History of Research on the AHR
Thomas A. Gasiewicz
Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
Search for more papers by this authorEllen C. Henry
Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
Search for more papers by this authorThomas A. Gasiewicz
Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
Search for more papers by this authorEllen C. Henry
Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
Search for more papers by this authorRaimo Pohjanvirta
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
A Hypothesis is Conceived, and Genetically Defined Growth and Expansion of the Hypothesis Leads to the Identification of the Ah Locus
-
A Focus on Public Health Leads to the Identification of The Ah Receptor
-
The 1980s: Growth and Maturation of the Paradigm
-
Details, Details
-
Let us not Forget the Toxicology
-
Recognizing the Importance of Regulating AHR Presence and Activity
-
Ahre-Dependent Versus Ahreindependent Pathways
-
The Physiological Role is Still Elusive
-
Summary and Future of AHR Research
-
References
REFERENCES
- Poland, A., Glover, E., and Kende, A. S. (1976). Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Journal of Biological Chemistry, 251, 4936–4946.
- Bradshaw, T. D. and Bell, D. R. (2009). Relevance of the aryl hydrocarbon receptor (AhR) for clinical toxicology. Clinical Toxicology, 47, 632–642.
- Knerr, S. and Schrenk, D. (2006). Carcinogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in experimental models. Molecular Nutrition & Food Research, 50, 897–907.
- Pohjanvirta, R. and Tuomisto, J. (1994). Short-term toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in laboratory animals: effects, mechanisms, and animal models. Pharmacological Reviews, 46, 483–549.
-
Schecter, A. and Gasiewicz, T. A. (2003). Dioxins and Health. Wiley, New York.
10.1002/0471722014 Google Scholar
- White, S. S. and Birnbaum, L. S. (2009). An overview of the effects of dioxins and dioxin-like compounds on vertebrates, as documented in human and ecological epidemiology. Journal of Environmental Science and Health, Part C, 27, 197–211.
- Okey, A. B. (2007). An aryl hydrocarbon receptor odyssey to the shores of toxicology: the Deichmann Lecture, International Congress of Toxicology – XI. Toxicological Sciences, 98, 5–38.
- Richardson, H. L., Stier, A. R., and Borsos-Natch-Nebel, E. (1952). Liver tumor inhibition and adrenal histologic responses in rats to which 3′-methyl-4-dimethyl-aminoazobenzene and 20-methylcholanthrene were simultaneously administered. Cancer Research, 12, 356–361.
- Conney, A. H., Miller, E. C., and Miller, J. A. (1956). The metabolism of methylated amino-azo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene. Cancer Research, 16, 450–459.
- Conney, A. H., Miller, E. C., and Miller, J. A. (1957). Substrate-induced synthesis and other properties of benzpyrene hydroxylase in rat liver. Journal of Biological Chemistry, 228, 753–766.
- Conney, A. H., Gillette, J. R., Inscoe, J. K., Trams, E. R., and Posner, H. S. (1959). Induced synthesis of liver microsomal enzymes which metabolize foreign compounds. Science 130, 1478–1479.
- Nebert, D. W. and Bausserman, L. L. (1970). Genetic differences in the extent of aryl hydrocarbon hydroxylase induction in mouse fetal cell cultures. Journal of Biological Chemistry, 245, 6373–6382.
- Nebert, D. W. and Gelboin, H. V. (1969). The in vivo and in vitro induction of aryl hydrocarbon hydroxylase in mammalian cells of different species, tissues, strains, and developmental and hormonal status. Archives of Biochemistry and Biophysics, 134, 76–89.
- Schmid, A., Elmer, I., and Tarnowski, G. S. (1969). Genetic determination of differential inflammatory reactivity and subcutaneous tumor susceptibility of AKR/J and C57BL/6J mice to 7,12-dimethylbenz[a]anthracene. Cancer Research, 29, 1585–1589.
- Gielen, J. E., Goujon, F. M., and Nebert, D. W. (1972). Genetic regulation of aryl hydrocarbon hydroxylase induction. II. Simple Mendelian expression in mouse tissues in vivo. Journal of Biological Chemistry, 247, 1125–1137.
- Nebert, D. W., Goujon, F. M., and Gielen, J. E. (1972). Aryl hydrocarbon hydroxylase induction by polycyclic hydrocarbons: simple autosomal dominant trait in the mouse. Nature New Biology, 236, 107–110.
- Nebert, D. W., Negishi, M., Lang, M. A., Hjelmeland, L. M., and Eisen, H. J. (1982). The Ah locus, a multigene family necessary for survival in a chemically adverse environment: comparison with the immune system. Advances in Genetics, 21, 1–51.
- Nebert, D. W. (1986). The 1986 Bernard B. Brodie award lecture. The genetic regulation of drug-metabolizing enzymes. Drug Metabolism and Disposition, 16, 1–7.
- Poland, A. P., Smith, D., Metter, G., and Possick, P. (1971). A health survey of workers in a 2,4-D and 2,4,5-T plant with special attention to chloracne, porphyria cutanea tarda, and psychologic parameters. Archives of Environmental Health, 22, 316–327.
- Kimmig, J. and Schulz, K. H. (1957). Occupational acne (so-called chloracne) due to chlorinated aromatic cyclic ethers. Dermatologica, 115, 540–546.
- Schulz, K. H. (1957). Clinical and experimental studies on the etiology of chloracne. Archives of Klinical and Experimental Dermatology, 206, 589–596.
- Poland, A. and Glover, E. (1973). 2, 3,7,8-Tetrachlorodibenzo-p-dioxin:a potent inducer of δ-aminolevulinic acid synthetase. Science, 179, 476–477.
