Ability of Diverse Marine Invertebrate Lectins to Regulate Cell Functions
Yasuhiro Ozeki
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Search for more papers by this authorSarkar M. A. Kawsar
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Laboratory of Carbohydrate and Protein Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
Search for more papers by this authorYuki Fujii
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Division of Functional Morphology, Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki, Japan
Search for more papers by this authorYukiko Ogawa
Division of Microbiology, Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki, Japan
Search for more papers by this authorShigeki Sugawara
Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
Search for more papers by this authorImtiaj Hasan
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Department of Biochemistry and Molecular Biology, Faculty of Science, Rajshahi University, Rajshahi, Bangladesh
Search for more papers by this authorYasuhiro Koide
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Search for more papers by this authorHidetaro Yasumitsu
Expert Laboratory for Life Environments, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Search for more papers by this authorRobert A. Kanaly
Laboratory of Environmental Microbiology and Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Search for more papers by this authorYasuhiro Ozeki
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Search for more papers by this authorSarkar M. A. Kawsar
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Laboratory of Carbohydrate and Protein Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
Search for more papers by this authorYuki Fujii
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Division of Functional Morphology, Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki, Japan
Search for more papers by this authorYukiko Ogawa
Division of Microbiology, Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki, Japan
Search for more papers by this authorShigeki Sugawara
Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
Search for more papers by this authorImtiaj Hasan
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Department of Biochemistry and Molecular Biology, Faculty of Science, Rajshahi University, Rajshahi, Bangladesh
Search for more papers by this authorYasuhiro Koide
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Search for more papers by this authorHidetaro Yasumitsu
Expert Laboratory for Life Environments, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Search for more papers by this authorRobert A. Kanaly
Laboratory of Environmental Microbiology and Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Search for more papers by this authorSe-Kwon Kim
Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
Department of Chemistry, Pukyoung National University, Nam-Gu, Busan, Republic of Korea
Search for more papers by this authorSummary
This chapter describes three aspects of marine invertebrate lectins based on glycomic studies of glycan-binding properties. The first section describes a lectin from the feather star, a close relative of the sea lily, as a molecular device to separate somatic and induced pluripotent stem cells (iPS cells). The second and third sections describe two lectins isolated from Mediterranean mussel and catfish eggs that have identical glycan-binding properties but completely different primary structures and different regulatory effects on Burkitt's lymphoma cells.
References
- Alliegro, M. C., Alliegro, M. A. (2007). Echinonectin is a Del-1-like molecule with regulated expression in sea urchin embryos. Gene Expr. Patterns, 7, 651–656.
- Alliegro, M. C., Alliegro, M. A. (1991). The structure and activities of echinonectin: a developmentally regulated cell adhesion glycoprotein with galactose-specific lectin activity. Glycobiology, 1, 253–256.
- Belogortseva, N. I., Molchanova, V. I., Kurika, A. V., Skobun, A. S., Glazkova, V. E. (1998). Isolation of characterization of new GalNAc/Gal-specific lectin from the sea mussel Crenomytilus Grayanus. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 119, 45–50.
- Drickamer, K. (1988). Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem., 263, 9557–9560.
- Eggens, I., Fenderson, B., Toyokuni, T., Dean, B., Stroud, M., Hakomori, S.-I. (1989). Specific interaction between Lex and Lex determinants: a possible basis for cell reognition in preimplantation embryos and in embryonal carcinoma cells. J. Biol. Chem., 264, 9476–9484.
- Espinosa, E. P., Perrigault, M., Allam, B. (2010). Identification and molecular characterization of a mucosal lectin (MeML) from the blue Mytilus edulis and its potential role in parricle capture. Comp. Biochem. Physiol A Biochem. Mol. Biol., 156, 495–501.
- Fujii, Y., Dohmae, N., Takio, K., Kawsar, S. M. A., Matsumoto, R., Hasan, I., Koide, Y., Kanaly, R. A., Yasumitsu, H., Ogawa, Y., Sugawara, S., Hosono, M., Nitta, K., Hamako, J., Matsui, T., Ozeki, Y. (2013) A lectin from the mussel Mytilus galloprovincialis has a highy novel primary structure and induces glycan-mediated cytotoxicity of globotriaosylceramide-expressing lymphoma cells. J Biol Chem., doi: 10.1074/jbc.M112.418012.
- Fujii, Y., Sugawara, S., Araki, D., Kawano, T., Tatsuta, T., Takahashi, K., Kawsar, S. M. A., Matsumoto, R., Kanaly, R. A., Yasumitsu, H., Ozeki, Y., Hosono, M., Miyagi, T., Hakomori, S.-I., Takayanagi, M., Nitta, K. (2012). MRP1 expressedon Burkitt's lymphoma cells was depleted bycatfish egg lectin through Gb3-glycosphingolipid and enhanced cyotoxic effect of drugs. Protein J., 31, 15–26.
- Fujii, Y., Kawsar, S. M., Matsumoto, R., Yasumitsu, H., Ishizaki, N., Dogasaki, C., Hosono, M., Nitta, K., Hamako, J., Taei, M., Ozeki, Y. (2011). A D-galactose-binding lectin purified from coronate moon turban, Turbo (Lunella) coreensis, with a unique amino acid sequence and the ability to recognize lacto-series glycosphingolipids. Comp Biochem Physiol B Biochem Mol Biol., 158, 30–37.
- Fujii, Y., Kawsar, S. M. A., Matsumoto, R., Yasumitsu, H., Kojima, N., Ozeki, Y. (2009). Purification and characterization of a D-galactoside-binding lectin purified from bladder moon shell (Glossaulax didyma Roding). J. Biol. Sci., 9, 319–325.
- Ghazarian, H., Idoni, B., Oppenheimer, S. B. (2011). A glycobiology review: carbohydrates, lectins, and implications in cancer therapeutics. Acta Histochem., 113, 236–247.
- Giga, Y., Ikai A., Takahashi, K. (1987). The complete amino acid sequence of echinoidin, a lectin from the coelomic fluid of the sea urchin Anthocidaris crassispina: homologies with mammalian and insect lectins. J. Biol. Chem., 262, 6197–6203.
- Gokudan, S., Muta, T., Tsuda, R., Koori, K., Kawahar, T., Seki, N., Mizunoe, Y., Iwanaga, S., Kawataba, S. (1999). Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally felated to fibrinogen. Proc. Natl. Acad Sci. USA, 96, 10086–10091.
- Gorbushin, A. M., Iakovleva, N. V. (2011). A new gene family of single fibrinogen domain lectins in Mytilus. Fish Shellfish Immunol., 30, 434–438.
- Gowda, N. M., Goswami, U., Khan, M. I. (2008). T-antigen binding lectin with antibacterial activity from marine invertebrate sea cucumber (Holothuria scabra): possible involvement in differential recognition of bacteria. J. Inverter. Pathol., 99, 141–145.
- Hakomori, S. (2004). Carbohydrate-to-carbohydrate interaction in basic cell biology: a brief overview. Arch. Biochem. Biophys., 426, 173–181.
- Hakomori, S., Handa, K. (2002). Glycosphinogolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: essential basis to define tumor malignancy. FEBS Lett., 531, 88–92.
- Hirabayashi, J., Arata, Y., Kasai, K. (2003). Frontal affinity chromatography as a tool for elucidation of sugar recognition properties of lectins. Methods Enzymol., 362, 353–368.
- Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Müller, W. E. G., Yagi, F., Kasai, K. (2002). Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochem. Biophys. Acta, 1572, 232–254.
- Hosono, M., Ishikawa, K., Mineki, R., Murayama, K., Numata, C., Ogawa, Y., Takayanagi, Y., Nitta, K. (1999). Tandem repeat structure of rhamnose-binding lectin from catfish (Silurus asotus) eggs. Biochem. Biophys. Acta, 1472, 668–675.
- Kakiuchi, M., Okino, N., Sueyoshi, N., Ichinose, S., Omori, A., Kawabata, S., Yamaguchi, K., Ito, M. (2002). Purification, characterization, and cDNA cloning of α-N-acetylgalactosamine-specific lectin from starfish Asterina pectinifera. Glycobiology, 12, 85–94.
- Kasai, K., Hirabayashi, J. (1996). Galectins: a family of animal lectins that decipher glycocodes. J. Biochem. (Tokyo), 119, 1–8.
- Kasai, K., Ishii, S. (1978a). Affinity chromatography of trypsin and related enzymes. V. Basic studies of quantitative affinity chromatography. J. Biochem. (Tokyo), 84, 1051–60.
- Kasai, K., Ishii, S. (1978b). Studies on the interaction of immobilized trypsin and specific ligands by quantitatiove affinity chromatoraphy. J. Biochem. (Tokyo), 84, 1061–1069.
- Kawsar, S. M. A., Matsumoto, R., Fujii, Y., Matsuoka, H., Masuda, N., Iwahara, C., Yasumitsu, H., Kanaly, R. A., Sugawara, S., Hosono, M., Nitta, K., Ishizaki, N., Dogasaki, C., Hamako, J., Matsui, T., Ozeki, Y. (2011). Cytotoxicity and glycan-binding profile of a D-galactose-binding lectin from the eggs of a Japanese sea hare (Aplysia kurodai). Protein J., 30, 509–519.
- Kawsar, S. M. A., Takeuchi, T., Kasai, K.-I., Fujii, Y., Matsumoto, R., Yasumitsu, H., Ozeki, Y. (2009a). Glycan-binding profile of a D-galactose binding lectin purified from the annelid, Perinereis nuntia ver. vallata. Comp. Biochem. Physiol B Biochem. Mol. Biol., 152, 382–389.
- Kawsar, S. M. A., Matsumoto, R., Fujii, Y., Yasumitsu, H., Dogasaki, C., Hosono, M., Nitta, K., Hamako, J., Matsui, T., Kojima, N., Ozeki, Y (2009b). Purification and biochemical characterization of D-galactose binding lectin from Japanese sea hare (Aplysia kurodai) eggs. Biochemistry (Moscow), 74, 709–716.
- Kawsar, S. M. A., Fujii, Y., Matsumoto, R., Ichikawa, T., Tateno, H., Hirabayashi, J., Yasumitusu, H., Dogasaki, C., Hosono, M., Nitta, K., Hamako, J., Matsui, T., Ozeki, Y. (2008). Isolation, purification, characterization and glycan-binding profile of a D-galactoside specific lectin from the marine sponge, Halichondria okadai. Comp. Biochem. Physiol B Biochem. Mol. Biol., 150, 349–357.
- Kinoshita, S., Wang, N., Inoue, H., Maeyama, K., Okamoto, K., Nagai, K., Kondo, H., Hirono, I., Asakawa, S., Watabe, S. (2011). Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster. PLoS One., 6, e21238.
- Kim, Y. M., Park, K. I., Choi, K. S., Alvarez, R. A., Cummings, R. D., Cho, M. (2006). Lectin from the Manila clam Ruditapes philippinarum is induced upon infection with the protozoan parasite Perkinsus olseni. J. Biol. Chem., 281, 26854–64.
- Lee, Y. C. (1992). Biochemistry of carbohydrate-protein interaction. FASEB J., 6, 3193–3200.
- Lelianova, V. G., Davletov, B. A., Sterling, A., Rahman, M. A., Grishin, E. V., Totty, N. F., Ushkaryov, Y. A. (1997). Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J. Biol. Chem., 272, 21504–21508.
- Li, C., Yu, S., Zhao, J., Su, X., Li, T. (2011). Cloning and characterization of a sialic acid binding lectins (SABL) from Manila clam Venerupis philippinarum. Fish Shellfish Immunol., 30, 1202–1206.
- Lingwood, C. A., Manis, A., Mahfou, R., Khan, F., Binnington, B., Mylvaganam, M. (2010). New aspects of the regulation of glycosphingolipid receptor function. Chem. Phys. Lipids., 163, 27–35.
- Liu, Y. Y., Gupta, V., Patwardhan, G. A., Bhinge, K., Zhao, Y., Bao, J., Mehendale, H., Cabot, M. C., Li, Y. T., Jazwinski, S. M. (2010). Suppression of glucosylceramide synthase restores p53-dependent apoptosis in mutant p53 cancer cells. Mol. Cancer, 9, 145.
- Loo, T. W., Bartlett, M. C., Clarke, D. M. (2006). Transmembrane segment 1 of human P-glycoprotein contributes to the drug-binding pocket. Biochem. J., 396, 537–545.
- Loo, T. W., Clarke, D. M. (2008). Mutational analysis of ABC proteins. Arch. Biochem. Biophys., 476, 51–64.
- Matsumoto, R., Fujii, Y., Kawsar, S. M. A., Kanaly, R. A., Yasumitsu, H., Koide, Y., Hasan, I., Iwahara, C., Ogawa, Y., Im, C. H., Sugawara, S., Hosono, M., Nitta, K., Hamako, J., Matsui, T., Ozeki, Y. (2012). Cytotoxicyty and glycan-binding properties of an 18 kDa lectin isolated from the marine sponge Halichondria okadai. Toxins, 4, 323–338.
- Matsumoto, R., Shibata, T. F., Kohtsuka, H., Sekifuji, M., Sugii, N., Nakajima, H., Kojima, N., Fujii, Y., Kawsar, S. M., Yasumitsu, H., Hamako, J., Matsui, T., Ozeki, Y. (2011). Glycomics of a novel type-2 N-acetyllactosamine-specific lectin purified from the feather star, Oxycomanthus japonicus (Pelmatozoa: Crinoidea). Comp. Biochem. Physiol. B Biochem. Mol. Biol., 158, 266–273.
- Mitsunaga, K., Harada-Itadani, J., Shikanai, T., Tateno, H., Ikehara, Y., Hirabayash, J., Narimatsu, H., Angata, T. (2009). Human C21orf3 is a heparin-binding protein. J. Biochem. (Tokyo), 146, 369–373.
- Naganuma, T., Ogawa, T., Hirabayashi, J., Kasai, K., Kamiya, H., Muramoto, K. (2006). Isolation, characterization and molecular evolution of a novel pearl shell lectin from a marine bivalve, Pteria penguin. Mol Divers., 10, 607–18.
- Naismith, J. H., Field, R. A. (1994). Structural basis of trimannnoside recognition by concanavalin A. J. Biol. Chem., 271, 972–976.
- Nakano, H., Nakajima, Y., Amemiya, S. (2009). Nervous system development of two crinoids species, the sea lily Metacrinus rotundus and the feather star Oxycomanthus japonicus. Dev. Genes Evol., 219, 565–576.
- Nitta, K., Kawano, T., Sugawara, S., Hosono, M. (2007). Regulation of globotriaosylceramide (Gb3).- mediated signal transduction by rhamnose-binding lectin. Yakugaku Zasshi, 127, 553–561.
- Ogawa, T., Watanabe, M., Naganuma, T., Muramoto, K. (2011). Diversified carbohydrate-binding lectins from marine resources. Journal of Amino Acids, 2011, ID 838914, doi:10.4061/2011/838914.
- Ozeki, Y., Yokota, Y., Kato, K. H., Titani, K., Matsui, T. (1995). Developmental expression of D-galactose-binding lectin in sea urchin (Anthocidaris crassispina) eggs. Exp. Cell Res., 216, 318–324.
- Ozeki, Y., Matsui, T., Suzuki, M., Titani, K. (1991). Amino acid sequence and molecular characterization of a D-galactroside-specific lectin purified from sea urchin (Anthocidaris crassispina) eggs. Biochemistry, 30, 2391–2394.
- Sasaki, H., Aketa, K. (1981). Purification and distribution of a lectin n sea urchin (Anthocidaris crassispina) egg before and after fertilization. Exp. Cell Res., 135, 15–19.
- Shibata, T. F., Oji, T., Akasaka, K., Agata, K. (2010). Staging of Regeneration process of an arm of the feather star Oxycomanthus japonicus focusing on the oral-aboral boundary. Dev. Dyn., 239, 2947–2961.
- Shibata, T. F., Sato, A., Oji, T., Akasaka, K. (2008). Development and growth of the feather star Oxycomanthus japonicus to sexual maturity. Zoolog. Sci., 25, 1075–1083.
- Steelant, W. F., Kawakami, Y., Ito, A., Handa, K., Bruyneel, E. A., Mareel, M., Hakomori, S. (2002). Monosialyl-Gb5 organized with cSrc and FAK in GEM of human breast carcinoma MCF-7 cells defines their invasive properties. FEBS Lett., 531, 93–98.
- Sugawara, S., Sasaki, S., Ogawa, Y., Hosono, M., Nitta, K. (2004). Catfish (Silurus asotus) lectin enhances the cytotoxic effects of doxorubicin. Yakugaku Zasshi, 125, 327–334.
- Tasumi, S., Vasta, G. R. (2007). A galectin of unique domain organization from hemocytes of the eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. J. Immunol., 179, 3086–3098.
- Tateno, H. (2010). SUEL-related lectins, a lectin family widely distributed through organisms. Biosci. Biotechnol. Biochem., 74, 1141–1144.
- Tateno, H., Saneyoshi, A., Ogawa, T., Muramoto, K., Kamiya, H., Saneyoshi, H. (1998). Isolation and characterization of rhamnose-binding lectins from eggs of steelhead trout (Oncorhynchus mykiss) homologous to lowdensity lipoprotein receptor superfamily. J. Biol. Chem., 273, 19190–19197.
- Tateno, H., Toyota, M., Saito, S., Onuma, Y., Ito, Y., Hiemori, K., Fukumr, M., Matsushima, A., Nakanishi, M., Ohnuma, K., Akutsu, H., Umezawa, A., Horimoto, K., Hirabayashi, J., Asashima, M. (2010a). Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J. Biol. Chem., 286, 20345–20353.
- Tateno, H., Kuno, A., Itakura, Y., Hirabayashi, J. (2010b). A versatile technology for celular glycomics using lectin micoaray. Methods Enzymol., 478, 181–195.
- Vakonakis, I., Langenhan, T., Prömel, S., Russ, A., Campbell, I. D. (2008). Solution structure and sugar-binding mechanism of mouse latrophilin-1 RBL: a 7TM receptor-attached lectin-like domain. Structure, 16, 944–953.
- Venier, P., De Pittà, C., Bernante, F., Varotto, L., De Nardi, B., Bovo, G., Roch, P., Novoa, B., Figueras, A., Pallavicini, A., Lanfranchi, G. (2011a). MytiBase: a knowledgebase of mussel (M. galloprovincialis) transcribed sequences. BMC Genomics, 10, 72.
- Venier, P., Varotto, L., Rosani, U., Millino, C., Celegato, B., Bernante, F., Lanfranchi, G., Novoa, B., Roch, P., Figueras, A., Pallavicini, A. (2011b). Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC Genomics, 12, 69.
- Wada, Y., Azadi, P., Costello, C. E., Dell, A., Dwek, R. A., Geyer, H., Geyer, R., Kakehi, K., Karlsson, N. G., Kato, K., Kawasaki, N., Khoo, K. H., Kim, S., Kondo, A., Lattova, E., Mechref, Y., Miyoshi, E., Nakamura, K., Narimatsu, H., Novotny, M. V., Packer, N. H., Perreault, H., Peter-Katalinic, J., Pohlentz, G., Reinhold, V. N., Rudd, P. M., Suzuki, A., Taniguchi, N. (2007). Comparison of the methods for profiling glycoprotein glycans-HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology, 17, 411–422.
- Weis, W. I., Drickamer, K. (1995). Structural basis of lectin-carbohydrate recognition. Annu. Rev. Biochem., 65, 441–473.
- Wiels, J., Holmes, E. H., Cochran, N., Tursz, T., Hakomori, S. (1984). Enzymatic and organization difference in expression of a Burkitt lymphoma-associated antigen (globotriaosylceramide) in Burkitt lymphoma and lymphoblastoid cell lines. J. Biol. Chem., 259, 14783–14787.
- Wiels, J., Fellous, M., Tursz, T. (1981). Monoclonal antibody against a Burkitt lymphoma-accociated antigen. Proc. Natl. Acad. Sci. USA, 78, 6485–6488.