Gastrointestinal Hormones and Receptors
Daniel K. Podolsky MD
President, University of Texas Southwestern Medical Center, Professor of Internal Medicine, Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
Search for more papers by this authorMichael Camilleri MD
Executive Dean for Development, Atherton and Winifred W. Bean Professor, Professor of Medicine, Physiology and Pharmacology, Distinguished Investigator, Mayo Clinic, Rochester, MN, USA
Search for more papers by this authorJ. Gregory Fitz MD FAASLD
Executive Vice President for Academic Aff airs and Provost, University of Texas Southwestern Medical Center, Dean, Professor of Internal Medicine, Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
Search for more papers by this authorAnthony N. Kalloo MD
Professor of Medicine, Johns Hopkins University School of Medicine, Director, Division of Gastroenterology & Hepatology, Johns Hopkins Hospital, Baltimore, MD, USA
Search for more papers by this authorFergus Shanahan MD
Professor and Chair, Department of Medicine, Director, Alimentary Pharmabiotic Centre, University College Cork, National University of Ireland, Cork, Ireland
Search for more papers by this authorTimothy C. Wang MD
Chief, Division of Digestive and Liver Diseases, Silberberg Professor of Medicine, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, USA
Search for more papers by this authorSummary
Gastrointestinal hormones and their receptors play important roles in the regulation and integration of digestive function. An understanding of the organization of this endocrine system, where the hormones are produced, what stimulates their secretion, their targets, and the characterization of their responses provide important insights to understand normal physiology and pathophysiologic presentations. This is also useful in developing diagnostics and therapeutic approaches to disease.
References
- Campbell J.E., Drucker D.J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 2013; 17: 819.
- Cawston E., Miller L.J. Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol 2010; 159: 1009.
- Chandrasekharan B., Nezami B.G., Srinivasan S. Emerging neuropeptide targets in inflammation: NPY and VIP. Am J Physiol Gastrointest Liver Physiol 2013; 304: G949.
- Harmar A.J., Arimura A., Gozes I., et al. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 1998; 50: 265.
- Katritch V., Cherezov V., Stevens R.C. Structure–function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 2013; 53: 531.
- Kenakin T., Miller L.J. Seven transmembrane proteins as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 2010; 62: 265.
- Mayo K.E., Miller L.J., Bataille D., et al. International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 2003; 55: 167.
- Rehfeld J.F. Beginnings: a reflection on the history of gastrointestinal endocrinology. Regul Pept 2012; 177: S1.
- Rosenbaum D.M., Rasmussen S.G., Kobilka B.K. The structure and function of G-protein-coupled receptors. Nature 2009; 459: 356.
- Whalen E.J., Rajagopal S., Lefkowitz R.J. Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med 2011; 17: 126.
- Fujita T, Kobayaski S. The cells and hormones of the GEP endocrine system – the current of the studies. In: T Fujita (ed). Gastro-Entero-Pancreatic Endocrine System: A Cell-Biological Approach. Tokyo: Igaku Shoin; 1973: 1.
- Polak JM. Endocrine cells of the gut. In: GM Makhlouf (ed). Handbook of Physiology – The Gastrointestinal System. New York: Oxford University Press; 1989.
- Franco R, Canals M, Marcellino D, et al. Regulation of heptaspanning-membrane-receptor function by dimerization and clustering. Trends Biochem Sci 2003; 28: 238.
- Langmead CJ, Christopoulos A. Allosteric agonists of 7TM receptors: expanding the pharmacological toolbox. Trends Pharmacol Sci 2006; 27: 475.
- Angers S, Salahpour A, Bouvier M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 2002; 42: 409.
- Gores GJ, LaRusso NF, Miller LJ. Hepatic processing of cholecystokinin peptides. I. Structural specificity and mechanism of hepatic extraction. Am J Physiol 1986; 250: G344.
-
Murakami T,
Hitomi S,
Ohtsuka A, et al.
Pancreatic insulo-acinar portal systems in humans, rats, and some other mammals: scanning electron microscopy of vascular casts.
Microsc Res Tech
1997;
37:
478.
10.1002/(SICI)1097-0029(19970601)37:5/6<478::AID-JEMT10>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- Schmid A, Schulz I. Different time courses of GTP[gamma-S]-induced exocytosis and current oscillations in isolated mouse pancreatic acinar cells. Pflugers Arch 1996; 432: 876.
- Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst 2000; 81: 87.
- Larsson LI, Goltermann N, de Magistris L, et al. Somatostatin cell processes as pathways for paracrine secretion. Science 1979; 205: 1393.
- Roettger BF, Rentsch RU, Pinon D, et al. Dual pathways of internalization of the cholecystokinin receptor. J Cell Biol 1995; 128: 1029.
- Roettger BF, Rentsch RU, Hadac EM, et al. Insulation of a G protein-coupled receptor on the plasmalemmal surface of the pancreatic acinar cell. J Cell Biol 1995; 130: 579.
- Rao RV, Roettger BF, Hadac EM, et al. Roles of cholecystokinin receptor phosphorylation in agonist-stimulated desensitization of pancreatic acinar cells and receptor-bearing Chinese hamster ovary cholecystokinin receptor cells. Mol Pharmacol 1997; 51: 185.