- Poland, A. and Glover, E. (1973). Chlorinated dibenzo-p-dioxins: potent inducers of delta-aminolevulinic acid synthetase and aryl hydrocarbon hydroxylase. II. A study of the structure–activity relationship. Molecular Pharmacology, 9, 736–747.
- Poland, A. and Glover, E. (1974). Comparison of 2,3,7,8-tetrachlorodibenzo-p-dioxin, a potent inducer of aryl hydro-carbon hydroxylase, with 3-methylcholanthrene. Molecular Pharmacology, 10, 349–359.
- Poland, A., Glover, E., Robinson, J. R., and Nebert, D. W. (1974). Genetic expression of aryl hydrocarbon hydroxylase activity: induction of monooxygenase activities and cyto-chrome P1-450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically “nonresponsive” to other aromatic hydrocarbons. Journal of Biological Chemistry, 249, 5599–5606.
- Poland, A. and Glover, E. (1975). Genetic expression of aryl hydrocarbon hydroxylase by 2,3,7,8-tetrachlorodibenzo-p-dioxin: evidence for a receptor mutation in genetically non-responsive mice. Molecular Pharmacology, 11, 389–398.
- Poland, A. and Kende, A. S. (1976). 2, 3,7,8-Tetrachlorodibenzo-p-dioxin:environmental contaminant and molecular probe. Federal Proceedings, 35, 2404–2411.
- Greenlee, W. F. and Poland, A. (1979). Nuclear uptake of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/ 2J mice. Role of the hepatic cytosol receptor protein. Journal of Biological Chemistry, 254, 9814–9821.
- Okey, A. B., Bondy, G. P., Mason, M. E., Kahl, G. F., Eisen, H. J., Guenthner, T. M., and Nebert, D. W. (1979). Regulatory gene product of the Ah locus: characterization of the cytosolic inducer–receptor complex and evidence for its nuclear translocation. Journal of Biological Chemistry, 254, 11636–11648.
- Perdew, G. H., Abbott, B., and Stanker, L. H. (1995). Production and characterization of monoclonal antibodies directed against the Ah receptor. Hybridoma, 14, 279–283.
- Pollenz, R. S., Sattler, C. A., and Poland, A. (1994). The aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein show distinct subcellular localizations in Hepa 1c1c7 cells by immunofluorescence microscopy. Molecular Pharmacology, 45, 428–438.
- Carlstedt-Duke, J., Elstrom, G., Snochowski, M., Hogberg, B., and Gustafsson, J. A. (1978). Detection of the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) receptor in rat liver by iso-electric focusing in polyacrylamide gels. Toxicology Letters, 2, 365–373.
- Denison, M. S., Hamilton, J. W., and Wilkinson, C. F. (1985). Comparative studies of aryl hydrocarbon hyroxylase and the Ah receptor in non-mammalian species. Comparative Biochemistry and Physiology, Part C, 80, 319–324.
- Denison, M. S., Vella, L. M., and Okey, A. B. (1986). Structure and function of the Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Species differences in molecular properties of the receptors from mouse and rat hepatic cytosols. Journal of Biological Chemistry, 261, 3987–3995.
- Denison, M. S. and Wilkinson, C. F. (1985). Identification of the Ah receptor in selected mammalian species and induction of aryl hydrocarbon hydroxylase. European Journal of Biochemistry, 147, 429–435.
- Gasiewicz, T. A. and Bauman, P. A. (1987). Heterogeneity of the rat hepatic Ah receptor and evidence for transformation in vitro and in vivo. Journal of Biological Chemistry, 262, 2116–2120.
- Gasiewicz, T. A. and Rucci, G. (1984). Cytosolic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Evidence for a homologous nature among various mammalian species. Molecular Pharmacology, 26, 90–98.
- Kahl, G. F., Freiderici, D. E., Bigelow, S. W., Okey, A. B., and Nebert, D. W. (1980). Ontogenic expression of regulatory and structural gene products associated with the Ah locus. Comparison of rat, mouse, rabbit and Sigmoden hispedis. Developmental Pharmacology and Therapeutics, 1, 137–162.
- Manchester, D. K., Gordon, S. K., Golas, C. L., Roberts, E. A., and Okey, A. B. (1987). Ah receptor in human placenta: stabilization by molybdate and characterization of binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3-methylcholanthrene, and benzo[a]pyrene. Cancer Research, 47, 4861– 4868.
- Okey, A. B., Bondy, G. P., Mason, M. E., Nebert, D. W., Forster-Gibson, C. J., Muncan, J., and Dufresne, M. J. (1980). Temperature-dependent cytosol-to-nucleus translocation of the Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in continuous cell culture lines. Journal of Biological Chemistry, 255, 11415–11422.
- Okey, A. B., Vella, L. M., and Harper, P. A. (1989). Detection and characterization of a low affinity form of cytosolic Ah receptor in livers of mice nonresponsive to induction of cytochrome P1-450 by 3-methylcholanthrene. Molecular Pharmacology, 35, 823–830.
- Roberts, E. A., Golas, C. L., and Okey, A. B. (1986). Ah receptor mediating induction of aryl hydrocarbon hydroxylase: detection in human lung by binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Cancer Research, 46, 3739–3743.
- Prokipcak, R. D. and Okey, A. B. (1988). Physicochemical characterization of the nuclear form of Ah receptor from mouse hepatoma cells exposed in culture to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Archives of Biochemistry and Biophysics, 267, 811–828.
