Fish-elastin Hydrolysate: Development and Impact on the Skin and Blood Vessels
Yasutaka Shigemura
Department of Nutrition, Faculty of Domestic Science, Tokyo Kasei University, Tokyo, Japan
Search for more papers by this authorKenji Sato
Division of Applied Life Sciences, Graduate School of Life and Environment Sciences, Kyoto Prefectural University, Kyoto, Japan
Search for more papers by this authorYasutaka Shigemura
Department of Nutrition, Faculty of Domestic Science, Tokyo Kasei University, Tokyo, Japan
Search for more papers by this authorKenji Sato
Division of Applied Life Sciences, Graduate School of Life and Environment Sciences, Kyoto Prefectural University, Kyoto, Japan
Search for more papers by this authorSe-Kwon Kim
Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
Department of Chemistry, Pukyoung National University, Nam-Gu, Busan, Republic of Korea
Search for more papers by this authorSummary
This chapter introduces the development of enzymatic hydrolysate of fish elastin and also discusses its underlying mechanism. The skipjack bulbus arteriosus has been used for the production of elastin hydrolysate, due to the availability and abundance of resource. The chapter explains the impact of ingestion of the elastin hydrolysate in the skin and blood vessels. To explore the mechanism underlying the beneficial effects of skipjack-elastin hydrolysate, a food-derived elastin peptide in the human blood was screened. Consequently, Pro-Gly was identified. Pro-Gly enhances synthesis of elastin by human dermal fibroblast and the growth of human umbilical-vein endothelial cells. The results of the human trials and the occurrence of food-derived elastin peptide with biological activities in human blood indicate that fish-elastin hydrolysate is a promising food ingredient for improving skin and blood-vessel conditions.
References
- Brown-Augsburger, P., Broekelmann, T., Rosenbloom, J., Mecham, R. P. (1996). Functional domains on elastin and microfibril -associated glycoprotein involved in elastic fibre assembly. Biochem. J., 318, 149–155.
- Foltz, M., Meynen, E. E., Bianco, V., Platerink, C. van, Koning, T. M. M. G., Kloek, J. (2007). Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J. Nutr., 137, 953–958.
-
Hayakawa, T., Sato, M., Saiga-Egusa, A., Takahata, Y., Morimatsu, F., Nomura, Y. (2009). Effect of porcine arterial elastin peptide to the moisture content of mice skin. Nihon Chikusan Gakkaiho, 80, 215–222.
10.2508/chikusan.80.215 Google Scholar
- He, D., Chung, M., Chan, E., Alleyne, T., Ha, K. C., Miao, M., Stahl, R. J., Keeley, F. W., Parkinson, J. (2007). Comparative genomics of elastin: sequence analysis of a highly repetitive protein. Matrix Biol., 26, 524–540.
- Hinek, A., Wrenn, D. S., Mecham, R. P., Barondes, S. H. (1988). The elastin receptor: a galactoside-binding protein. Science, 239, 1539–1541.
- Hinek, A., Boyle, J., Rabinovitch, M. (1992). Vascular smooth muscle cell detachment from elastin and migration through elastic laminae is promoted by chondroitin sulfate-induced ‘shedding’ of the 67-kDa cell surface elastin binding protein. Exp. Cell. Res., 203, 344–353.
- Hirai, M., Ohbayashi, T., Horiguchi, M., Okawa, K., Hagiwara, A., Chien, K. R., Kita, T., Nakamura, T. (2007). Fibulin–5/DANCE has an elastogenic organizer activity that is abrogated by proteolytic cleavage in vivo. J. Cell Biol., 176, 1061–1071.
- Ichikawa, S., Morifuji, M., Ohara, H., Matsumoto, H., Takeuchi, Y., Sato, K. (2010). Hydroxyproline-containing dipeptides and tripeptides quantified at high concentration in human blood after oral administration of gelatin hydrolysate. Int. J. Food Sci. Nutri., 61, 52–60.
- Iwai, K., Hasegawa, T., Taguchi, Y., Morimatsu, F., Sato, K., Nakamura, Y., Higashi, A., Kido, Y., Nakabo, Y., Ohtsuki, K. (2005). Identification of food-derived peptides in human blood after oral ingetion of gelatin hydrolysates. J. Agric. Food Chem., 53, 6531–6536.
- Lansing, A.I., Rosenthal, R.B., Alex, M., Dempsey, E. W. (1952). The structure and chemical characterization of elastic fiber as revealed by elastase and by electron microscopy. Anat. Rec., 114, 555–575.
- Li, D. Y., Faury G., Taylor, D. G., Davis, E. C., Boyle, W. A., Mecham, R. P., Stenzel, P., Boak, B., Keating, M. T. (1998). Novel arterial pathology in mice and humans hemizygous for elastin. J. Clin. Invest., 102, 1783–1787.
- Lowry, O. H., Gilligan, D. R., Katersky, E. M. (1941). The determination of collagen and elastin in tissues, with results obtained in various normal tissues from different species. J. Biol. Chem., 139, 795–804.
- Matsui, T., Tamaya, K., Seki, E., Osajima, K., Matsumo, K., Kawasaki, T. (2002). Absorption of Val-Tyr with in vitro angiotensin I-converting enzyme inhibitory activity into the circulating blood system of mild hypertensive subjects. Biol. Pharm. Bull., 25, 1228–1230.
- Matsumoto, H., Ohara, H., Itoh, K., Nakamura, Y., Takahashi, S. (2006). Clinical effect of fish type I collagen hydrolysate on skin properties. ITE Letters, 7, 386–390.
- Mecham, R. P., Whitehouse, L., Hay, M., Hinek, A., Sheetz, M. P. (1991). Ligand affinity of the 67-kD elastin/laminin binding protein is modulated by the protein's lectin domain: visualization of elastin/laminin-receptor complexes with gold-tagged ligands. J. Cell. Biol.., 113, 187–194.
- Miao, M., Bruce, A. E., Bhanji, T., Davis, E. C., Keeley, F. W. (2007). Differential expression of two tropoelastin genes in zebrafish. Matrix Biol., 26, 115–124.
- Midwood, K. S., Schwarzbauer, J. E. (2002). Elastic Fibers: building bridges between cells and their matrix. Current Biology, 12, 279–281.
- Mithieux, S. M., Weiss, A. S. (2005). Elastin. Adv. Protein Chem., 70, 437–461.
- Nakaba, M. (2009). Safety evaluation of elastin peptide derived from bulbus arteriosus in skipjack (Katsuwonus pelamis). Pharmacometrics, 77, 115–117.
- Nakaba, M., Ogawa, K., Seiki, M., Kunimoto, M. (2006). Properties of soluble elastin peptide from bulbus arteriosus in fish species. Fisheries Science, 72, 1322–1324.
- Nakaba, M., Koikeda, T., Saito, Y. (2007). Investigation of availability for human skin by ingestion of supplement including skipjack elastin hydrolysate. J. New Rem. & Clin., 56, 109–115.
- Narayanan, A. S., Page, R. C., Kuzan, F., Cooper, C. G. (1978). Elastin cross-linking in vitro: studies on factors influencing the formation of desmosines by lysyl oxidase action on tropoelastin. Biochem. J., 173, 857–862.
- Ohara, H., Matsumoto, H., Itoh, K., Iwai, K., Sato, K. (2007). Comparison of quantity and structures of hydroxyproline-containing peptides in human blood after oral ingestion of gelatin hydrolysates from different sources. J. Agric. Food Chem., 55, 1532–1535.
- Ohara, H., Ichikawa, S., Matsumoto, H., Akiyama, M., Fujimoto, N., Kobayashi, T. (2010). Collagen-derived dipeptide, proline-hydroxyproline, stimulates cell proliferation and hyaluronic acid synthesis in cultured human dermal fibroblasts. J. Dermatol., 37, 330–338.
- Richards, A. N., Gies, W. J. (1902). Chemical studies of elastin, mucoid, and other proteins in elastic tissue, with some notes on ligament extractives. Amer. J. Physiol., 7, 93.
- Sage, H., Gray, W. R. (1979). Studies on the evolution of elastin-I: phylogenetic distribution. Comp. Biochem. Physiol. B., 64, 313–327.
- Sandberg, L. B., Weissman, N., Smith, D. W. (1969). The purification and partial characterization of a soluble elastin-like protein from copper-deficient porcine aorta. Biochemistry, 8, 2940–2945.
- Schauss, A. G., Stenehjem, J., Park, J., Endres, J. R., Clewell, A. (2012). Effect of the novel low molecular weight hydrolyzed chicken sternal cartilage extract, BioCell collagen, on improving osteoarthritis-related symptoms: a randomized, double-blind, placebo-controlled trial. J. Agric. Food Chem., 60, 4096–4101.
- Shigemura, Y., Iwai, K., Morimatsu, F., Iwamoto, T., Mori, T., Oda, C. Taira, T., Park, E. Y., Nakamura, Y., Sato, K. (2009). Effect of prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. J. Agric. Food Chem., 57, 444–449.
- Shigemura, Y., Akaba, S., Kawashima, E., Park E.-Y. Nakamura, Y., Sato, K. (2011). Identification of a novel food-derived collagen peptide, hydroxyprolyl-glycine, in human peripheral blood by pre-column derivatisation with phenyl isothiocyanate. Food Chemistry, 129, 1019–1024.
- Shigemura, Y., Nakaba, M., Shiratsuchi, E., Suyama, M., Yamada, M., Kiyono, T., Fukamizu, K., Park, E. Y., Nakamura, Y., Sato, K. (2012). Identification of food-derived elastin peptide, prolyl-glycine (Pro-Gly), in human blood after ingestion of elastin hydrolysate. J. Agric. Food Chem., 60, 5128–5133.
- Shinohara, A., Kaname, Y., Matsuda, M. (2005). Influence of the smoking on blood circulation: evaluation of arteriosclerosis based on the pulse wave analysis. Ningen Dock, 20, 511–517.
- Shiratsuchi, E. (2012). Effect on human skin, blood flow and blood vessel by ingestion of skipjack elastin hydrolysate. J. Jpn. Soc. Food Eng., 32(2), 28–37.
- Smith, D. W., Brown, D. M., Carnes, W. H. (1972). Preparation and properties of salt-soluble elastin. J. Biol. Chem., 247, 2427–2432.
- Starcher, B. C., Galione, M. J. (1976). Purification and comparison of elastins from different animal species. Anal. Biochem., 74, 441–447.
- Suruga, E., Yajima, T., Irie, K. (2004). Induction of fibulin–5 gene is regulated by tropoelastin gene, and correlated with tropoelastin accumulation in vitro. Int. J. Biochem. Cell., 36, 395–400.
-
Takada, H., Okino, K. (2004). Risk evaluation for arteriosclerosis by using ‘vascular aging score’ of the acceleration plethysmography: 10-year retrospective cohort study. Health Eval. Promot., 31, 374–380.
10.7143/jhep.31.374 Google Scholar
- Takase, T., Shimizu, K., Yugi, M., Yasuda, H., Maruya, R., Saito, Y., Koikeda, T., Yazawa, K. (2011). Clinical efficacy of collagen peptides containing supplement in skin. Igaku To Yakugaku, 65, 563–573.
- Trask, T. M., Trask, B. C., Ritty, T. M., Abrams, W. R., Rosenbloom, J., Mecham, R. P. (2000). Interaction of tropoelastin with the amino-terminal domains of fibrillin–1 and fibrillin–2 suggests a role for the fibrillins in elastic fiber assembly. J. Biol. Chem., 275, 24400–24406.
- Vrhovski, B., Weiss, A. S. (1998). Biochemistry of tropoelastn. Eur. J. Biochem., 258, 1–18.