- Kenakin T. Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 2011; 336: 296.
- Kenakin T, Christopoulos A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 2013; 12: 205.
- Bayliss WM, Starling EH. On the causation of the so-called “peripheral reflex secretion” of the pancreas. Proc R Soc Lond [Biol] 1902; 69: 352.
- Rehfeld JF. Historical background. In: SR Bloom, JM Polak (eds). Gut Hormones. New York: Churchill Livingstone; 1981: 10.
-
Edkins JS.
On the chmical mechanisms of gastric secretion.
Proc R Soc Lond [Biol]
1905;
76:
376.
10.1098/rspb.1905.0029 Google Scholar
- Gregory RA, Tracy HJ. The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 1964; 5: 103.
- Mutt V, Jorpes E. Hormonal polypeptides of the upper intestine. Biochem J 1971; 125: 57P.
- Yalow RS. Radioimmunoassay: a probe for the fine structure of biologic systems. Med Phys 1978; 5: 247.
- Yalow RS, Berson SA. Assay of plasma insulin in human subjects by immunological methods. Nature 1959; 184(Suppl 21): 1648.
- Muller JE, Straus E, Yalow RS. Cholecystokinin and its COOH-terminal octapeptide in the pig brain. Proc Natl Acad Sci U S A 1977; 74: 3035.
- Miller LJ. A historical perspective of gastrointestinal endocrinology–the new age of molecular receptorology. Gastroenterology 1992; 102: 2168.
- Galardy RE, Craig LC, Jamieson JD, et al. Photoaffinity labeling of peptide hormone binding sites. J Biol Chem 1974; 249: 3510.
- Galardy RE, Hull BE, Jamieson JD. Irreversible photoactivation of a pancreatic secretagogue receptor with cholecystokinin COOH-terminal octapeptides. J Biol Chem 1980; 255: 3148.
- Dong M, Liu G, Pinon DI, et al. Differential docking of high-affinity peptide ligands to type A and B cholecystokinin receptors demonstrated by photoaffinity labeling. Biochemistry 2005; 44: 6693.
- Kolakowski LF Jr. GCRDb: a G-protein-coupled receptor database. Receptors Channels 1994; 2: 1.
- Houghten RA, Pinilla C, Blondelle SE, et al. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 1991; 354: 84.
- Aquino CJ, Armour DR, Berman JM, et al. Discovery of 1,5-benzodiazepines with peripheral cholecystokinin (CCK-A) receptor agonist activity. 1. Optimization of the agonist “trigger”. J Med Chem 1996; 39: 562.
- Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 1974; 141: 537.
- Thompson M, Fleming KA, Evans DJ, et al. Gastric endocrine cells share a clonal origin with other gut cell lineages. Development 1990; 110: 477.
- Wang J, Cortina G, Wu SV, et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N Engl J Med 2006; 355: 270.
- Le Douarin NM, Dupin E, Ziller C. Genetic and epigenetic control in neural crest development. Curr Opin Genet Dev 1994; 4: 685.
- Le Douarin NM, Ziller C. Plasticity in neural crest cell differentiation. Curr Opin Cell Biol 1993; 5: 1036.
- Jamieson JD, Palade GE. Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells. J Cell Biol 1971; 50: 135.
- Pardue ML, Gall JG. Nucleic acid hybridization to the DNA of cytological preparations. Methods Cell Biol 1975; 10: 1.
- Singer RH, Lawrence JB, Villnave C. Optimization of in situ hybridization using isotopic and nonisotopic methods. BioTechniques 1986; 4: 230.
- Nakanishi S, Inoue A, Kita T, et al. Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature 1979; 278: 423.
- Gubler U, Seeburg P, Hoffman BJ, et al. Molecular cloning establishes proenkephalin as precursor of enkephalin-containing peptides. Nature 1982; 295: 206.
- Itoh N, Obata K, Yanaihara N, et al. Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 1983; 304: 547.
- Rosenfeld MG, Mermod JJ, Amara SG, et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 1983; 304: 129.
- Nawa H, Kotani H, Nakanishi S. Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature 1984; 312: 729.
- Song I, Brown DR, Wiltshire RN, et al. The human gastrin/cholecystokinin type B receptor gene: alternative splice donor site in exon 4 generates two variant mRNAs. Proc Natl Acad Sci U S A 1993; 90: 9085.
- Moore EE, Kuestner RE, Stroop SD, et al. Functionally different isoforms of the human calcitonin receptor result from alternative splicing of the gene transcript. Mol Endocrinol 1995; 9: 959.
- Walter P, Gilmore R, Blobel G. Protein translocation across the endoplasmic reticulum. Cell 1984; 38: 5.
- Huttner WB. Tyrosine sulfation and the secretory pathway. Annu Rev Physiol 1988; 50: 363.
- Steiner DF, Smeekens SP, Ohagi S, et al. The new enzymology of precursor processing endoproteases. J Biol Chem 1992; 267: 23435.
- Smeekens SP, Avruch AS, LaMendola J, et al. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc Natl Acad Sci U S A 1991; 88: 340.
