Routes in Innate Immunity Evolution: Galectins and Rhamnose-binding Lectins in Ascidians
Loriano Ballarin
Department of Biology, University of Padova, Padova, Italy
Search for more papers by this authorMatteo Cammarata
Department of Environmental Biology and Biodiversity, University of Palermo, Palermo, Italy
Search for more papers by this authorNicola Franchi
Department of Biology, University of Padova, Padova, Italy
Search for more papers by this authorNicolò Parrinello
Department of Environmental Biology and Biodiversity, University of Palermo, Palermo, Italy
Search for more papers by this authorLoriano Ballarin
Department of Biology, University of Padova, Padova, Italy
Search for more papers by this authorMatteo Cammarata
Department of Environmental Biology and Biodiversity, University of Palermo, Palermo, Italy
Search for more papers by this authorNicola Franchi
Department of Biology, University of Padova, Padova, Italy
Search for more papers by this authorNicolò Parrinello
Department of Environmental Biology and Biodiversity, University of Palermo, Palermo, Italy
Search for more papers by this authorSe-Kwon Kim
Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
Department of Chemistry, Pukyoung National University, Nam-Gu, Busan, Republic of Korea
Search for more papers by this authorSummary
Animal lectins are grouped in various molecular families, differing in carbohydrate-recognition domain (CRD) structure and organization. They are involved in a variety of key biological processes, ranging from development to immune responses. Ascidian lectins include galectins and rhamnose-binding proteins. The solitary ascidian species Ciona intestinalis and the colonial species Botryllus schlosseri are important model organisms for developmental and evolutionary biology studies, including immunobiology. This chapter talks about molecular features, structure and evolution of C. intestinalis galectins and involvement of galectins in C.intestinalis inflammatory response. It also talks about biochemical and molecular features, and synthesis and immune roles of Botryllus schlosseri rhamnose-binding lectins (RBLs).
References
- Adema, C. M., Hertel, L. A., Miller, R. D., Loker, E. S. (1997). A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection. Proc Natl Acad Sci USA, 94, 8691–8696.
- Ahmad, N., Gabius, H. J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B., Macaluso, F., Brewer, C. F. (2004). Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem, 279, 10841–10847.
- Ahmed, H., Vasta, G. R. (1994). Galectins: conservation of functionally and structurally relevant amino acid residues defines two types of carbohydrate recognition domains. Glycobiology, 4, 545–548.
- Arason, G. J. (1996). Lectins as defense molecules in vertebrates and invertebrates. Fish Shellfish Immunol, 6, 277–289.
- Arizza, V., Parrinello, D. (2009). Inflammatory hemocytes in Ciona intestinalis innate immune response. Invertebr Survival J, 6, S58–S66.
- Arizza, V., Parrinello, D., Cammarata, M., Vazzana, M., Vizzini, A., Giaramita, F., Parrinello, N. (2011). A lytic mechanism based on soluble phospholypases A2 (sPLA2) and b-galactoside specific lectins is exerted by Ciona intestinalis (ascidian) unilocular refractile hemocytes against K562 cell line and mammalian erythrocytes. Fish Shellfish Immunol, 30, 1014–1023
- Azumi, K., Takahashi, H., Miki, Y., Fujie, M., Usami, T., Ishikawa, H., Kitayama, A., Satou, Y., Ueno, N., Satoh, N. (2003). Construction of a cDNA microarray derived from the ascidian Ciona intestinalis. Zoolog Sci, 20, 1223–1229.
- Ballarin, L., Menin, A., Franchi, N., Bertoloni, G., Cima, F. (2005). Morula cells and non-self recognition in the compound ascidian Botryllus schlosseri. Invertebr Survival J, 2, 1–5.
- Ballarin, L., Tonello, C., Guidolin, L., Sabbadin, A. (1999). Purification and characterization of a humoral opsonin with specificity for D-galactose, in the colonial ascidian Botryllus schlosseri. Comp Biochem Physiol, 123B, 115–123.
- Ballarin, L., Tonello, C., Sabbadin, A. (2000). Humoral opsonin from the colonial ascidian Botryllus schlosseri as a member of the galectin family. Mar Biol, 136, 813–822.
- Berril, N. J. (1955). The Origin of Vertebrates. Oxford University London Press: London.
- Beschin, A., Bilej, M., Torreele, E., De Baetselier, P. (2001). On the existence of cytokines in invertebrates. Cell Mol Life Sci, 58, 801–814.
- Bonura, A., Vizzini, A., Salerno, G., Parrinello, N., Longo, V., Colombo, P. (2009). Isolation and expression of a novel MBL-like collectin cDNA enhanced by LPS injection in the body wall of the ascidian Ciona intestinalis. Mol Immunol, 46, 2389–2394.
- Bonura, A., Vizzini, A., Salerno, G., Parrinello, D., Parrinello, N., Longo, V., Montana, G., Colombo, P. (2010). Cloning and expression of a novel component of the CAP superfamily enhanced in the inflammatory response to LPS of the ascidian Ciona intestinalis. Cell Tissue Res, 342, 411–421.
- Brewer, C. F., Miceli, M. C., Baum, L. G. (2002). Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol, 12, 616–623.
- Burighel, P., Cloney, R. A. (1997). Urochordata: Ascidiacea. In: F. W. Harrison, E. E. Ruppert, eds. Microscopic Anatomy of Invertebrates: Hemichordata, Chaetognatha and the Invertebrate Chordates, Vol. 15. Wiley-Liss: New York, pp. 221–347.
- Cammarata, M., Arizza, V., Cianciolo, C., Parrinello, D., Vazzana, M., Vizzini, A., Salerno, G., Parrinello, N. (2008). The prophenoloxidase system is activated during the tunic inflammatory reaction of Ciona intestinalis. Cell Tissue Res, 333, 481–492.
- Cammarata, M., Parrinello, N. (2009). The ascidian prophenoloxidase activating system. Invertebr Survival J, 6, 67–76.
- Casadevall, A., Pirofski, L. A. (2000). Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun, 68, 6511–6518.
- Cima, F., Manni, L., Basso, G., Fortunato, E., Accordi, B., Schiavon, F., Ballarin, L. (2010). Hovering betwen death and life: haemocytes and natural apoptosis in the blastogenetic cycle of the colonial ascidian Botryllus schlosseri. Dev Comp Immunol, 34, 272–285.
- Collins, B. E., Paulson, J. C. (2004). Cell surface biology mediated by low affinity multivalent protein–glycan interactions. Curr Opin Chem Biol, 8, 617–625.
- Cooper, D. N. (2002). Galectinomics: finding themes in complexity. Biochim Biophys Acta, 1572, 209–231.
- Cooper, D. N., Barondes, S. H. (1999). God must love galectins; he made so many of them. Glycobiology, 9, 979–984.
- Delsuc, F., Brinkmann, H., Chourrout, D., Philippe, H. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 439, 965–968.
- Earl, L. A., Bi, S., Baum, L. G. (2011). Galectin multimerization and lattice formation are regulated by linker region structure. Glycobiology, 21, 6–12.
- Franchi, N., Schiavon, F., Carletto, M., Gasparini, F., Bertoloni, G., Tosatto, S. C. E., Ballarin, L. (2011). Immune roles of a rhamnose-binding lectin in the colonial ascidian Botryllus schlosseri. Immunobiology, 216, 725–736.
- Liu, F. T., Yang, R. Y., Hsu, D. K. (2012a). Galectins in acute and chronic inflammation. Ann N Y Acad Sci, 1253, 80–91.
- Gabius, H. J. (1997). Animal lectins. Eur J Biochem, 243, 543–576.
- Gabius, H. J. (2008). Glycans: bioactive signals decoded by lectins. Biochem Soc Trans, 36, 1491–1496.
-
Gabius, H. J., Wu, A. M. (2008). Galectins as regulators for tumor growth and invasion by targeting distinct cell surface glycans and implications for drug design. In: A. A. Klyosov, Z. J. Witczak, D. Platt, eds. Galectins. John Wiley & Sons: Hoboken, NJ, pp. 71–86.
10.1002/9780470378076.ch4 Google Scholar
- Garner, O. B., Baum, L. G. (2008). Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans, 36, 1472–1477.
- Green, P., Luty, A., Nair, S., Radford, J., Raftos, D. (2006). A second form of collagenous lectin from the tunicate, Styela plicata. Comp Biochem Physiol, 144B, 343–350.
- Hernandez, J. D., Baum, L. G. (2002). Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiology, 12, 127–136.
- Hirabayashi, J., Kasai, K. (1993). The family of metazoan metal-independent beta-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology, 3, 297–304.
- Hirabayashi, J., Arata, Y., Kasai, K. (2001). Glycome project: concept, strategy and preliminary application to Caenorhabditis elegans. Proteomics, 1, 295–303.
- Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Muller, W. E. G., Yagi, F., Kasai, K. (2002). Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta, 1572, 232–254.
- Houzelstein, D., Gonçalves, I. R., Fadden, A. J., Sidhu, S. S., Cooper, D. N., Drickamer, K., Leffler, H., Poirier, F. (2004). Phylogenetic analysis of the vertebrate galectin family. Mol Biol Evol, 21, 1177–1187.
- Hwang, J. S., Takaku, Y., Momose, T., Adamczyk, P., Özbek, S., Ikeo, K., Khalturin, K., Hemmrich, G., Bosch, T. C., Holstein, T. W., David, C. N., Gojobori, T. (2010). Nematogalectin, a nematocyst protein with GlyXY and galectin domains, demonstrates nematocyte-specific alternative splicing in Hydra. Proc Natl Acad Sci USA, 107, 18539–18544.
- Ji, W. Z., Shang, N., Guo, Q.L. (2009). Molecular cloning of rhamnose-binding gene and its promoter region from snakehead Channa argus. Fish Physiol Biochem, 36, 451–459.
- Jimbo, M., Usui, R., Sakai, R., Muramoto, K., Kamiya, H. (2007). Purification, cloning and characterization of egg lectins from the teleost Tribolodon brandti. Comp Biochem Physiol, 147B, 164–171.
- Kaltner, H., Gabius, H. J. (2012). A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors. Histol Histopathol, 27, 397–416.
- Kaltner, H., Stierstorfer, B. (1998). Animal lectins as cell adhesion molecules. Acta Anat (Basel), 161, 162–179.
- Kawano, T., Sugawara, S., Hosono, M., Tatsuta, T., Ogawa, Y., Fujimura, T., Taka, H., Murayama, K., Nitta, K. (2009). Globotriaosylceramide-expressing Burkitt's lymphoma cells are committed to early apoptotic status by rhamnose-binding lectin from catfish eggs. Biol Pharm Bull, 32, 345–353.
- Kinjo, A., Takahashi, M., Matsushita, M., Endo, Y., Nakata, M., Mizuochi, T., Fujita, T. (2001). Cloning and characterization of novel ficolins from the solitary ascidian, Halocynthia roretzi. J Biol Chem, 276, 19959–19965.
- Kilpatrick, C. D. (2002). Animal lectins: a historical introduction and overview. Biochim Biophys Acta, 1572, 187–197.
-
Klyosov, A. A. (2008). Galectins and their functions in plain language. In: A. A. Klyosov, Z. J. Witczak, D. Platt, eds. Galectins. John Wiley & Sons: Hoboken, NJ, pp. 9–32.
10.1002/9780470378076.ch2 Google Scholar
- Lam, Y. W., Ng, T. B. (2002). Purification and characterization of a rhamnose-binding lectin with immunoenhancing activity from grass carp (Ctenopharyngodon idellus) ovaries. Protein Expres Purif, 26, 378–385.
- Lauzon, R. J., Ishikuza, K. J., Weissman, I. L. (1992). A cyclical, developmentally-regulated death phenomenon in a colonial urochordate. Dev Dyn, 194, 71–83.
- Levroney, E. L., Aguilar, H. C., Fulcher, J. A., Kohatsu, L., Pace, K. E., Pang, M., Gurney, K. B., Baum, L. G., Lee, B. (2005). Novel innate immune functions for galectin-1, galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J Immunol, 175, 413–420.
-
Liu, F. T., Hsu, D. K., Yang, R.-Y., Chen, H.-Y., Saegusa, J. (2008). Galectins in regulation of inflammation and immunity. In: A. A. Klyosov, Z. J. Witczak, D. Platt, eds. Galectins. John Wiley & Sons: Hoboken, NJ, pp. 97–113.
10.1002/9780470378076.ch6 Google Scholar
- Liu, F. T., Yang, R. Y., Hsu, D. K. (2012b). Galectins in acute and chronic inflammation. Ann N Y Acad Sci, 1253, 80–91.
- López, J. A., Fain, M. G., Cadavid, L. F. (2011). The evolution of the immune-type gene family Rhamnospondin in cnidarians. Gene, 473, 119–124
- Loris, R. (2002). Principles of structures of animal and plant lectins. Biochim Biophys Acta, 1572, 198–208.
- Manni, L., Zaniolo, G., Cima, F., Burighel, P., Ballarin, L. (2007). Botryllus schlosseri: a model ascidian for the study of asexual reproduction. Dev Dyn, 236, 335–352.
- Marino, R., Kimura, Y., De Santis, R., Lambris, J. D., Pinto, M. R. (2002). Complement in urochordates: cloning and characterization of two C3-like genes in the ascidian Ciona intestinalis. Immunogenetics, 53, 1055–1064.
- Matsui, T., Ozeki, Y., Suzuki, M., Hino, A., Titani, K. Purification and characterization of two Ca2+-dependent lectins from coelomic plasma of sea cucumber, Stychopus japonicus. J Biochem, 116, 1127–1133.
- Matzinger, P. (2002). The danger model: a renewed sense of self. Science 296, 301–305.
- Menin, A., Ballarin, L. (2008). Immunomodulatory molecules in the compound ascidian Botryllus schlosseri: evidence from conditiooned media. J Invertebr Pathol, 99, 275–280.
- Menin, A., Del Favero, M., Cima, F., Ballarin, L. (2005). Release of phagocytosis-stimulating factor(s) by morula cells in a colonial ascidian. Mar Biol, 148, 225–230.
- Miyazawa, S., Azumi, K., Nonaka, M. (2001).Cloning and characterization of integrin alpha subunits from the solitary ascidian, Halocynthia roretzi. J Immunol, 166, 1710–1715.
- Ng, T. B., Lam, Y. W., Woo, N. Y. (2003). The immunostimulatory activity and stability of grass carp (Ctenopharyngodon idellus) roe lectin. Vet Immunopathol, 94, 105–112.
- Nonaka, M., Azumi, K. (1999). Opsonic complement system of the solitary ascidian, Halocynthia roretzi. Dev Comp Immunol, 23, 421–427.
- Ogawa, T., Watanabe, M., Naganuma, T., Muramoto, K. (2011). Diversified carbohydrate-binding lectins from marine resources. J Amino Acids, 2011, 838914.
- Ozaki, H., Ohwaki, M., Fukuda, T. 1983. Studies on lectins of amago (Onchorhynchus rhodurus) I. Amago ova lectin and its receptor on homologous macrophages. Dev Comp Immunol, 7, 77–87.
- Ozeki, Y., Matsui, T., Suzuki, M., Titani, K. (1991). Amino acid sequence and molecular characterization of a D-galactoside-specific lectin purified from sea urchin (Anthocidaris crassispina) eggs. Biochemistry, 30, 2391–2394.
- Pancer, Z., Diehl-Seifert, B., Rinkevich, B., Müller, W. E. (1997). A novel tunicate (Botryllus schlosseri) putative C-type lectin features an immunoglobulin domain. DNA Cell Biol, 16, 801–806.
- Parrinello, N., Patricolo, E., Canicattì, C. (1984a). Inflammatory-like reaction in the tunic of Ciona intestinalis (Tunicata). Encapsulation and Tissue Injury I. Biol Bull, 167, 229–237.
- Parrinello, N., Patricolo, E., Canicattì, C. (1984b). Inflammatory-like reaction in the tunic of Ciona intestinalis (Tunicata). Encapsulation Tissue Injury II. Biol Bull, 167, 238–250.
- Parrinello, N., Arizza, V., Cammarata, M., Giaramita, F. T., Pergolizzi, M., Vazzana, M., Vizzini, A., Parrinello, D. (2007). Inducible lectins with galectin properties and human IL1alpha epitopes opsonize yeast during the inflammatory response of the ascidian Ciona intestinalis. Cell Tissue Res, 329, 379–390.
- Parrinello, N., Vizzini, A., Arizza, V., Salerno, G., Parrinello, D., Cammarata, M., Giaramita, F. T., Vazzana, M. (2008). Enhanced expression of a cloned and sequenced Ciona intestinalis TNFα-like (CiTNF α) gene during the LPS-induced inflammatory response. Cell Tissue Res, 334, 305–317.
- Parrinello, N., Vizzini, A., Salerno, G., Sanfratello, M. A., Cammarata, M., Arizza, V., Vazzana, M., Parrinello, D. (2010). Inflamed adult pharynx tissues and swimming larva of Ciona intestinalis share CiTNFα-producing cells. Cell Tissue Res, 341, 299–311.
- Parrinello, N. (1995). Humoral and cellular lectins of ascidians. J Mar Biotechnol, 3, 29–34.
- Parrinello, N. (1981). The reaction of Ciona intestinalis L. to subcuticular erythrocyte and protein injection. Dev Comp Immunol, 5, 105–110.
- Parsonage, G., Trebilcock, E., Toscano, M. A., Bianco, G. A., Ilarregui, J. M., Buckley, C. D., Rabinovich, G. A. (2006). Roles of galectins in chronic inflammatory microenvironments. Future Rheumatol, 1, 441–454.
- Paulson, J. C., Blixt, O., Collins, B. E. (2006). Sweet spots in functional glycomics. Nat Chem Biol, 2, 238–248.
- Peddie, C. M., Riches, A. C., Smith, V. J. (1995). Proliferation of undifferentiated blood cells from the solitary ascidian, Ciona intestinalis in vitro. Dev Comp Immunol, 19, 377–387.
- Pinto, M. R., Chinnici, C. M., Kimura, Y., Melillo, D., Marino, R., Spruce, L. A., De Santis, R., Parrinello, N., Lambris, J. D. (2003). CiC3–1 mediated chemotaxis in the deuterostome invertebrate Ciona intestinalis (Urochordata). J Immunol, 171, 5521–5528.
- Quesenberry, M. S., Ahmed, H., Elola, M. T., O'Leary, N., Vasta, G. R. (2003). Diverse lectin repertoires in tunicates mediate broad recognition and effector innate immune responses. Integr Comp Biol, 43, 323–330.
- Rabinovich, G. A., Toscano, M. A. (2009). Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol, 9, 338–352.
- Rabinovich, G. A., Toscano, M. A., Jackson, S. S., Vasta, G. R. (2007). Functions of cell surface galectin-glycoprotein lattices. Curr Opin Struct Biol, 17, 513–520.
- Raftos, D., Green, P., Mahajan, D., Newton, R., Pearce, S., Peters, R., Robbins, J., Nair, S. (2001). Collagenous lectins in tunicates and the proteolytic activation of complement. Adv Exp Med Biol, 484, 229–236.
- Rapoport, E. M., Kurmyshkina, O. V., Bovin, N. V. (2008). Mammalian galectins: structure, carbohydrate specificity, and functions. Biochemistry (Mosc), 73, 393–405.
- Rini, J. M., Lobsanov, Y. D. (1999). New animal lectin structures. Curr Opin Struct Biol, 9, 578–584.
- Rodriguez-Boulan, E., Gonzalez, A. (1999). Glycans in post-Golgi apical targeting: sorting signals or structural props? Trends Cell Biol, 9, 291–294.
-
Sato, S., Rabinovich (2008). Galectins as danger signals in host-pathogen and host-tumor interactions: new members of the growing group of ‘alarmins’? In: A. A. Klyosov, Z. J. Witczak, D. Platt, eds. Galectins. John Wiley & Sons: Hoboken, NJ, pp. 115–145.
10.1002/9780470378076.ch7 Google Scholar
- Schwarz, R. S., Hodes-Villamar, L., Fitzpatrick, K. A., Fain, M. G., Hughes, A. L., Cadavid, L. F. (2007). A gene family of putative immune recognition molecules in the hydroid Hydractinia. Immunogenetics, 59, 233–246.
- Sekine, H., Kenjo, A., Azumi, K., Ohi, G., Takahashi, M., Kasukawa, R., Ichikawa, N., Nakata, M., Mizuochi, T., Matsushita, M., Endo, Y., Fujita, T. (2001). An ancient lectin-dependent complement system in an ascidian: novel lectin isolated from the plasma of the solitary ascidian, Halocynthia roretzi. J Immunol, 167, 4504–4510.
- Sharon, N., Lis, H. (1993). Carbohydrates in cell recognition. Sci Am, 268, 82–89.
-
Sharon, N., Lis, H. (2007). Lectins ( 2nd edition). Springer: Dordrecht, Netherlands.
10.1007/978-1-4020-6953-6 Google Scholar
- Shiina, N., Tateno, H., Ogawa, T., Muramoto, K., Saneyoshi, M., Kamiya, H. (2002). Isolation and characterization of L-rhamnose-binding lectins from chum salmon (Onchorynchus keta) eggs. Fish Sci, 68, 1352–1366.
- Shirai, T., Watanabe, Y., Lee, M., Ogawa, T., Muramoto, K. (2009). Structure of rhamnose-binding lectin CSL3, unique pseudo-tetrameric architecture of a pattern recognition protein. J Mol Biol, 391, 390–403.
- Tasumi, S., Vasta, G. R. (2007). A galectin of unique domain organization from hemocytes of the eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. J Immunol, 179, 3086–3098.
- Tateno, H., Saneyoshi, A., Ogawa, T., Muramoto, K., Kamiya, H., Saneyoshi, M. (1998). Isolation and characterization of rhamnose-binding lectins from eggs of steelhead trout (Onchorynchus mykiss) homologous to low density lipoprotein receptor superfamily. J Biol Chem, 273, 19190–19197.
- Tateno, H., Ogawa, T., Muramoto, K., Kamiya, H., Saneyoshi, M. (2002a). Rhamnose-binding lectins from steelhead trout (Onchorynchus mykiss) eggs recognize bacterial lipopolysaccharides and lipoteichoic acid. Biosci Biotechnol Biochem, 66, 604–612.
- Tateno, H., Ogawa, T., Muramoto, K., Kamiya, H., Saneyoshi, M. (2002b). Distribution and molecular evolution of rhamnose-binding lectins in Salmonidae: isolation and characterization of two lectins from white-spotted charr (Salvelinus leucomaenis) eggs. Biosci Biotechnol Biochem, 66, 1356–1365.
- Teichberg, V. I., Silman, I., Beitsch, D. D., Resheff, G. (1975). A β-D-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci USA, 72, 1383–1387.
- Terada, T., Watanabe, Y., Tateno, H., Naganuma, T., Ogawa, T., Muramoto, K., Kamiya, H. (2007). Structural characterization of a rhamnose binding glycoprotein (lectin) from Spanish mackerel (Scomberomorous niphonius) eggs. Biochim Biophys Acta, 1770, 617–629.
- Terajima, D., Yamada, S., Uchino, R., Ikawa, S., Ikeda, M., Shida, K., Arai, Y., Wang, H. G., Satoh, N., Satake, M. (2003a). Identification and sequence of seventy-nine new transcripts expressed in hemocytes of Ciona intestinalis, three of which may be involved in characteristic cell–cell communication. DNA Res, 10, 203–212.
- Terajima, D., Shida, K., Takada, N., Kasuya, A., Rokhsar, D., Satoh, N., Satake, M., Wang, H. G. (2003b). Identification of candidate genes encoding the core components of the cell death machinery in the Ciona intestinalis genome. Cell Death Differ, 10, 749–753.
- Tsagkogeorga, G., Turon, X., Hopcroft, R. R., Tilak, M. K., Feldstein, T., Shenkar, N., Loya, Y., Huchon, D., Douzery, E. J. P., Delsuc, F. (2009). An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol Biol, 9, 187.
- Tymiak, A. A., Norman, J. A., Bolgar, M., Di Donato, G. C., Lee, H., Parker, W. L., Lo, L. C., Berova, N., Nakanishi, K., Haber, E. (1993). Physicochemical characterization of a ouabain isomer isolated from bovine hypothalamus. Proc Natl Acad Sci USA, 90, 8189–8193.
- Vakonakis, I., Langhenhan, T., Prömel, S., Russ, A., Campbell, I. D. (2008). Solution structure and sugar-binding mechanism of mouse latrophilin-1 RBL: a 7TM receptor-attached lectin-like domain. Structure, 16, 944–953.
- Van der Holst, P. P., Schlaman, H. R., Spaink, H.P. (2001). Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. Curr Opin Struct Biol, 11, 608–616.
- Vasta, G. R. (2012). Galectins as pattern recognition receptors: structure, function, and evolution. Adv Exp Med Biol, 946, 21–36.
- Vasta, G., Jeffrey, C., Hunt, J., Marchalonis, J., Wayne, W. (1986). Fish galactosyl-binding lectins from the tunicate Didemnum candidum: purification and physicochemical characterization. J Biol Chem, 261, 9174–9181.
- Vasta, G. R., Ahmed, H., Fink, N. E., Elola, M. T., Marsh, A. G., Snowden, A., Odom, E. W. (1994). Animal lectins as self/non-self recognition molecules. Biochemical and genetic approaches to understanding their biological roles and evolution. Ann N Y Acad Sci, 712, 55–73
- Vasta, G. R., Ahmed, H., Odom, E. W. (2004). Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermic vertebrates. Curr Opin Struct Biol, 14, 617–630.
- Vasta, G. R., Quesenberry, M., Ahmed, H., O'Leary, N. (1999). C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Dev Comp Immunol, 23, 401–420.
- Vizzini, A., Parrinello, D., Sanfratello, M. A., Salerno, G., Cammarata, M., Parrinello, N. (2012). Inducible galectins are expressed in the inflamed pharynx of the ascidian Ciona intestinalis. Fish Shellfish Immunol, 32, 101–109.
- Vizzini, A., Pergolizzi, M., Vazzana, M., Salerno, G., Di Sano, C., Macaluso, P., Arizza, V., Parrinello, D., Cammarata, M., Parrinello, N. (2008). FACIT collagen (1alpha-chain) is expressed by hemocytes and epidermis during the inflammatory response of the ascidian Ciona intestinalis. Dev Comp Immunol, 32, 682–692.
- Vizzini, A., Arizza, V., Cervello, M., Cammarata, M., Gambino, R., Parrinello, N. (2002). Cloning and expression of a type IX-like collagen in tissues of the ascidian Ciona intestinalis. Biochim Biophys Acta, 1577, 38–44.
- Watanabe, Y., Tateno, H., Nakamura-Tsuruta, S., Kominami, J., Hirabayashi, J., Nakamura, O., Watanabe, T., Kamiya, H., Naganuma, T., Ogawa, T., Naudé, R. J., Muramoto, K. (2009). The function of rhamnose-binding lectin in innate immunity by restricted binding to Gb3. Dev Comp Immunol, 33, 187–197.
- Watkins, W. M., Morgan, W. T. (1952). Neutralization of the anti-H agglutinin in eel serum by simple sugars. Nature, 169, 825–826.
- Yang, R. Y., Rabinovich, G. A., Liu, F. T. (2008). Galectins: structure, function and therapeutic potential. Exp Rev Mol Med, 13, 10–17.