- Hankinson, O. (1983). Dominant and recessive aryl hydro-carbon hydroxylase-deficient mutants of the mouse hepatoma line, Hepa-1, and assignment of the recessive mutants to three complementation groups. Somatic and Cellular Genetics, 9, 497–514.
- Hankinson, O. (1979). Single-step selection of clones of a mouse hepatoma line deficient in aryl hydrocarbon hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 76, 373–376.
- Legraverand, C., Hannah, R. R., Eisen, H. J., Owens, I. S., Nebert, D. W., and Hankinson, O. (1982). Regulatory gene product of the Ah locus. Characterization of receptor mutants among mouse hepatoma clones. Journal of Biological Chemistry, 257, 6402–6407.
- Miller, A. G., Israel, D. I., and Whitlock, J. P., Jr. (1983). Biochemical and genetic analysis of variant mouse hepatoma cells defective in the induction of benzo(a)pyrene-metabolizing enzyme activity. Journal of Biological Chemistry, 258, 3523–3527.
- Miller, A. G. and Whitlock, J. P., Jr. (1981). Novel variants in benzo(a)pyrene metabolism. Isolation by fluorescence-activated cell sorting. Journal of Biological Chemistry, 256, 2433–2437.
- Hannah, R. R., Lund, J., Poellinger, L., Gillner, M., and Gustafsson, J. A. (1986). Characterization of the DNA-binding properties of the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin. European Journal of Biochemistry, 156, 237–242.
- Denison, M. S., Fisher, J. M., and Whitlock, J. P., Jr. (1988). The DNA recognition site for the dioxin–Ah receptor complex. Nucleotide sequence and functional analysis. Journal of Biological Chemistry, 263, 17221–17224.
- Jones, P. B. C., Galeazzi, D. R., Fisher, J. M., and Whitlock, J. P., Jr. (1986). Control of cytochrome P1-450 gene expression: analysis of a dioxin-responsive enhancer system. Proceedings of the National Academy of Sciences of the United States of America, 83, 2802–2806.
- Whitlock, J. P., Jr. (1999). Induction of cytochrome P4501A1. Annual Review of Pharmacology and Toxicology, 39, 103–125.
- Fujisawa-Sehara, A., Yamane, M., and Fujii-Kuriyama, Y. (1988). A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm: its possible translocation to nucleus. Proceedings of the National Academy of Sciences of the United States of America, 85, 5859–5863.
- Frericks, M., Burgoon, L. D., Zacharewski, T., and Esser, C. (2008). Promoter analysis of TCDD-inducible genes in a thymic epithelial cell line indicates the potential for cell-specific transcription factor cross-talk in the AhR response. Toxicology and Applied Pharmacology, 232, 268–279.
- Gasiewicz, T. A., Henry, E. C., and Collins, L. L. (2008). Expression and activity of aryl hydrocarbon receptors in development and cancer. Critical Reviews in Eukaryotic Gene Expression, 18, 279–321.
- Lee, K., Burgoon, L. D., Lamb, L., Dere, E., and Zacharewski, T. (2006). Identification and characterization of genes susceptible to transcriptional cross-talk between hypoxia and dioxin signaling cascades. Chemical Research in Toxicology, 19, 1284–1283.
- Stevens, E. A., Mezrich, J. D., and Bradfield, C. A. (2009). The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology, 127, 299–311.
- Matikainen, T., Perez, G. I., Jurisicova, A., Pru, J. K., Schlezinger, J. J., Ryu, H.-Y., Laine, J., Sakai, T., Korsmeyer, S. J., Casper, R. F., Sherr, D. H., and Tilly, J. L. (2001). Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nature Genetics, 28, 355–360.
- Yao, E. F. and Denison, M. S. (1992). DNA sequence determinants for binding of transformed Ah receptor to a dioxin-responsive enhancer. Biochemistry, 31, 5060–5067.
- Bank, P. A., Yao, E. F., Phelps, C. L., Harper, P. A., and Denison, M. S. (1992). Species-specific binding of transformed Ah receptor to a dioxin responsive transcriptional enhancer. European Journal of Pharmacology, 228, 85–94.
- Sun, Y. V., Boverhof, D. R., Burgoon, L. D., Fielden, M. R., and Zacharewski, T. (2004). Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences. Nucleic Acids Research, 32, 4512–4523.
- Boutros, P. C., Moffat, I. D., Franc, M. A., Tijet, N., Tuomisto, J., Pohjanvirta, R., and Okey, A. B. (2004). Dioxin-responsive AHRE-II gene battery: identification by phylogenetic footprinting. Biochemical and Biophysical Research Communications, 321, 707–715.
- Sogawa, K., Numayama-Tsuruta, K., Takahashi, T., Matsushita, N., Miura, C., Nikawa, J., Gotoh, O., Kikuchi, Y., and Fujii-Kuriyama, Y. (2004). A novel induction mechanism of the rat CYP1A2 gene mediated by Ah receptor–Arnt heterodimer. Biochemical and Biophysical Research Communications, 318, 746–755.
- Gillesby, B., Santostefano, M., Porter, W., Wu, Z. F., Safe, S., and Zacharewski, T. (1997). Identification of a motif within the 5′-regulatory region on pS2 which is responsible for Ap1 binding and TCDD-mediated suppression. Biochemistry, 36, 6080–6089.
- Krishnan, V., Porter, W., Santostefano, W., Wang, X., and Safe, S. (1995). Molecular mechanism of inhibition of estrogen-induced cathepsin D gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells. Molecular and Cellular Biology, 15, 6710–6719.