- Seidah NG, Marcinkiewicz M, Benjannet S, et al. Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, Furin, and Kex2: distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2. Mol Endocrinol 1991; 5: 111.
- Bradbury AF, Finnie MD, Smyth DG. Mechanism of C-terminal amide formation by pituitary enzymes. Nature 1982; 298: 686.
- Dickinson CJ, Yamada T. Gastrin-amidating enzyme in the porcine pituitary and antrum. Characterization of molecular forms and substrate specificity. J Biol Chem 1991; 266: 334.
- Tatemoto K, Mutt V. Chemical determination of polypeptide hormones. Proc Natl Acad Sci U S A 1978; 75: 4115.
- Varro A, Dockray GJ. Post-translational processing of progastrin: inhibition of cleavage, phosphorylation and sulphation by brefeldin A. Biochem J 1993; 295: 813.
- Gregory H, Jones DS, Morley HS. Polypeptides. VII. Variations of the phenylalanyl position in the C-terminal tetrapeptide amide sequence of the gastrins. J Chem Soc [Perkin 1] 1968; 5: 531.
- Morley JS. Structure–function relationships in gastrin-like peptides. Proc R Soc Lond B Biol Sci 1968; 170: 97.
- Yoo OJ, Powell CT, Agarwal KL. Molecular cloning and nucleotide sequence of full-length of cDNA coding for porcine gastrin. Proc Natl Acad Sci U S A 1982; 79: 1049.
- Ito R, Sato K, Helmer T, et al. Structural analysis of the gene encoding human gastrin: the large intron contains an Alu sequence. Proc Natl Acad Sci U S A 1984; 81: 4662.
- Wiborg O, Berglund L, Boel E, et al. Structure of a human gastrin gene. Proc Natl Acad Sci U S A 1984; 81: 1067.
- Varro A, Nemeth J, Bridson J, et al. Processing of the gastrin precursor. Modulation of phosphorylated, sulfated, and amidated products. J Biol Chem 1990; 265: 21476.
- Dockray GJ. Physiology of enteric neuropeptides. In: L Johnson (ed). Physiology of the Gastrointestinal Tract. New York: Raven Press; 1987: 41.
- Bundgaard JR, Vuust J, Rehfeld JF. Tyrosine O-sulfation promotes proteolytic processing of progastrin. EMBO J 1995; 14: 3073.
- Ondetti MA, Rubin B, Engel SL, et al. Cholecystokinin-pancreozymin: recent developments. Am J Dig Dis 1970; 15: 149.
- Nikiforovich GV, Hruby VJ. Models for the A- and B-receptor-bound conformations of CCK-8. Biochem Biophys Res Commun 1993; 194: 9.
- Merrifield RB. Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol 1969; 32: 221.
- Rehfeld JF. Radioimmunoassay in diagnosis, localization and treatment of endocrine tumours in gut and pancreas. Scand J Gastroenterol Suppl 1979; 53: 33.
- Owyang C, Miller LJ, DiMagno EP, et al. Gastrointestinal hormone profile in renal insufficiency. Mayo Clin Proc 1979; 54: 769.
- Lamers CB, Von Tongerren JH. Comparative study of the value of the calcium, secretin, and meal stimulated increase in serum gastrin to the diagnosis of the Zollinger-Ellison syndrome. Gut 1977; 18: 128.
- Grossman MI. How does a candidate peptide become a hormone? Adv Exp Med Biol 1978; 106: 23.
- Brown KD. The epidermal growth factor/transforming growth factor-alpha family and their receptors. Eur J Gastroenterol Hepatol 1995; 7: 914.
- Schmid C. Insulin-like growth factors. Cell Biol Int 1995; 19: 445.
- Slavin J. Fibroblast growth factors: at the heart of angiogenesis. Cell Biol Int 1995; 19: 431.
- Koesling D, Bohme E, Schultz G. Guanylyl cyclases, a growing family of signal-transducing enzymes. FASEB J 1991; 5: 2785.
- Lodish HF, Hilton DJ, Klingmuller U, et al. The erythropoietin receptor: biogenesis, dimerization, and intracellular signal transduction. Cold Spring Harb Symp Quant Biol 1995; 60: 93.
- Watowich SS, Wu H, Socolovsky M, et al. Cytokine receptor signal transduction and the control of hematopoietic cell development. Annu Rev Cell Dev Biol 1996; 12: 91.
- Luetje CW, Patrick J, Seguela P. Nicotine receptors in the mammalian brain. FASEB J 1990; 4: 2753.
- Dohlman HG, Caron MG, Lefkowitz RJ. A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 1987; 26: 2657.
- Ji TH, Grossmann M, Ji I. G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J Biol Chem 1998; 273: 17299.
- Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 1987; 56: 615.
- Hepler JR, Gilman AG. G proteins. Trends Biochem Sci 1992; 17: 383.
- Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med 2011; 17: 126.
- Conklin BR, Bourne HR. Structural elements of G alpha subunits that interact with G beta gamma, receptors, and effectors. Cell 1993; 73: 631.
- Birnbaumer L. G proteins in signal transduction. Annu Rev Pharmacol Toxicol 1990; 30: 675.
- Neer EJ, Clapham DE. Roles of G protein subunits in transmembrane signalling. Nature 1988; 333: 129.
- Ford CE, Skiba NP, Bae H, et al. Molecular basis for interactions of G protein betagamma subunits with effectors. Science 1998; 280: 1271.
- O'Donnell M, Garippa RJ, O'Neill NC, et al. Structure-activity studies of vasoactive intestinal polypeptide. J Biol Chem 1991; 266: 6389.
- Feighner SD, Tan CP, McKee KK, et al. Receptor for motilin identified in the human gastrointestinal system. Science 1999; 284: 2184.
- Spengler D, Waeber C, Pantaloni C, et al. Differential signal transduction by five splice variants of the PACAP receptor. Nature 1993; 365: 170.
- Helenius A, How N. linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 1994; 5: 253.
- Kaushal S, Ridge KD, Khorana HG. Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci U S A 1994; 91: 4024.
- Moffett S, Mouillac B, Bonin H, et al. Altered phosphorylation and desensitization patterns of a human beta 2-adrenergic receptor lacking the palmitoylated Cys341. EMBO J 1993; 12: 349.
- Ozcelebi F, Rao RV, Holicky E, et al. Phosphorylation of cholecystokinin receptors expressed on Chinese hamster ovary cells. Similarities and differences relative to native pancreatic acinar cell receptors. J Biol Chem 1996; 271: 3750.
- Benovic JL, DeBlasi A, Stone WC, et al. Beta-adrenergic receptor kinase: primary structure delineates a multigene family. Science 1989; 246: 235.
- Rosenzweig SA, Miller LJ, Jamieson JD. Identification and localization of cholecystokinin-binding sites on rat pancreatic plasma membranes and acinar cells: a biochemical and autoradiographic study. J Cell Biol 1983; 96: 1288.
-
Miller LJ.
Biochemical characterization of receptors for the cholecystokinin family of hormones. In:
JC Thompson (ed).
Gastrointestinal Endocrinology: Receptors and Post-Receptor Mechanisms.
New York:
Academic Press;
1990:
81.
10.1016/B978-0-12-689330-4.50013-4 Google Scholar
- Granier S, Kobilka B. A new era of GPCR structural and chemical biology. Nat Chem Biol 2012; 8: 670.
- Dong M, Xu X, Ball AM, et al. Mapping spatial approximations between the amino terminus of secretin and each of the extracellular loops of its receptor using cysteine trapping. FASEB J 2012; 26: 5092.
- Johnsen AH, Rehfeld JF. Identification of cholecystokinin/gastrin peptides in frog and turtle. Evidence that cholecystokinin is phylogenetically older than gastrin. Eur J Biochem 1992; 207: 419.
- Vigna SR. Cholecystokinin and its receptors in vertebrates and invertebrates. Peptides 1985; 6(Suppl 3): 283.
- Oliver AS, Vigna SR. CCK-A- and CCK-B-like receptors in the gallbladder and stomach of the alligator (Alligator mississippiensis). Gen Comp Endocrinol 1997; 105: 91.
- DelValle J, Sugano K, Yamada T. Glycine-extended processing intermediates of gastrin and cholecystokinin in human plasma. Gastroenterology 1989; 97: 1159.
- Luttichau HR, Van Solinge WW, Nielsen FC, et al. Developmental expression of the gastrin and cholecystokinin genes in rat colon. Gastroenterology 1993; 104: 1092.
- Brand SJ, Fuller PJ. Differential gastrin gene expression in rat gastrointestinal tract and pancreas during neonatal development. J Biol Chem 1988; 263: 5341.
- Van Solinge WW, Nielsen FC, Friis-Hansen L, et al. Expression but incomplete maturation of progastrin in colorectal carcinomas. Gastroenterology 1993; 104: 1099.
- Rehfeld JF, Bardram L, Hilsted L. Gastrin in human bronchogenic carcinomas: constant expression but variable processing of progastrin. Cancer Res 1989; 49: 2840.
- Zollinger RM, Ellison EH. Primary peptic ulcerations of the jejunum associated with islet cell tumors of the pancreas. Ann Surg 1955; 142: 709.
- Walsh JH. Gastrointestinal hormones. In: LR Johnson (ed). Physiology of the Gastrointestinal Tract. New York: Raven Press; 1987: 181.
- Wank SA. Cholecystokinin receptors. Am J Physiol 1995; 269: G628.
- Jensen RT, Wank SA, Rowley WH, et al. Interaction of CCK with pancreatic acinar cells. Trends Pharmacol Sci 1989; 10: 418.
- Chang RS, Chen TB, Bock MG, et al. Characterization of the binding of [3H]L-365,260: a new potent and selective brain cholecystokinin (CCK-B) and gastrin receptor antagonist radioligand. Mol Pharmacol 1989; 35: 803.
- Iversen LL, Dourish CT, Iversen SD. Cholecystokinin receptors: synthetic antagonists with selectivity for receptor subtypes and possible clinical applications. Biochem Soc Trans 1991; 19: 913.
- Soll AH, Amirian DA, Thomas LP, et al. Gastrin receptors on isolated canine parietal cells. J Clin Invest 1984; 73: 1434.
- Soll AH. The interaction of histamine with gastrin and carbamylcholine on oxygen uptake by isolated mammalian parietal cells. J Clin Invest 1978; 61: 381.
- Ryberg B, Tielemans Y, Axelson J, et al. Gastrin stimulates the self-replication rate of enterochromaffinlike cells in the rat stomach. Effects of omeprazole, ranitidine, and gastrin-17 in intact and antrectomized rats. Gastroenterology 1990; 99: 935.
- Willems G, Vansteenkiste Y, Limbosch JM. Stimulating effect of gastrin on cell proliferation kinetics in canine fundic mucosa. Gastroenterology 1972; 62: 583.
- Jianu CS, Fossmark R, Viset T, et al. Gastric carcinoids after long-term use of a proton pump inhibitor. Aliment Pharmacol Ther 2012; 36: 644.
- Fossmark R, Sordal O, Jianu CS, et al. Treatment of gastric carcinoids type 1 with the gastrin receptor antagonist netazepide (YF476) results in regression of tumours and normalisation of serum chromogranin A. Aliment Pharmacol Ther 2012; 36: 1067.
- Black JW. Reflections on some pilot trials of gastrin receptor blockade in pancreatic cancer. Eur J Cancer 2009; 45: 360.
- Nagata A, Ito M, Iwata N, et al. G protein-coupled cholecystokinin-B/gastrin receptors are responsible for physiological cell growth of the stomach mucosa in vivo. Proc Natl Acad Sci U S A 1996; 93: 11825.
- Dickinson CJ. Relationship of gastrin processing to colon cancer. Gastroenterology 1995; 109: 1384.
- Dockray GJ. Gastrin, growth, and colon neoplasia. Gut 2000; 47: 747.
- Wang TC, Koh TJ, Varro A, et al. Processing and proliferative effects of human progastrin in transgenic mice. J Clin Invest 1996; 98: 1918.
- Eysselein VE, Reeve JR Jr, Shively JE, et al. Partial structure of a large canine cholecystokinin (CCK58): amino acid sequence. Peptides 1982; 3: 687.
- Cuber JC, Bernard C, Gibard T, et al. Pharmacokinetics and organ catabolism of cholecystokinin octapeptide in pigs. Regul Pept 1989; 26: 203.
- Gores GJ, Miller LJ, LaRusso NF. Hepatic processing of cholecystokinin peptides. II. Cellular metabolism, transport, and biliary excretion. Am J Physiol 1986; 250: G350.
- Buchan AM, Polak JM, Solcia E, et al. Electron immunohistochemical evidence for the human intestinal I cell as the source of CCK. Gut 1978; 19: 403.
- Liddle RA, Goldfine ID, Williams JA. Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology 1984; 87: 542.
- Rehfeld JF. How to measure cholecystokinin in tissue, plasma and cerebrospinal fluid. Regul Pept 1998; 78: 31.
- Liddle RA, Goldfine ID, Rosen MS, et al. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest 1985; 75: 1144.
- Folsch UR, Cantor P, Wilms HM, et al. Role of cholecystokinin in the negative feedback control of pancreatic enzyme secretion in conscious rats. Gastroenterology 1987; 92: 449.
- Miyasaka K, Guan DF, Liddle RA, et al. Feedback regulation by trypsin: evidence for intraluminal CCK-releasing peptide. Am J Physiol 1989; 257: G175.
- Lu L, Louie D, Owyang C. A cholecystokinin releasing peptide mediates feedback regulation of pancreatic secretion. Am J Physiol 1989; 256: G430.
- Koop I, Koop H, Gerhardt C, et al. Do bile acids exert a negative feedback control of cholecystokinin release? Scand J Gastroenterol 1989; 24: 315.
- Herzig KH, Schon I, Tatemoto K, et al. Diazepam binding inhibitor is a potent cholecystokinin-releasing peptide in the intestine. Proc Natl Acad Sci U S A 1996; 93: 7927.
- Spannagel AW, Green GM, Guan D, et al. Purification and characterization of a luminal cholecystokinin-releasing factor from rat intestinal secretion. Proc Natl Acad Sci U S A 1996; 93: 4415.
- Lerch MM, Gorelick FS. Models of acute and chronic pancreatitis. Gastroenterology 2013; 144: 1180.
- Kopin AS, Lee YM, McBride EW, et al. Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci U S A 1992; 89: 3605.
- Dong M, Lam PC, Pinon DI, et al. Elucidation of the molecular basis of cholecystokinin Peptide docking to its receptor using site-specific intrinsic photoaffinity labeling and molecular modeling. Biochemistry 2009; 48: 5303.
- Evans BE, Bock MG, Rittle KE, et al. Design of potent, orally effective, nonpeptidal antagonists of the peptide hormone cholecystokinin. Proc Natl Acad Sci U S A 1986; 83: 4918.
- Potter RM, Harikumar KG, Wu SV, et al. Differential sensitivity of types 1 and 2 cholecystokinin receptors to membrane cholesterol. J Lipid Res 2012; 53: 137.
- Liddle RA. Cholecystokinin. In: JH Walsh, GJ Dockray (eds). Gut Peptides: Biochemistry and Physiology. New York: Raven Press; 1994: 175.
