 25–26, Vigo, Spain. Luxembourg: COST European Cooperation in Science and Technology. 2004. p. 77–85.
- Moreno AB, Sanchez A, Velez JF, Daz FJ. Face recognition using 3D local geometrical features: PCA vs. SVM. 4th International Symposium on Image and Signal Processing and Analysis; 2005. Sept 15–17. New York: IEEE. p. 185–190.
- Mousavi MH, Faez K, Asghari A. Three dimensional face recognition using SVM classifier ICIS '08. In: Proceedings of the Seventh IEEE/ACIS International Conference on Computer and Information Science; 2008, May 14–16, Washington, DC. New York: IEEE/ACIS. 2008. p. 208–213.
- Mpiperis I, Malassiotis S, Strintzis MG. 3-d face recognition with the geodesic polar representation. IEEE Transactions on Information Forensics and Security 2007; 2(3–2): 537–547.
- Mpiperis I, Malassiotis S, Strintzis M. Bilinear models for 3-d face and facial expression recognition. IEEE Transactions on Information Forensics and Security 2008a; 3(3), 498–511.
- Mpiperis I, Malassiotis S, Strintzis MG. Bilinear models for 3-D face and facial expression recognition. IEEE Transactions on Information Forensics and Security 2008b; 3(3), 498–511.
- Mpiperis I, Malassiotis S, Petridis V, Strintzis MG. 3D facial expression recognition using swarm intelligence. In: Proceedings of the IEEE International Conference on Acoustic, Speech, and Signal Processing; 2008 Mar 31–Apr 4, Las Vegas, Nevada. New York: IEEE. 2008c. p. 2133–2136.
- Ohbuchi R, Furuya T. Scale-weighted dense bag of visual features for 3D model retrieval from a partial view 3D model. In: Proceedings of the IEEE 12th International Conference on Coumputer Vision Workshops: Workshop on Search in 3D and Video; 2004 Sept 27–Oct 4, Kyoto, Japan. New York: IEEE. 2004. p. 63–70.
- Pandzic I, Forchheimer R. MPEG-4 Facial Animation: The Standard, Implementation and Applications. Chichester: Wiley; 2005.
- Peng H, Long F, Ding C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 2005; 27(8): 1226–1238.
- Perakis P, Passalis G, Theoharis T, Toderici G, Kakadiaris IA. Partial matching of interpose 3D facial data for face recognition. In: Proceedings of the 3rd IEEE International Conference on Biometrics: Theory, Applications and Systems, BTAS'09; 2009 Sept 28–30, Washington, DC. New York: IEEE. 2009. p. 1–8.
- Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, Worek W. Overview of the face recognition grand challenge. In: Proceedings of the IEEE Workshop on Face Recognition Grand Challenge Experiments; 2005 Jun 20–25, San Diego, CA. New York: IEEE. 2005. p. 947–954.
- Queirolo CC, Silva L, Bellon OR, Segundo MP. 3d face recognition using simulated annealing and the surface interpenetration measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 2010a; 32: 206–219.
- Queirolo CC, Silva L, Bellon OR, Segundo MP. 3d face recognition using simulated annealing and the surface interpenetration measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 2010b; 32: 206–219.
- Ramanathan S, Kassim A, Venkatesh YV, Wah WS. Human facial expression recognition using a 3D morphable model. In: Proceedings of the IEEE International Conference on Image Processing; 2006 Oct 8–11, Atlanta, GA. New York: IEEE. 2006 p. 661–664.
- Rueckert D, Sonoda L, Hayes C, Hill D, Leach M, Hawkes D. Nonrigid registration using free-form deformations:application to breast MR images. IEEE Transactions on Medical Imaging 1999; 18(8): 712–721.
- Samir C, Srivastava A, Daoudi M. Three-dimensional face recognition using shapes of facial curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 2006; 28: 1858–1863.
- Samir C, Srivastava A, Daoudi M, Klassen E. An intrinsic framework for analysis of facial surfaces. International Journal of Computer Vision 2009a; 82(1): 80–95.
- Samir C, Srivastava A, Daoudi M and Klassen E. An intrinsic framework for analysis of facial surfaces. International Journal of Computer Vision 2009b; 82(1): 80–95.
- Sandbach G, Zafeiriou S, Pantic M, Rueckert D. A dynamic approach to the recognition of 3d facial expressions and their temporal models. In: Proceedings of the IEEE Conference on Automatic Face and Gesture Recognition; 2011 Mar 21–25, Santa Barbara, CA. New York: IEEE. 2011. p. 406–413.
- Sandbach G, Zafeiriou S, Pantic M, Rueckert D. Recognition of 3D facial expression dynamics. Image and Vision Computing. Image and Vision Computing, 2012; 30(10): 683–697.
- Savran A, Alyüz N, Dibeklioğlu H, Céliktutan O, Gökberk B, Sankur B, Akarun L. Bosphorus database for 3D face analysis. In: Proceedings of the First COST 2101 Workshop on Biometrics and Identity Management; 2008 May 7–9, Roskilde University, Denmark. Luxembourg: COST European Cooperation in Science and Technology. 2008. p. 1–11.
- Soyel H, Demirel H. Facial expression recognition using 3D facial feature distances. In: Mohamed K, Aurélio C, editors. Proceedings of the International Conference on Image Analysis and Recognition; 2007 Aug 22–24, Montreal, Canada. Heildelberg: Springer. 2007. p. 831–838.
- Spreeuwers L. Fast and accurate 3d face recognition using registration to an intrinsic coordinate system and fusion of multiple region classifiers. International Journal of Computer Vision 2011; 93(3): 389–414.
- Srivastava A, Klassen E, Joshi SH, Jermyn IH. Shape analysis of elastic curves in euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 2011; 33(7): 1415–1428.
- Sun Y, Yin L. Facial expression recognition based on 3D dynamic range model sequences. In: David F, Philip T, Andrew S, editors. Proceedings of the European Conference on Computer Vision; 2008 Oct 12–18, Marseille, France. Heildelberg: Springer. 2008. p. 58–71.
- Sun Y, Todorovic S, Goodison S. A feature selection algorithm capable of handling extremely large data dimensionality. In: Proceedings of the 8th Society of Industrial and Applied Mathematics (SIAM) International Conference on Data Mining; 2008 Apr 24–26, Atlanta, GA. Cambridge: SIAM/Cambridge University Press. 2008. p. 530–540.
- Tang H, Huang TS. 3D facial expression recognition based on automatically selected features. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition; 2008 Jun 24–26, Anchorage, AK. New York: IEEE. 2008. p. 1–8.
- ter Haar F, Velkamp RC. Expression modeling for expression-invariant face recognition. Computers and Graphics 2010; 34(3): 231–241.
- Venkatesh YV, Kassim AA, Murthy OVR. A novel approach to classification of facial expressions from 3D-mesh datasets using modified PCA. Pattern Recognition Letters 2009; 30(12): 1128–1137.
- Wang J, Yin L, Wei X, Sun Y. 3D facial expression recognition based on primitive surface feature distribution. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Volume 2; 2006 Jun 17–22, New York, New York: IEEE. 2006. p. 1399–1406.
- Wang Y, Liu J, Tang X. Robust 3d face recognition by local shape difference boosting. IEEE Transactions on Pattern Analysis and Machine Intelligence 2010; 32: 1858–1870.
- Yin L, Chen X, Sun Y, Worm T, Reale M. A high-resolution 3d dynamic facial expression database. In: Proceedings of the 8th IEEE International Conference on Automatic Face and Gesture Recognition (FGR08); 2008 Sept 17–19, Amsterdam, The Netherlands. New York: IEEE. 2008. p. 1–6.
- Yin L, Wei X, Sun Y, Wang J, Rosato M. A 3D facial expression database for facial behavior research. In: Proceedings of the 7th IEEE International Conference on Automatic Face and Gesture Recognition (FGR06); 2006 Apr 2–6, Southampton, UK. New York: IEEE. 2006. p. 211–216.
- Zhao G, Pietikäinen M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 2007; 29(6): 915–928.
- Zhao X, Dellandra E, Chen L. Building a statistical AU space for facial expression recognition in 3D. In: Proceedings of the International Conference on Digital Image Computing: Techniques and Applications (DICTA). 2011; Dec 6–8, Noosa, Queensland, Australia. New York: IEEE. 2011. p. 406–409.
- Zheng W, Tang H, Lin Z, Huang TS. A novel approach to expression recognition from non-frontal face images. In Proceedings of the IEEE International Conference on Computer Vision; 2009 Sept 29–Oct 2, Kyoto, Japan. New York: IEEE. 2009. p. 1901–1908.