- Ohtake, F., Takeyama, K., Matsumoto, T., Kitagawa, H., Yamamoto, Y., Nohara, K., Tohyama, C., Krust, A., Mimura, J., Chambon, P., Yanagisawa, J., Fujii-Kuriyama, Y., and Kato, S. (2003). Modulation of oestrogen receptor signaling by association with the activated dioxin receptor. Nature, 423, 545–550.
- Porter, W., Wang, F., Duan, R., Qin, C., Castro-Rivera, E., Kim, K., and Safe, S. (2001). Transcriptional activation of heat shock protein 27 gene expression by 17β-estradiol and modulation by antiestrogens and aryl hydrocarbon receptor agonists. Journal of Molecular Endocrinology, 26, 31–42.
- Jones, B. C. J., Galeazzi, D. R., Fisher, J. M., and Whitlock, J. P., Jr. (1985). Control of cytochrome P1-450 gene expression by dioxin. Science, 227, 1499–1502.
- Walsh, A. A., Tullis, K., Rice, R. H., and Denison, M. S. (1996). Identification of a novel cis-acting negative regulatory element affecting expression of the CYP1A1 gene in rat epidermal cells. Journal of Biological Chemistry, 271, 22746–22753.
- Elferink, C. J., Gasiewicz, T. A., and Whitlock, J. P., Jr. (1990). Protein–DNA interactions at the dioxin-responsive enhancer. Evidence that the transformed Ah receptor is heteromeric. Journal of Biological Chemistry, 265, 20708–20712.
- Gasiewicz, T. A., Elferink, C. J., and Henry, E. C. (1991). Characterization of multiple forms of the Ah receptor: recognition of a dioxin-responsive enhancer involves heteromer formation. Biochemistry, 30, 2909–2916.
- Henry, E. C. and Gasiewicz, T. A. (1991). Inhibition and reconstitution of Ah receptor transformation in vitro: role and partial characterization of a cytosolic factor(s). Archives of Biochemistry and Biophysics, 288, 149–156.
- Hoffman, E. C., Reyes, H., Chu, F. F., Sander, F., Conley, L. H., Brooks, B. A., and Hankinson, O. (1991). Identification of the Ah receptor nuclear translocator proteins (Arnt) as a component of the DNA binding form of the Ah receptor. Science, 252, 954–958.
- Reyes, H., Reisz-Porszasz, S., and Hankinson, O. (1992). Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science, 256, 1193–1195.
- Gu, Y. Z., Hogenesch, J. B., and Bradfield, C. A. (2000). The PAS superfamily: sensors of environmental and developmental signals. Annual Review of Pharmacology and Toxicology, 40, 519–561.
- Wang, G. L., Jiang, B. H., Rue, E. A., and Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix–loop–helix– PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America, 92, 5510–5514.
- Chan, W. K., Yao, G., Gu, Y. Z., and Bradfield, C. A. (1999). Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways. Demonstration of competition and compensation. Journal of Biological Chemistry, 274, 12115–12123.
- Schults, M. A., Timmermans, L., Godschalk, R. W., Theys, J., Wouters, B. G., van Schooten, F. J., and Chiu, R. K. (2010). Diminished carcinogen detoxification is a novel mechanism for hypoxia-inducible factor-1-mediated genetic instability. Journal of Biological Chemistry, 285, 14558–14564.
- Siefert, A., Kaschinski, D. M., Tonack, S., Fisher, B., and Navarrente Santos, A. (2008). Significance of prolyl hydroxylase 2 in the interference of aryl hydrocarbon receptor and hypoxia-inducible factor-1 alpha signaling. Chemical Research in Toxicology, 21, 341–348.
- Bradfield, C. A., Glover, E., and Poland, A. (1991). Purification and N-terminal amino acid sequence of the Ah receptor from the C57BL/6J mouse. Molecular Pharmacology, 39, 13–19.
- Bradfield, C. A., Kende, A. S., and Poland, A. (1988). Kinetic and equilibrium studies of Ah receptor-ligand binding: use of [125I]2-iodo-7,8-dibromodibenzo-p-dioxin. Molecular Pharmacology, 34, 229–237.
- Perdew, G. H. and Poland, A. (1988). Purification of the Ah receptor from C57BL/6J mouse liver. Journal of Biological Chemistry, 263, 9848–9852.
- Poland, A., Glover, E., and Bradfield, C. A. (1991). Characterization of polyclonal antibodies of the Ah receptor prepared by immunization with a synthetic peptide hapten. Molecular Pharmacology, 39, 20–26; Erratum, 39, 435.
- Burbach, K. M., Poland, A., and Bradfield, C. A. (1992). Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 89, 8185–8189.
- Ema, M., Sogawa, K., Watanabe, N., Chujoh, Y., Matsushita, N., Gotoh, O., Funae, Y., and Fujii-Kuriyama, Y. (1992). cDNA cloning and structure of mouse putative Ah receptor. Biochemical and Biophysical Research Communications, 184, 246–253.
- Citri, Y., Colot, H. V., Jacquier, A. C., Yu, Q., Hall, J. C., Baltimore, D., and Rosbash, M. (1987). A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature, 326, 42–44.
- Jackson, F. R., Bargiello, T. A., Yun, S. H., and Young, N. M. (1986). Product of per locus of Drosophila shares homology with proteoglycans. Nature, 320, 185–188.
- Nambu, J. R., Lewis, J. O., Wharton, K. A., Jr. and Crews, S. T. (1991). The Drosophila single-minded gene encodes a helix–loop–helix protein that acts as a master regulator of CNS midline development. Cell, 67, 1157–1167.
- Reddy, P., Jacquier, A. C., Abovich, N., Petersen, G., and Rosbash, M. (1986). The period clock locus of D. melanogaster codes for a proteoglycan. Cell, 46, 53–61.
- Furness, S. G., Lees, M. J., and Whitelaw, M. L. (2007). The dioxin (aryl hydrocarbon) receptor as a model for adaptive responses of bHLH/PAS transcription factors. FEBS Letters, 581, 3616–3625.
- Antonsson, C., Whitelaw, M. L., McGuire, J., Gustafsson, J.-A., and Poellinger, L. (1995). Distinct roles of the molecular chaperone hsp90 in modulating dioxin receptor function via the basic helix–loop–helix and PAS domains. Molecular and Cellular Biology, 15, 756–765.
- Carver, L. A. and Bradfield, C. A. (1997). Ligand dependent interaction of the Ah receptor with a novel immunophilin homolog in vivo. Journal of Biological Chemistry, 272, 11452–11456.
- Carver, L. A., Jackiw, V., and Bradfield, C. A. (1994). The 90-kDa heat shock protein is essential for Ah receptor signaling in a yeast expression system. Journal of Biological Chemistry, 269, 30109–30112.
- Kazlauskas, A., Poellinger, L., and Pongratz, I. (1999). Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (aryl hydrocarbon) receptor. Journal of Biological Chemistry, 274, 13519–13524.
- LaPres, J. J., Glover, E., Dunham, E. E., Bunger, M. K., and Bradfield, C. A. (2000). ARA9 modifies agonist signaling through an increase in cytosolic aryl hydrocarbon receptor. Journal of Biological Chemistry, 275, 6153–6159.
- Ma, Q. and Whitlock, J. P., Jr. (1997). A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of Biological Chemistry, 272, 8878–8884.
- Meyer, B. K. and Perdew, G. H. (1999). Characterization of the AhR–hsp90–XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization. Biochemistry, 38, 8907–8917.
- Meyer, B. K., Pray-Grant, M., Vanden Heuvel, J. P., and Perdew, G. H. (1998). Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Molecular and Cellular Biology, 18, 978–988.
- Perdew, G. H. (1988). Association of the Ah receptor with 90-kDa heat shock protein. Journal of Biological Chemistry, 263, 13802–13805.
- Petrulis, J. R. and Perdew, G. H. (2002). The role of chaperone proteins in the aryl hydrocarbon receptor core complex. Chemico-Biological Interactions, 141, 25–40.
- Pongratz, I., Mason, G. G. F., and Poellinger, L. (1992). Dual roles of the 90 kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. Journal of Biological Chemistry, 267, 13728–13734.
- Bacsi, S. G., Reisz-Porszasz, S., and Hankinson, O. (1995). Orientation of the heterodimeric aryl hydrocarbon (dioxin) receptor complex on its asymmetric DNA recognition sequence. Molecular Pharmacology, 47, 432–438.
- Dolwick, K. M., Swanson, H. I., and Bradfield, C. A. (1993). In vitro analysis of Ah receptor domains involved in ligand-activated DNA recognition. Proceedings of the National Academy of Sciences of the United States of America, 90, 8566–8570.
- Fukunaga, B. N., Probst, M. R., Reisz-Porszasz, S., and Hankinson, O. (1995). Identification of functional domains of the aryl hydrocarbon receptor. Journal of Biological Chemistry, 270, 29270–29278.
- Jain, S., Dolwick, K. M., Schmidt, J. V., and Bradfield, C. A. (1994). Potent transactivation domains of the Ah receptor and the Ah receptor nuclear translocator map to their carboxyl termini. Journal of Biological Chemistry, 269, 31518–31524.
- Pandini, A., Denison, M. S., Song, Y., Soshilov, A. A., and Bonati, L. (2007). Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis. Biochemistry, 46, 696–708.
- Sogawa, K., Iwabuchi, K., Abe, H., and Fujii-Kuriyama, Y. (1995). Transcriptional activation domains of the Ah receptor and Ah receptor nuclear translocator. Journal of Cancer Research and Clinical Oncology, 121, 612–620.
- Swanson, H. I. and Yang, J. (1996). Mapping the protein/ DNA contact sites of the Ah receptor and Ah receptor nuclear translocator. Journal of Biological Chemistry, 271, 31657–31665.
- Whitelaw, M. L., Gottlicher, M., Gustafsson, J. A., and Poellinger, L. (1993). Definition of a novel ligand binding domain of nuclear bHLH receptor: co-localization of ligand and hsp90 binding activities with the regulable inactivation domain of the dioxin receptor. EMBO Journal, 12, 4169–4179.
- Whitelaw, M. L., Gustafsson, J. A., and Poellinger, L. (1994). Identification of transactivation and repression functions of the dioxin receptor and its basic helix–loop–helix/PAS partner factor Arnt: inducible versus constitutive modes of regulation. Molecular and Cellular Biology, 14, 8343–8355.
- Poellinger, L., Lund, J., Gillner, M., Hansson, L. A., and Gustafsson, J.-A. (1983). Physicochemical characterization of specific and nonspecific polyaromatic hydrocarbon binders in rat and mouse liver cytosol. Journal of Biological Chemistry, 258, 13535–13542.
- Hahn, M. E., Poland, A., Glover, E., and Stegeman, J. J. (1994). Photoaffinity labeling of the Ah receptor: phylogenetic survey of diverse vertebrate and invertebrate species. Archives of Biochemistry and Biophysics, 310, 218–228.
- Poland, A. and Glover, E. (1990). Characterization and strain distribution pattern of the murine Ah receptor specified by the Ahdand Ahb-3 alleles. Molecular Pharmacology, 38, 306–312.
- Poland, A. and Glover, E. (1987). Variation in the molecular mass of the Ah receptor among vertebrate species and strains of rats. Biochemical and Biophysical Research Communications, 146, 1439–1449.
- Ema, M., Ohe, N., Suzuki, M., Mimura, J., Sogawa, K., Ikawa, S., and Fujii-Kuriyama, Y. (1994). Dioxin binding activities of polymorphic forms of mouse and human arylhydrocarbon receptors. Journal of Biological Chemistry, 269, 27337– 27343.
- Hahn, M. E. (1998). The aryl hydrocarbon receptor: a comparative perspective. Comparative Biochemistry and Physiology, Part C, 121, 23–53.
- Hahn, M. E. (2002). Aryl hydrocarbon receptors: diversity and evolution. Chemico-Biological Interactions, 141, 131–160.
- Hahn, M. E., Karchner, S. I., Evans, B. R., Franks, D. G., Merson, R. R., and Lapseritis, J. M. (2006). Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. Journal of Experimental Zoology, Part A, 305, 693–706.
- Korkalainen, M., Tuomisto, J., and Pohjanvirta, R. (2001). The AH receptor of the most dioxin-sensitive species, guinea pig, is highly homologous to the human AH receptor. Biochemical and Biophysical Research Communications, 285, 1121–1129.
- Korkalainen, M., Tuomisto, J., and Pohjanvirta, R. (2000). Restructured transactivation domain in hamster AH receptor. Biochemical and Biophysical Research Communications, 285, 272–281.
- Pohjanvirta, R., Wong, J. M., Li, W., Harper, P. A., Tuomisto, J., and Okey, A. B. (1998). Point mutation in intron sequence causes altered carboxyl-terminal structure in the aryl hydro-carbon receptor of the most 2,3,7,8-tetrachlorodibenzo-p-dioxin-resistant rat strain. Molecular Pharmacology, 54, 86–93.
- Dolwick, K. M., Schmidt, J. V., Carver, L. A., Swanson, H. I., and Bradfield, C. A. (1993). Cloning and expression of a human Ah receptor cDNA. Molecular Pharmacology, 44, 911–917.
- Poland, A. and Glover, E. (1980). 2, 3,7,8-Tetrachlorodibenzo-p-dioxin:segregation of toxicity with the Ah locus. Molecular Pharmacology, 17, 86–94.
- Poland, A. and Knutson, J. C. (1982). 2,3,7,8-Tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annual Review of Pharmacology and Toxicology, 22, 517–554.
- Bandiera, S., Sawyer, T., Romkes, M., Zmudzka, B., Safe, L., Mason, G. G., Keys, B., and Safe, S. (1984). Polychlorinated dibenzofurans (PCDFs): effects of structure on binding to the 2,3,7,8-TCDD cytosolic receptor protein, AHH induction and toxicity. Toxicology 32, 131–144.
- Davis, D. and Safe, S. (1988). Immunosuppressive activities of polychlorinated dibenzofuran congeners: quantitative structure–activity relationships and interactive effects. Toxicology and Applied Pharmacology, 94, 141–149.
- Kerkvliet, N. I., Baecher-Steppan, L., Smith, B. B., Young-berg, J. A., Henderson, M. C., and Buhler, D. R. (1990). Role of the Ah locus in suppression of cytotoxic T lymphocyte activity by halogenated aromatic hydrocarbons (PCBs and TCDD): structure–activity relationships and effects in C57Bl/ 6 mice congenic at the Ah locus. Fundamental and Applied Toxicology, 14, 532–541.
- Mason, G. G., Farrell, K., Keys, B., Piskorska-Pliszczynska, J., Safe, L., and Safe, S. (1986). Polychlorinated dibenzo-p-dioxins: quantitative in vitro and in vivo structure–activity relationships. Toxicology, 41, 21–31.
- Romkes, M., Piskorska-Pliszczynska, J., Keys, B., Safe, S., and Fujita, T. (1987). Quantitative structure–activity relationships: analysis of interactions of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2-substituted analogues with rat, mouse, guinea pig, and hamster cytosolic receptor. Cancer Research, 47, 5108–5111.
- Safe, S., Bandiera, S., Sawyer, T., Zmudzka, B., Mason, G. G., Romkes, M., Denomme, M. A., Sparling, J., Okey, A. B., and Fujita, T. (1985). Effects of structure on binding to the 2,3,7,8-TCDD receptor protein and AHH induction: halogenated biphenyls. Environmental Health Perspectives, 61, 21–33.
- Keys, B., Piskorska-Pliszczynska, J., and Safe, S. (1986). Polychlorinated dibenzofurans as 2,3,7,8-TCDD antagonists: in vitro inhibition of monooxygenase enzyme induction. Toxicology Letters, 31, 151–158.
- Astroff, B. and Safe, S. (1989). 6-Substituted-1,3,8-trichlorodibenzofurans as 2,3,7,8-tetrachlorodibenzo-p-dioxin antagonists in the rat: structure activity relationships. Toxicology 59, 285–296.
- Harris, M., Zacharewski, T., Astroff, B., and Safe, S. (1989). Partial antagonism of 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated induction of aryl hydrocarbon hydroxylase by 6-methyl-1,3,8-trichlorodibenzofuran: mechanistic studies. Molecular Pharmacology, 35, 729–735.
- Lu, Y.-F., Santostefano, M., Cunningham, B. D. M., Thread-gill, M. D., and Safe, S. (1995). Identification of 3′-methoxy-4′-nitroflavone as a pure aryl hydrocarbon (Ah) receptor antagonist and evidence for more than one form of the nuclear Ah receptor in MCF-7 human breast cancer cells. Archives of Biochemistry and Biophysics, 316, 470–477.
- Casper, R. F., Quesne, M., Rogers, I. M., Shirota, T., Jolivet, A., Milgrom, E., and Savouret, J.-F. (1999). Resveratrol has antagonistic activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Molecular Pharmacology, 56, 784–790.
- Chen, G. and Bunce, N. J. (2003). Polybrominated diphenyl ethers as Ah receptor agonists and antagonists. Toxicological Sciences, 76, 310–320.
- Chen, I., Safe, S., and Bjeldanes, L. (1996). Indole-3-carbinol and diindolylmethane as aryl hydrocarbon (Ah) receptor agonists and antagonists in T47D human breast cancer cells. Biochemical Pharmacology, 51, 1069–1076.
- Fukuda, I., Kaneko, A., Nishiumi, S., Kawase, M., Nishikiori, R., Fujitake, N., and Ashida, H. (2009). Structure–activity relationships of anthraquinones on the suppression of DNA-binding activity of the aryl hydrocarbon receptor induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of Bioscience and Bioengineering, 107, 296–300.
- Gasiewicz, T. A., Kende, A. S., Rucci, G., Whitney, B., and Willey, J. (1996). Analysis of structural requirements for Ah receptor antagonist activity: ellipticines, flavones, and related compounds. Biochemical Pharmacology, 52, 1787–1803.
- Kim, S.-H., Henry, E. C., Kim, D.-K., Kim, Y.-H., Shin, K. J., Han, M. S., Lee, T. G., Kang, J.-K., Gasiewicz, T. A., Ryu, S. H., and Suh, P.-G. (2006). Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)- amide (CH-223191) prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Molecular Pharmacology, 69, 1871–1878.
- Lu, Y.-F., Santostefano, M., Cunningham, B. D. M., Thread-gill, M. D., and Safe, S. (1996). Substituted flavones as aryl hydrocarbon (Ah) receptor agonists and antagonists. Biochemical Pharmacology, 51, 1077–1087.
- Puppala, D., Lee, H., Kim, K. B., and Swanson, H. I. (2008). Development of an aryl hydrocarbon receptor antagonist using the proteolysis-targeting chimeric molecules approach: a potential tool for chemoprevention. Molecular Pharmacology, 73, 1064–1071.
- Gasiewicz, T. A. and Rucci, G. (1991). Alpha-naphthoflavone acts as an antagonist of 2,3,7,8-tetrachlorodibenzo-p-dioxin by forming an inactive complex with the Ah receptor. Molecular Pharmacology, 40, 607–612.
- Henry, E. C., Kende, A. S., Rucci, G., Totleben, M. J., Willey, J., Dertinger, S. D., Pollenz, R. S., Jones, J. P., and Gasiewicz, T. A. (1999). Flavone antagonists bind competitively with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to the aryl hydrocarbon receptor but inhibit transformation. Molecular Pharmacology, 55, 716–725.
- Nishiumi, S., Yoshida, K., and Ashida, H. (2007). Curcumin suppresses the transformation of an aryl hydrocarbon receptor through its phosphorylation. Archives of Biochemistry and Biophysics, 466, 267–273.
- Palermo, C. M., Westlake, C. A., and Gasiewicz, T. A. (2005). Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry 44, 5041–5052.
- Zhang, S., Qin, C., and Safe, S. (2003). Flavonoids as aryl hydrocarbon receptor agonists/antagonists: effects of structure and cell context. Environmental Health Perspectives, 111, 1877–1882.
- Zhou, J.-G. and Gasiewicz, T. A. (2003). 3′-Methoxy-4′-nitroflavone, a reported aryl hydrocarbon receptor antagonist, enhances Cyp1a1 transcription by a dioxin responsive element-dependent mechanism. Archives of Biochemistry and Biophysics, 416, 68–80.
- Aarts, J. M., Denison, M. S., Cox, M. A., Schalk, M. A., Garrison, P. M., Tullis, K., de Haan, L. H., and Brouwer, A. (1995). Species-specific antagonism of Ah receptor action by 2,2′,5,5′-tetrachloro- and 2,2′,3,3′,4,4′-hexachlorobiphenyl. European Journal of Pharmacology, 293, 463–474.
- Henry, E. C. and Gasiewicz, T. A. (2008). Molecular determinants of species-specific agonist and antagonist activity of a substituted flavone towards the aryl hydrocarbon receptor. Archives of Biochemistry and Biophysics, 472, 77–88.
- Hesterman, E. V., Stegeman, J. J., and Hahn, M. E. (2000). Relative contributions of affinity and intrinsic efficacy to aryl hydrocarbon receptor ligand potency. Toxicology and Applied Pharmacology, 168, 160–172.
- Henry, E. C. and Gasiewicz, T. A. (2003). Agonist but not antagonist ligands induce conformational change in the mouse aryl hydrocarbon receptor as detected by partial proteolysis. Molecular Pharmacology, 63, 392–400.
- Davis, D. and Safe, S. (1991). Halogenated aryl hydrocarbon-induced suppression of the in vitro plaque-forming cell response to sheep red blood cells is not dependent on the Ah receptor. Immunopharmacology 21, 183–190.
- Kerkvliet, N. I., Steppan, L. B., Brauner, J. A., Deyo, J. A., Henderson, M. C., Tomar, R. S., and Buhler, D. R. (1990). Influence of the Ah locus on the humoral immunotoxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): evidence for Ah receptor-dependent and Ah receptor-independent mechanisms of immunosuppression. Toxicology and Applied Pharmacology, 105, 26–36.
- Morris, D. L. and Holsapple, M. P. (1991). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on humoral immunity. 2. B cell activation. Immunopharmacology 21, 171–181.
- Morris, D. L., Jordan, S. D., and Holsapple, M. P. (1991). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on humoral immunity. 1. Similarities to Staphylococcus aureus Cowan Strain I (SAC) in the in vitro T-dependent antibody response. Immunopharmacology 21, 159–169.
- Morris, D. L., Snyder, N. K., Gokani, R. E., Blair, R. E., and Holsapple, M. P. (1992). Enhanced suppression of humoral immunity in DBA/2 mice following subchronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicology and Applied Pharmacology, 112, 128–132.
- Tucker, A. N., Vore, S. J., and Luster, M. I. (1986). Suppression of B cell differentiation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Molecular Pharmacology, 29, 372–377.
- NATO/CCMS (1988). Pilot study on international information exchange on dioxins and related compounds. International toxicity equivalent factors (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds. Report No. 176, pp. 1–26.
- Safe, S. (1990). Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Critical Reviews in Toxicology, 21, 51–88.
- Van den Berg, M., Birnbaum, L. S., Denison, M. S., DeVito, M. J., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., and Peterson, R. E. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 93, 223–241.
- Birnbaum, L. S. and DeVito, M. J. (1995). Use of toxic equivalency factors for risk assessment for dioxins and related compounds. Toxicology 105, 391–401.
- Gao, X., Son, D. S., Terranova, P. F., and Rozman, K. K. (1999). Toxic equivalency factors of polychlorinated dibenzo-p-dioxins in an ovulation model: validation of the toxic equivalency concept for one aspect of endocrine disruption. Toxicology and Applied Pharmacology, 157, 107–116.
- Hamm, J. T., Chen, C. Y., and Birnbaum, L. S. (2003). A mixture of dioxins, furans, and non-ortho PCBs based on consensus toxic equivalency factors produces dioxin-like reproductive effects. Toxicological Sciences, 74, 182–191.
- Hornung, M. W., Zabel, E. W., and Peterson, R. E. (1996). Additive interactions between pairs of polybrominated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners in a rainbow trout early life stage mortality bioassay. Toxicology and Applied Pharmacology, 140, 345–355.
- Simanainen, U., Tuomisto, J. T., Tuomisto, J., and Viluksela, M. (2002). Structure–activity relationships and dose responses of polychlorinated dibenzo-p-dioxins for short-term effects in 2,3,7,8-tetrachlorodibenzo-p-dioxin-resistant and -sensitive rat strains. Toxicology and Applied Pharmacology, 181, 38–47.
- Battershill, J. M. (1994). Review of the safety assessment of polychlorinated biphenyls (PCBs) with particular reference to reproductive toxicity. Human and Experimental Toxicology, 13, 581–597.
- Finley, B. L., Conner, K. T., and Scott, P. K. (2003). The use of toxic equivalency factors in probabilistic risk assessment for dioxins, furans, and PCBs. Journal of Toxicology and Environmental Health, Part A, 66, 533–550.
- Gray, M. N., Aylward, L. L., and Keenan, R. E. (2006). Relative cancer potencies of selected dioxin-like compounds on a body-burden basis: comparison to current toxic equivalency factors (TEFs). Journal of Toxicology and Environmental Health, Part A, 69, 907–917.
- Pohjanvirta, R., Unkila, M., Linden, J., Tuomisto, J. T., and Tuomisto, J. (1995). Toxic equivalency factors do not predict the acute toxicities of dioxins in rats. European Journal of Pharmacology, 293, 341–353.
- Starr, T. B., Greenlee, W. F., Neal, R. A., Poland, A., and Sutter, T. R. (1999). The trouble with TEFs. Environmental Health Perspectives, 107, A492–A493.
- Van den Berg, M., Birnbaum, L. S., Bosveld, A. T. C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J. P., Hanberg, A., Hasegawa, R., Kennedy, S. W., Kubiak, T., Larsen, J. C., van Leeuwen, F. X. R., Liem, A. K. D., Nolt, C., Peterson, R. E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Waern, F., and Zacharewski, T. (1998). Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environmental Health Perspectives, 106, 775–792.
- Howard, G. J., Schlizinger, J. J., Hahn, M. E., and Webster, T. F. (2010). Generalized concentration addition predicts joint effects of aryl hydrocarbon receptor agonists with partial agonists and competitive antagonists. Environmental Health Perspectives, 118, 666–672.
- Goldstone, H. M. and Stegeman, J. J. (2006). Molecular mechanisms of 2,3,7,8-tetrachlorodibenzo-p-dioxin cardiovascular embryotoxicity. Drug Metabolism Reviews, 38, 261–289.
- Nebert, D. W. and Dalton, T. P. (2006). The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nature Reviews Cancer, 6, 947–960.
- Nebert, D. W., Dalton, T. P., Okey, A. B., and Gonzalez, F. J. (2004). Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. Journal of Biological Chemistry, 279, 23847–23850.
- Reichard, J. F., Dalton, T. P., Shertzer, H. G., and Puga, A. (2006). Induction of oxidative stress responses by dioxin and other ligands of the aryl hydrocarbon receptor. Dose Response, 1, 306–331.
- Smith, A. G., Clothier, B., Carthew, P., Childs, N. L., Sinclair, P. R., Nebert, D. W., and Dalton, T. P. (2001). