Digestive Enzymes from Marine Sources
Juan Antonio Noriega Rodríguez
Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Sonora, Mexico
Search for more papers by this authorRamiro Baeza Jiménez
Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Madrid, Spain
Search for more papers by this authorHugo Sergio García
Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Veracruz, Mexico
Search for more papers by this authorJuan Antonio Noriega Rodríguez
Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Sonora, Mexico
Search for more papers by this authorRamiro Baeza Jiménez
Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Madrid, Spain
Search for more papers by this authorHugo Sergio García
Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Veracruz, Mexico
Search for more papers by this authorSe-Kwon Kim
Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
Department of Chemistry, Pukyoung National University, Nam-Gu, Busan, Republic of Korea
Search for more papers by this authorSummary
A marine enzyme may be a unique protein molecule not found in any terrestrial organism, or it may be a known enzyme from a terrestrial source but with novel properties. Major sources of marine enzymes are byproducts produced as a result of fish and shellfish processing, such as the viscera, heads, skin, bones, exoskeletons and shells. This chapter first talks about biodiversity and availability of the marine sources as well as properties of marine catalysts such as salt and pH tolerance, barophilicity, and cold adaptivity. Next, it presents some useful enzymes have already been isolated and applied in the food industry, including digestive proteolytic enzymes such as gastric, serine and cysteine and extremophilic enzymes such as thiol proteases, lipases, polyphenol oxidases (PPOs), chitinolytic enzymes, muscle proteases, transglutaminase. Finally, the chapter lists some food-industry applications of marine enzymes.
References
- Aaen B., Flemming J., Benny J. (1995). Partial purification and characterization of a cellular acidic phospholipase A2 from cod (Gadus morhua) muscle. Comp Biochem Physiol B, 110, 547–554.
- Ackman, R. G., Kean-Howie, J. (1995). Fatty acids in aquaculture: are w–3 fatty acids always important? In: C. Lim, D. J. Sessa, eds. Nutrition and Utilization Technology in Aquaculture. AOCS Press: Champaign, IL, pp. 82–104.
- An, H., Peters, M. Y., Seymour, T. A. (1996). Roles of endogenous enzymes in surimi gelation (Review). Trends Food Sci. Tech, 7, 321–327.
- Aranishi, F., Ogata, H., Hara, K., Osatomi, K., Ishihara, T. (1997). Purification and characterization of cathepsin L from hepatopancreas of carp (Cyprinus carpio). Comp. Biochem. Physiol. B, 118, 531–537.
- Arunchalam, K., Haard, N. F. (1985). Isolation and characterization of pepsin isoenzymes from polar cod (Boreogadus saida). Comp. Biochem. Physiol. B, 80, 467–473.
- Arvanitoyannis, I. S., Kassaveti, A. (2007). Fish industry waste: treatments, environmental impacts, current and potential uses. Int. J. Food Sci. Tech., 43 (4), 726–745.
- Asgeirsson, B., Bjarnason, J. B. (1991). Structural and kinetic properties of chymotrypsin from Atlantic cod (Gadus morhua). Comparison with bovine trypsin. Comp. Biochem. Physiol. B. 9, 327–335.
- Asgeirsson, B., Bjarnason, J. B. (1993). Properties of elastase from Atlantic cod, a cold-adapted proteinase. Biochim Biophys Acta, 1164, 91–100.
- Asgeirsson, B., Leth-Larsen, R., Thorolfsson, M., Nedertoft, M. M., Hojrup, P. (1998). The third serine proteinase with chymotrypsin specificity isolated from Atlantic cod (Gadus morhua) is a type-II elastase. Eur J Biochem, 255, 638–646.
- Ashie, I. N. A., Lanier, T. C. (2000). Transglutaminases in seafood processing. In: N. F. Haard, B. K. Simpson, eds. Seafood enzymes. Marcel Dekker: New York, pp. 147–190.
- Audley, M. A., Shetty K. J., Kinsella, J. E. (1978). Isolation and properties of phospholipase A from pollock muscle. J. Food Sci, 43, 1771–1775.
- Baranowski, E. S., Nip, W. K., Moy, J. H. (1984). Partial characterization of a crude enzyme extract from the freshwater prawn, Macrobrachium rosenbergii. J. Food Sci., 49, 1494–1495 1505.
- Bhatnagar Ira & Kim S. K. (2010). Immense essence of excellence: Marine microbial bioactive compounds. Mar. Drugs, 8, 2673–2701.
- Bell, M. V., Anderson, R. J., Sargent, J. R. (1987). The role of polyunsaturated fatty acids in fish. Comp. Biochem. Physiol. B. 83, 711–719.
- Borlongan, I. G. (1990). Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture, 89: 315–325.
-
Bornscheuer, U. T., Adamczac, M., Soumanou, M. M. (2003). Lipase-catalysed synthesis of modified lipids. In: F. D Gunstone., ed. Lipids for Functional Foods and Nutraceuticals. The Oily Press: Bridgwater, UK, pp. 149–182.
10.1533/9780857097965.149 Google Scholar
- Bougatef, A., Balti, R., Nasri, R., Jellouli, K., Soussi, N., Nasri, M. (2010). Biochemical properties of anionic trypsin acting at high concentration of NaCl purified from the intestine of a carnivorous fish: smooth hound (Mustelus mustelus). J. Agric. Food Chem., 58, 5763–5769.
- Brewer, P., Helbig, N., Haard, N. F. (1984). Atlantic cod pepsin. Characterization and use as a rennet substitute. Can I Food Sc Tech J. 17(1), 38–43.
- Cao, M. J., Osatomi, K., Suzuki, M., Hara, K., Tachibana, K., Ishihara, T. (2000). Purification and characterization of two anionic trypsin from the hepatopancreas of carp. Fisheries Sci. 66, 1172–1179.
-
Caruso, G. Denaro M. G., Genovese L. (2009). Digestive enzymes in some teleost species of interest for mediterranean aquaculture. Open Fish Sci. J., 2, 74–86.
10.2174/1874401X00902010074 Google Scholar
- Castillo-Yáñez F. J., Pacheco-Aguilar R., García-Carreño F. L., Navarrete-Del Toro. M. A., Félix-López M. (2006). Purification and biochemical characterization of chymotrypsin from the viscera of Monterey sardine (Sardinops sagax caeruleus). Food Chem. 99, (2): 252–259.
- Castillo-Yanez, F. J., Pacheco-Aguilar, R. P., Garcia-Carreño, F. L., Toro, M. A. N. D. (2004). Characterization ofacidic proteolytic enzymes from Monterey sardine (Sardinops sagax caerulea) viscera. Food Chem. 85, 343–350.
- Castillo-Yanez, F. J., Pacheco-Aguilar, R. P., Garcia-Carreno, F. L., Toro, M. A. N. D. (2005). Isolation and characterization of trypsin from the pyloric ceca of Monterey sardine Sardinops sagax caerulea. Comp. Biochem. Physiol. B. 140, 91–98.
- Chen, T., Embree, H. D., Brown, E. M., Taylor, M. M., Payne, G. F. (2003). Enzyme-catalyzed gel formation of gelatin and chitosan: Potential for in situ applications. Biomaterials 24, 2831–2841.
- Clark, J., Macdonald, N. L., Stark, J. R. (1985). Metabolism in marine flatfish III. Measurement of elastase activity in the digestive tract of dover sole (Solea solea L.). Comp. Biochem. Physiol. B, 81, 695–700.
- Clark, J., Quayle, K. A., Macdonald, N. L., Stark, J. R. (1988). Metabolism in marine flatfish-V. Chitinolytic activities in dover sole, Solea solea (L.). Comp. Biochem. Physiol. B, 90, 379–384.
- Cohen, T., Gertler, A. (1981). Pancreatic proteolytic enzymes from carp Cyprinus carpio I. Purification and physical properties of trypsin, chymosin, elastase and carboxypeptidase B. Comp. Biochem. Physiol. B, 69, 647–653.
- Cowey, C. B., Sargent J. R. (1979). Bioenergetics and growth. In: W. S. Hoar, D. J. Randall, J. R. Brett, eds. Fish Physiology. New York: Academic Press.
- Danulat, E., Kausch, H. (1984). Chitinase activity in the digestive tract of the cod, Gadus morhua (L.). J. Fish Biol., 24, 125–133.
-
De Vecchi, S., Coppes, Z. L. (1996). Marine fish digestive proteases in food industry and its relevance to the South-West Atlantic region. J. Food Biochem. 10, 193–214.
10.1111/j.1745-4514.1996.tb00551.x Google Scholar
- Debashish, G., Saha, M., Sana, B., Mukherjee J. (2005). Marine Enzymes. Adv. Biochem. Engin. Biotechnol. 96: 189–218.
- Demirjian, D. C. Morís-Varas, F., Cassidy, C. S. (2001). Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5, 144–151.
- Diaz-Lopez, M., Garcia-Carreno, F. L. (2000). Applications of fish and shellfish enzymes. in food and feed products. In: N. F. Haard and B. K. Simpson, eds. Seafood Enzymes. Marcel Dekker: New York, pp. 571–618.
- Eichler, J. (2001). Biotechnological uses of archaeal extremozymes. Biotechnol. Adv. 19, 261–278.
- Fang, R., Lundblad, G., Lind, J., Slettengren, K. (1979). Chitinolytic enzymes in the digestive system of marine fishes. Mar. Biol. 53, 317–321.
- FAO yearbook. (2011). Fishery and Aquaculture Statistics. 2009/FAO annuaire. Statistiques des pêches et de l'aquaculture. 2009/FAO anuario. Estadísticas de pesca y acuicultura. 2009. Rome/Roma, FAO. 2011.
- Flach, J., Pilet, P. E., Jolles, P. (1992). What's new in chitinase research. Experientia, 48, 701–716.
- Geurden, I., Radunz-Neto, J., Bergot, P. (1995). Essentiality of dietary phospholipids for carp (Cyprinus carpio L.) larvae. Aquaculture, 131, 303–314.
- Gildberg, A., Raa, J. (1983). Purification and characterization of pepsins from the Arctic fish capelin (Mallotus villosus). Comp. Biochem. Physiol. A. 75, 337–342.
- Gildberg, A., Overbo, K. (1990). Purification and characterization of pancreatic elastase from Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. B, 97, 775–782.
- Gjellesvik, D. R. (1991). Fatty acid specificity of bile salt-dependent lipase: enzyme recognition and super-substrate effects. Biochim. Biophys. Acta 1086, 167–172.
- Gjellesvik, D. R., Lorens, J. B., and Male, R. (1994). Pancreatic carboxylester lipase from Atlantic salmon (Salmo salar) cDNA sequence and computer-assisted modelling of tertiary structure. Eur. J. Biochem., 226, 603–612.
- Gjellesvik, D. R., Lombardo, D., Walther, B. T. (1992). Pancreatic bile salt dependent lipase from cod (Gadus morhua): purification and properties. Biochim. Biophys. Acta B., 1124, 123–134.
- Gudmundsdottir, A., Palsdottir, H. M. (2005). Atlantic cod trypsins: From basic research to practical applications. Mar. Biotechnol. 7, 77–88.
-
Haard, N. F., Simpson, B. K. (1994). Proteases from aquatic organisms and their uses in the seafood industry. In: A. M. Martin, ed. Fisheries processing: biotechnological applications. Chapman & Hall: London, pp. 132–154.
10.1007/978-1-4615-5303-8_6 Google Scholar
-
Haard, N. F. (1994). Protein hydrolysis in seafoods. In: Shahidi, F. and J. R. Botta, eds. Seafood Chemistry. Processing Techonology and Quality. Chapman & Hall: New York, pp. 10–33.
10.1007/978-1-4615-2181-5_3 Google Scholar
- Halldorsson, A., Kristinsson, B. and Haraldsson, G. G. (2004). Lipase selectivity toward fatty acids commonly found in fish oil. Eur. J. Lipid Sci. Tech., 106, 79–87.
- Heu, M. S., Kim, H. R., Pyeun, J. H. (1995). Comparison of trypsin and chymotrypsin from the viscera of anchovy (Engraulis japonica). Comp. Biochem. Physiol. B, 112, 557–567.
-
Hou, C. T. (2002). Industrial uses of lipase. In: T. M. Kuo, Gardner, H. W, eds. Lipid Biotechnology. Marcel Decker: New York, pp. 387–397.
10.1201/9780203908198.ch18 Google Scholar
- Iijima, N., Chosa, S., Uematsu, M., Goto, T., Hoshita, T., and Kayama, M. (1997). Purification and characterization of phospholipase A2 from the pyloric caeca of red sea bream Pagrus major. Fish Physiol. Biochem, 16, 487–498.
- Iijima, N., Tanaka, S., Ota Y. (1998). Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiol Biochem, 18, 59–69.
- Itabashi, Y., Ota, T. (1994). Lipase activity in scallop hepatopancreas. Fish Sci, 60, 347.
- Jensen, G. L. Daggi, B., Bensadoun A. 1982. Triacylglycerol lipase, monoacylglycerol lipase and phospholipase activities of highly purified rat hepatic lipase. Biochim. Biophys. Acta, 710, 464–470.
- Kawamura, Y., Nishimura, K., Matoba, T., Yonezawa, D. (1984). Effects of protease inhibitors on the autolysis and protease activities of Antarctic krill. Agr. Biol. Chem., 48, 923–930.
- Klomklao, S. 2008. Digestive proteinases from marine organisms and their applications. Songklanakarin J. Sci. Technol, 30 (1), 37–46.
- Klomklao, S., Benjakul, S., Visessanguan, W. (2004). Comparative studies on proteolytic activity of spleen extracts from three tuna species commonly used in Thailand. J. Food Biochem. 28, 355–372.
- Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., Simpson, B. K. (2007). Purification and characterization of trypsins from the spleen of skipjack tuna (Katsuwonus pelamis). Food Chem. 100, 1580–1589.
- Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., Simpson, B. K. (2006a). Purification and characterization of trypsin from the spleen of tongol tuna (Thunnus tonggol). J Agric Food Chem. 54, 5617–5622.
- Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., Simpson, B. K., Saeki, H. (2006b). Trypsins from yellowfin tuna (Thunnus albacores) spleen: Purification and characterization. Comp. Biochem. Physiol. B. 144, 47–56.
-
Koga, D., Mitsutomi, M., Kono, M., Matsumiya, M. (1999). Biochemistry of chitinases. In: P. Jolles, R. A. A. Muzzarelli, eds. Chitin and chitinases. Birkhauser Verlag: Basel, Switzerland, pp. 111–135.
10.1007/978-3-0348-8757-1_8 Google Scholar
- Koven W. M., Henderson R. J., Sargent J. R. (1994). Lipid digestion in turbot (Scophthalmus maximus). II: Lipolysis in vitro of 14C-labelled triacylglycerol, cholesterol ester and phosphatidylcholine by digesta from different segments of the digestive tract. Fish Physiol. Biochem., 13, 275–283.
- Kristinsson, H. G., Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Crit. Rev. Food Sci., 40, 43–81.
- Kristjansson, M. M., Gudmundsdottir, S., Fox, J. W., Bjarnason, J. B. (1995). Characterization of collagenolytic serine proreinase from the Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. B., 110, 707–717.
- Kumazawa, Y., Nakanishi, K., Yasueda, H., Motoki, M. (1996). Purification and characterization of transglutaminase from walleye pollock liver. Fisheries Sci., 62, 959–964.
- Kumazawa, Y., Numazawa, T., Seguro, K., Motoki, M. (1995). Suppression of surimi gel setting by transglutaminase inhibitors. J. Food Sci., 60, 715–717.
- Lee, H. G., Lanier, L. C., Hamann, D. D., Knopp, J. A. (1997). Transglutaminase effects on low temperature gellation of fish protein sols. J. Food Sci., 62, 20–24.
- Leger, C. (1985). Digestion, absorption, and transport of lipids. In: C. V. Cowey, A. M. Mackie, J. G. Bell, eds. Nutrition and Feeding in Fish. London: Academic Press, pp 229–231.
- Leger, C., Bauchart, D., Flanzy, J. (1977). Some properties of pancreatic lipase in Salmo gairdnerii Rich.: Effects of bile salts and Ca+2, gel filtration. Comp Biochem Physiol. B. 57, 359–363.
- Lie, O., Lambertsen, G. (1985). Digestive lipolytic enzymes in cod (Gadus morhua): fatty acid specificity. Comp. Biochem. Physiol. B, 80, 447–450.
- Lie O., Lied E., Lambersten G. (1987). Lipid digestion in cod (Gadus morhua). Comp Biochem Physiol A, 98, 159–163.
- Lindsay, G. J. H. (1984). Distribution and function of digestive tract chitinolytic enzymes in fish. J. Fish. Biol., 24, 529–536.
- Lyberg, A. M., Adlercreutz, D., Adlercreutz, P. (2005). Enzymatic and chemical synthesis of phosphatidylcoline regioisomers containing eicosapentaenoic acid or docosahexaenoic acid. Eur. J. Lipid Sci. Tech., 107, 279–290.
- Marhuenda-Egea, F. C., Bonete, M. J. (2002). Extreme halophilic enzymes in organic solvents. Curr. Opin. Biotechnol., 13, 385–389.
- Mihalyi, E. (1978). Application of proteolytic enzymes to protein structure studies. CRC Press, Boca Raton, Florida, U. S. A.
- Mukundan, M. K., Gopakumar, K., Nair, M. R. (1986). Purification of a lipase from the hepatopancreas of oil sardine (Sardinella longiceps Linnaceus) and its characteristics and properties. J Sci Food Agric., 36, 191–203.
- Murado M. A, González M. P., Vázquez, J. A. (2009). Recovery of proteolytic and collagenolytic activities from viscera by-products of rayfish (Raja clavata). Mar. Drugs, 7, 803–815.
- Muruyama, N., Nozawa, H., Kimura, I., Satake, M., Seki, N. (1995). Transglutaminase induced polymerization of a mixture of differentfishmyosins. Fisheries Sci., 61, 495–500.
- Nakahara, C., Nozawa, H., Seki, N. (1999). A comparison of cross-linking of fish myofibrillar proteins by endogenous and microbial transglutaminases. Fisheries Sci, 65, 138–144.
- Neas, N. P & Hazel, J. R. (1985). Partial purification and kinetic characterization of the microsomal phospholipase A2 from thermally acclimated rainbow trout (Salmo gairdneri). J. Comp. Physiol. B, 155, 461–469.
- Noda, M., Murakami, K. (1981). Studies on proteinases from the digestive organs of sardine. I. Purification and characterization of two acid proteinases from the stomach. Biochim. Biophys. Acta B, 65, 27–34.
- Noriega-Rodríguez J. A, Gámez-Meza N., Alanis-Villa A., Medina-Juárez L. A, Angulo-Guerrero, O., García, H. S. (2009). Extraction and Fractionation of Lipolytic Enzyme from Viscera of Monterey Sardine (Sardinops sagax caerulea). Int. J. Food Sci. Tech., 44: 1223–1228.
- Nozawa, H., Mamegoshi, S., Seki, N. (1997). Partial purification and characterization of six transglutaminases from ordinary muscles of various fishes and marine invertebrates. Comp. Biochem. Physiol. B, 118, 313–317.
- Okada, T., Morrissey, M. T. (2007). Marine enzymes from seafood by-products. In: F Shahidi., ed. Maximising the Value of Marine Byproducts. CRC Press: Boca Raton, FL and Woodhead Publishing Limited: Cambridge, UK, pp. 374–396.
- Ono H & Iijima, N. (1998). Purification and characterization of phospholipase A2 isoforms from the hepatopancreas of red sea bream, Pagrus major. Fish Physiol. Biochem. 18, 135–147.
-
Oshima, T. (1996). By-products and seafood production in Japan. J. Aquat. Food Prod. Tech., 5(4), 27–42.
10.1300/J030v05n04_04 Google Scholar
- Pangkey, H., Hara, K., Tachibana, K., Cao, M. J., Osatomi, K., Ishihara, T. 2000. Purification and characterization of cathepsin S from hepatopancreas of carp Cyprinus carpio. Fish. Sci, 66, 1130–1137.
- Patton, J. S., Warner, T. G., Benson, A. A. (1977). Partial characterization of the bile salt-dependent triacylglycerol lipase from the leopard shark pancreas. Biochim Biophys Acta, 486, 322–330.
- Quillaguamán, J., Guzmán, H., Van-Thuoc, D., Hatti-Kaul, R. (2010). Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl. Microbiol. Biotechnol., 85, 1687–1696.
- Raa, J. (1990). Biotechnology in aquaculture and the fish processing industry: a success story in Norway. In: M. N. Voigt, J. R Botta., eds. Advances in fisheries technology for increased profitability. Technomic Publication Company: Lancaster, PA, pp. 509–524.
- Raa, J. (1997). New commercial products from waste of the fish processing industry. In: Bremner, A. C. Davis, B. Austin, eds. Making the Most of the Catch. Proceedings of the Seafood Symposium, AUSEAS, Brisbane, Australia, pp. 33–36.
- Raa, J., Walther, B. T. (1989). Purification and characterization of chymotrypsin, trypsin and elastase like proteinases from cod (Gadus morhua L.). Comp. Biochem. Physiol. B, 93, 317–324.
- Raksakulthai, R., Haard, N. F. (2001). Purification and characterization of a carboxypeptidase from squid hepatopancreas (Illex illecebrosus). J. Agric. Food Chem. 49, 5019–5030.
- Raso, B. A., Hultin, H. O. (1988) . A comparison of dogfish and porcine pancreatic lipase. Comp Biochem Physiol B, 89, 671–677.
- Reece, P. (1988). Recovery of proteases from fish waste. Process Biochem., 6, 62–66.
- Rosalee, S., Rasmussen, R. S., Morrissey, M. T. (2007). Marine biotechnology for production of food ingredients. In Advances in food and nutrition research vol 52. Elsevier Inc. Pp 237–292.
- Rossano R., Larocca M., Riccio, P. (2011). Digestive Enzymes of the Crustaceans Munida and Their Application in Cheese Manufacturing: A Review. Mar. Drugs, 9, 1220–1231.
- Salem, H., Youssef, A. M., El-Nakkadi, A. M. N., Bekheti, M. (1970). Proteolytic decomposition of shellfish muscle proteins under different conditions. Alexandria J. Agric. Res., 18, 61–66.
- Sanchez-Chiang, L., Ponce, O. (1981). Gastricsinogens and Gastricsins from Merluccius gayi-purification and properties. Comp. Biochem. Physiol. B, 68, 251–257.
- Sanchez-Chiang, L., Cisternas, E., Ponce, O. (1987). Partial purification of pepsins from adult and juvenile salmon fish (Oncorrhynchus keta). Effect on NaCl on proteolytic activities. Comp. Biochem. Physiol. B, 87, 793–797.
- Sappasith, K. (2008). Digestive proteinases from marine organisms and their applications. Songklanakarin J. Sci. Technol., 30 (1), 37–46.
- Seki, N., Uno, H., Lee, N. H., Kimura, I., Toyoda, K., Fujita, T., Arai, K. (1990). Transglutaminase activity in Alaska pllock muscle and its reaction with myosin B. Nippon Suisan Gakkaishi, 56, 125–132.
- Senanayake, S. P. J. N., Shahidi, F. (2002). Structured lipids via lipase-catalyzed incorporation of eicosapentaenoic acid into borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils. J. Agr. Food Chem., 50: 477–483.
- Shahidi, F. (1994). Proteins from seafood processing discards. In: Z. E. Sikorski, B. S. Pan, & F. Shahidi, eds. Seafoods Proteins. Chapman & Hall: New York, pp. 171–193.
- Shahidi, F., Janak Kamil, Y. V. A. (2001). Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci. Tech. 12, 435–464.
- Shahidi, F., Abuzaytoun, R. (2005). Chitin, chitosan, and co-products: Chemistry, production, applications, and health eVects. Adv. Food Nutr. Res. 49, 93–135.
- Shahidi, F., Janak Kamil, Y. V. A., Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends Food Sci Tech., 10, 37–51.
- Shahidi, F., Wanasundara, U. N. (1998). Omega–3 fattyacid concentrates: nutritional aspects and production technologies. Trends Food Sci Tech, 9, 230–240.
- Shamsuzzaman, K., Haard, N. F. (1984). Purification and char- acterization of a chymosin-like protease from gastric mucosa of harp seal (Paophilus groenlandicus). Can. J. Biochem. Cell B., 62, 699–708.
- Shotton, D. M. (1970). In: S. P. Colowik, N. O Kaplan., eds. Methods in Enzymology. Academic Press: New York, pp. 113–140.
- Simpson, B. K. (2000). Digestive proteinases from marine animals. In: N. F. Haard, B. K. Simpson, eds. Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality. Marcel Dekker: New York, pp. 531–540.
- Simpson, B. K., Haard, N. F. (1987). Trypsin and trypsin-like enzyme from the stomachless cunner. Catalytic and other physical characteristics. J. Agr. Food Chem., 35, 652–656.
- Sivakumar, P., Sampath, P., Chandrakasan, G. (1999). Collagenolytic metalloprotease (gelatinase) from the hepatopancreas of the marine carb, Scylla serrata. Comp. Biochem. Physiol. B 123, 273–279.
-
Takahashi, K., Fukunaga, K. (2008). Conversion of fisheries by-products and waste into value-added products-Attempts undergoing in Hokkaido, Japan. In: C. T. Hou, J.-F Shaw., eds. Biocatalysis and Bioenergy. John Wiley & Sons: Hoboken, NJ, pp. 417–430.
10.1002/9780470385869.ch23 Google Scholar
- Tocher, D. R., Sargent, J. R. (1984). Studies of Triacylglycerol, Wax Ester and Sterol Ester Hydrolases in Intestinal Caeca of Rainbow Trout (Salmo gairdneri) Fed Diet Rich in Triacylglycerols and Wax Esters. Comp Biochem Physiol. B, 77, 561–571.
- Trincone, A. (2010). Potential biocatalysts originating from sea environments. J. Mol. Catal. B Enzym., 66, 241–256.
- Trincone, A. (2011). Marine biocatalysts: enzymatic features and applications. Mar. Drugs, 9, 478–499
- Venugopal, V., Shahidi, F. (1995). Value-added products from underutilized fish species. Crit. Rev. Food Sci., 35, 431–453.
- Venugopal, V., Lakshmanan, R., Doke, S. N., Bongirwar, D. R. (2000). Enzymes in fish processing, biosensors and quality control. Food Biotech., 14, 21–27.
- Whitaker, J. R. (1994). Classification and nomenclature of enzymes. In: Principles of Enzymology for the Food Sciences. Marcel Dekker: New York, pp. 367–385.
- Whitaker, J. R. (1996). Enzymes. In: O. R. Fennema, ed. Food Chemistry. Marcel Dekker: New York, pp. 431–530.
- Xu, R. A., Wong, M. L., Rogers, M. L., Fletcher, G. C. (1996). Purification and characterization of acidic proteases from the stomach of the deep water finfish orange roughy (Hoplostethus atlanticus). J. Food Biochem., 20, 31–48.
- Yasueda, H., Kumazawa, Y., Motoki, M. (1994). Purification and characterization of a tissue-type transglutaminase from red sea bream (Pagrus major). Biochim Biophys, 58, 2041–2045.
- Yoshinaka, R., Sato, M., Tanaka, M., Ikeda, S. (1985). Distribution of pancreatic elastase and metalloproteins in several species of fish. Comp. Biochem. Physiol. B, 80, 227–233.
- Zambonino Infante J. L., Cahu, C. L. (2007). Dietary modulation of some digestive enzymes and Metabolic processes in developing marine fish: Applications to diet formulation. Aquaculture, 268, 98–105.
- Zeef, A. H., Dennison, C. (1988). A novel cathepsin from the mussel (Perna perna Linne). Comp. Biochem. Physiol. B, 90, 204–210.
- Zefirova, O. N., Mamaeva, A. V., Chupov, V. V., Valuev, L. I., Plate, N. A. (1996). Synthesis and properties of immobilized collagenolytic protease from hepatopancreas of the king crab Paralithoides camtschatica. Appl Biochem Micro, 32, 461–464.