- Moran TH. Gut peptides in the control of food intake. Int J Obes (Lond) 2009; 33(Suppl 1): S7.
- Stanley S, Wynne K, Bloom S. Gastrointestinal satiety signals III. Glucagon-like peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide. Am J Physiol Gastrointest Liver Physiol 2004; 286: G693.
- Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 2003; 228: 217.
- Glover ID, Barlow DJ, Pitts JE, et al. Conformational studies on the pancreatic polypeptide hormone family. Eur J Biochem 1984; 142: 379.
- Blundell TL, Pitts JE, Tickle IJ, et al. X-ray analysis (1. 4-A resolution) of avian pancreatic polypeptide: small globular protein hormone. Proc Natl Acad Sci U S A 1981; 78: 4175.
- Pheng LH, Regoli D. Receptors for NPY in peripheral tissues bioassays. Life Sci 2000; 67: 847.
- Fuhlendorff J, Gether U, Aakerlund L, et al. [Leu31, Pro34]neuropeptide Y: a specific Y1 receptor agonist. Proc Natl Acad Sci U S A 1990; 87: 182.
- Tatemoto K, Nakano I, Makk G, et al. Isolation and primary structure of human peptide YY. Biochem Biophys Res Commun 1988; 157: 713.
- Taylor IL. Distribution and release of peptide YY in dog measured by specific radioimmunoassay. Gastroenterology 1985; 88: 731.
- Adrian TE, Ferri GL, Bacarese-Hamilton AJ, et al. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 1985; 89: 1070.
- Pappas TN, Debas HT, Chang AM, et al. Peptide YY release by fatty acids is sufficient to inhibit gastric emptying in dogs. Gastroenterology 1986; 91: 1386.
- Pappas TN, Debas HT, Taylor IL. Peptide YY: metabolism and effect on pancreatic secretion in dogs. Gastroenterology 1985; 89: 1387.
- Tatemoto K, Siimesmaa S, Jornvall H, et al. Isolation and characterization of neuropeptide Y from porcine intestine. FEBS Lett 1985; 179: 181.
- Tatemoto K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci U S A 1982; 79: 5485.
- Furness JB, Costa M, Emson PC, et al. Distribution, pathways and reactions to drug treatment of nerves with neuropeptide Y- and pancreatic polypeptide-like immunoreactivity in the guinea-pig digestive tract. Cell Tissue Res 1983; 234: 71.
- Koch TR, Roddy DR, Carney JA, et al. Distribution, quantitation, and origin of immunoreactive neuropeptide Y in the human gastrointestinal tract. Regul Pept 1988; 21: 309.
- Crowley WR, Shah GV, Carroll BL, et al. Neuropeptide-Y enhances luteinizing hormone (LH)-releasing hormone-induced LH release and elevations in cytosolic Ca2+ in rat anterior pituitary cells: evidence for involvement of extracellular Ca2+ influx through voltage-sensitive channels. Endocrinology 1990; 127: 1487.
- Lundberg JM, Torssell L, Sollevi A, et al. Neuropeptide Y and sympathetic vascular control in man. Regul Pept 1985; 13: 41.
- Palma C. Tachykinins and their receptors in human malignancies. Curr Drug Targets 2006; 7: 1043.
- Improta G, Broccardo M. Tachykinins: role in human gastrointestinal tract physiology and pathology. Curr Drug Targets 2006; 7: 1021.
- Satake H, Kawada T. Overview of the primary structure, tissue-distribution, and functions of tachykinins and their receptors. Curr Drug Targets 2006; 7: 963.
- Esteban F, Munoz M, Gonzalez-Moles MA, et al. A role for substance P in cancer promotion and progression: a mechanism to counteract intracellular death signals following oncogene activation or DNA damage. Cancer Metastasis Rev 2006; 25: 137.
- Chang MM, Leeman SE, Niall HD. Amino-acid sequence of substance P. Nat New Biol 1971; 232: 86.
- Erspamer V. Discovery, isolation, and characterization of bombesin-like peptides. Ann N Y Acad Sci 1988; 547: 3.
- Lebacq-Verheyden AM, Trepel J, Sausville EA, et al. Bombesin and gastrin-releasing peptide: neuropeptides, secretagogues, and growth factors. In: MB Sporn, AB Roberts (eds). Peptide Growth Factors and their Receptors. Heidelberg: Springer-Verlag; 1991: 71.
- Jian X, Sainz E, Clark WA, et al. The bombesin receptor subtypes have distinct G protein specificities. J Biol Chem 1999; 274: 11573.
- Katsuno T, Pradhan TK, Ryan RR, et al. Pharmacology and cell biology of the bombesin receptor subtype 4 (BB4-R). Biochemistry 1999; 38: 7307.
- Goodman RH, Jacobs JW, Chin WW, et al. Nucleotide sequence of a cloned structural gene coding for a precursor of pancreatic somatostatin. Proc Natl Acad Sci U S A 1980; 77: 5869.
- van der Lely AJ, Kopchick JJ. Growth hormone receptor antagonists. Neuroendocrinology 2006; 83: 264.
- Sgouros SN, Bergele C, Viazis N, et al. Somatostatin and its analogues in peptic ulcer bleeding: facts and pathophysiological aspects. Dig Liver Dis 2006; 38: 143.
- de Herder WW, Kwekkeboom DJ, Valkema R, et al. Neuroendocrine tumors and somatostatin: imaging techniques. J Endocrinol Invest 2005; 28: 132.
- Trent DF, Weir GC. Heterogeneity of somatostatin-like peptides in rat brain, pancreas, and gastrointestinal tract. Endocrinology 1981; 108: 2033.
- Vinik AI, Gaginella TS, O'Dorisio TM, et al. The distribution and characterization of somatostatin-like immunoreactivity in epithelial cells, submucosa, and muscle of the rat stomach and intestine. Endocrinology 1981; 109: 1921.
- Yamada Y, Post SR, Wang K, et al. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci U S A 1992; 89: 251.
- Reisine T. Somatostatin receptors. Am J Physiol 1995; 269: G813.
- Benali N, Ferjoux G, Puente E, et al. Somatostatin receptors. Digestion 2000; 62: 27.
- Ruskone A, Rene E, Chayvialle JA, et al. Effect of somatostatin on diarrhea and on small intestinal water and electrolyte transport in a patient with pancreatic cholera. Dig Dis Sci 1982; 27: 459.
- Peeters TL, Depoortere I. Motilin receptor: a model for development of prokinetics. Dig Dis Sci 1994; 39: 76S.
- Peeters TL. Erythromycin and other macrolides as prokinetic agents. Gastroenterology 1993; 105: 1886.
- Matsuura B, Dong M, Naik S, et al. Differential contributions of motilin receptor extracellular domains for peptide and non-peptidyl agonist binding and activity. J Biol Chem 2006; 281: 12390.
- Matsuura B, Dong M, Coulie B, et al. Demonstration of a specific site of covalent labeling of the human motilin receptor using a biologically active photolabile motilin analog. J Pharmacol Exp Ther 2005; 313: 1101.
- Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402: 656.
- Poitras P, Miller P, Dickner M, et al. Heterogeneity of motilin receptors in the gastrointestinal tract of the rabbit. Peptides 1996; 17: 701.
- Hollenberg MD, Saifeddine M, al-Ani B. Proteinase-activated receptor-2 in rat aorta: structural requirements for agonist activity of receptor-activating peptides. Mol Pharmacol 1996; 49: 229.
- Hollenberg MD. Protease-mediated signalling: new paradigms for cell regulation and drug development. Trends Pharmacol Sci 1996; 17: 3.
- Schmidt VA, Vitale E, Bahou WF. Genomic cloning and characterization of the human thrombin receptor gene. Structural similarity to the proteinase activated receptor-2 gene. J Biol Chem 1996; 271: 9307.
- Nystedt S, Emilsson K, Larsson AK, et al. Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur J Biochem 1995; 232: 84.
- Defea K, Schmidlin F, Dery O, et al. Mechanisms of initiation and termination of signalling by neuropeptide receptors: a comparison with the proteinase-activated receptors. Biochem Soc Trans 2000; 28: 419.
- Tettamanti G, Malagoli D, Benelli R, et al. Growth factors and chemokines: a comparative functional approach between invertebrates and vertebrates. Curr Med Chem 2006; 13: 2737.
- Giles R, Loberg RD. Can we target the chemokine network for cancer therapeutics? Curr Cancer Drug Targets 2006; 6: 659.
- Viola A, Contento RL, Molon B. T cells and their partners: the chemokine dating agency. Trends Immunol 2006; 27: 421.
- Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000; 52: 145.
- Ishihara T, Nakamura S, Kaziro Y, et al. Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 1991; 10: 1635.
- Ishihara T, Shigemoto R, Mori K, et al. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 1992; 8: 811.
- Usdin TB, Mezey E, Button DC, et al. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 1993; 133: 2861.
- Juppner H, Abou-Samra AB, Freeman M, et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 1991; 254: 1024.
- Ulrich CD 2nd, Holtmann M, Miller LJ. Secretin and vasoactive intestinal peptide receptors: members of a unique family of G protein-coupled receptors. Gastroenterology 1998; 114: 382.
- Dong M, Miller LJ. Molecular pharmacology of the secretin receptor. Receptors Channels 2002; 8: 189.
- Carlquist M. Human secretin is not identical to the porcine/bovine hormone. IRCS Med Sci 1985; 13: 217.
- Welch MG. Review: secretin is not effective for the treatment of children with autism spectrum disorders. Evid Based Ment Health 2011; 14: 104.
- Lisenbee CS, Dong M, Miller LJ. Paired cysteine mutagenesis to establish the pattern of disulfide bonds in the functional intact secretin receptor. J Biol Chem 2005; 280: 12330.
- Dohlman HG, Caron MG, DeBlasi A, et al. Role of extracellular disulfide-bonded cysteines in the ligand binding function of the beta 2-adrenergic receptor. Biochemistry 1990; 29: 2335.
- Parthier C, Reedtz-Runge S, Rudolph R, et al. Passing the baton in class B GPCRs: peptide hormone activation via helix induction? Trends Biochem Sci 2009; 34: 303.
- Miller LJ, Dong M, Harikumar KG. Ligand binding and activation of the secretin receptor, a prototypic family B G protein-coupled receptor. Br J Pharmacol 2012; 166: 18.
- Holtmann MH, Roettger BF, Pinon DI, et al. Role of receptor phosphorylation in desensitization and internalization of the secretin receptor. J Biol Chem 1996; 271: 23566.
- Murphy KG, Bloom SR. Nonpeptidic glucagon-like peptide 1 receptor agonists: a magic bullet for diabetes? Proc Natl Acad Sci U S A 2007; 104: 689.
- Eng J, Kleinman WA, Singh L, et al. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem 1992; 267: 7402.
- Willard FS, Bueno AB, Sloop KW. Small molecule drug discovery at the glucagon-like peptide-1 receptor. Exp Diabesity Res 2012; 2012: 709893.
- Singh S, Chang HY, Richards TM, et al. Glucagon-like peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case-control study. JAMA Intern Med 2013; 173: 534.
- Butler PC, Elashoff M, Elashoff R, et al. A critical analysis of the clinical use of incretin-based therapies: are the GLP-1 therapies safe? Diabetes Care 2013; 36: 2118.
- Nauck MA. A Critical Analysis of the Clinical Use of Incretin-Based Therapies: the benefits by far outweigh the potential risks. Diabetes Care 2013; 36: 2126.
- Adelhorst K, Hedegaard BB, Knudsen LB, et al. Structure-activity studies of glucagon-like peptide-1. J Biol Chem 1994; 269: 6275.
- Mortensen K, Christensen LL, Holst JJ, et al. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 2003; 114: 189.
- Donnelly D. The structure and function of the glucagon-like peptide-1 receptor and its ligands. Br J Pharmacol 2012; 166: 27.
- Mutt V, Said SI. Structure of the porcine vasoactive intestinal octacosapeptide. The amino-acid sequence. Use of kallikrein in its determination. Eur J Biochem 1974; 42: 581.
- Waschek JA. VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair. Br J Pharmacol 2013; 169: 512.
- Bloom SR. Vasoactive intestinal peptide, the major mediator of the WDHA (pancreatic cholera) syndrome: value of measurement in diagnosis and treatment. Am J Dig Dis 1978; 23: 373.
- Usdin TB, Bonner TI, Mezey E. Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 1994; 135: 2662.
- Pisegna JR, Wank SA. Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type I receptor. Proc Natl Acad Sci U S A 1993; 90: 6345.
- Vilardaga JP, De Neef P, Di Paolo E, et al. Properties of chimeric secretin and VIP receptor proteins indicate the importance of the N-terminal domain for ligand discrimination. Biochem Biophys Res Commun 1995; 211: 885.
- Miyata A, Arimura A, Dahl RR, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 1989; 164: 567.
- Jornvall H, Carlquist M, Kwauk S, et al. Amino acid sequence and heterogeneity of gastric inhibitory polypeptide (GIP). FEBS Lett 1981; 123: 205.
- Moody AJ, Thim L, Valverde I. The isolation and sequencing of human gastric inhibitory peptide (GIP). FEBS Lett 1984; 172: 142.
- Vilsboll T, Krarup T, Madsbad S, et al. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept 2003; 114: 115.
- Lutz MP, Sutor SL, Abraham RT, et al. A role for cholecystokinin-stimulated protein tyrosine phosphorylation in regulated secretion by the pancreatic acinar cell. J Biol Chem 1993; 268: 11119.
- Macara IG, Lounsbury KM, Richards SA, et al. The Ras superfamily of GTPases. FASEB J 1996; 10: 625.
- Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415.
- Kato T, Nishio K. Clinical aspects of epidermal growth factor receptor inhibitors: benefit and risk. Respirology 2006; 11: 693.
- Michelsen KS, Arditi M. Toll-like receptors and innate immunity in gut homeostasis and pathology. Curr Opin Hematol 2007; 14: 48.
- Shirey KA, Lai W, Scott AJ, et al. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 2013; 497: 498.
- Chey WD, Chey WY. Evaluation of secretion and absorptive functions of the gastrointestinal tract. In: T Yamada (ed). Textbook of Gastroenterology, 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2003: 3075.
- Dimagno EP, Go VL. The clinical application of exocrine pancreatic function tests. Dis Mon 1976; 22: 3.
- Miller RE, Chernish SM, Rosenak BD, et al. Hypotonic duodenography with glucagon. Radiology 1973; 108: 35.
- Santangelo WC, O'Dorisio TM, Kim JG, et al. Pancreatic cholera syndrome: effect of a synthetic somatostatin analog on intestinal water and ion transport. Ann Intern Med 1985; 103: 363.
- Christopoulos A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat Rev Drug Discov 2002; 1: 198.
-
Bordi C,
D′Adda T,
Azzoni C, et al.
Classification of gastric endocrine cells at the light and electron microscopical levels.
Microsc Res Tech
2000;
48:
258.
10.1002/(SICI)1097-0029(20000301)48:5<258::AID-JEMT3>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar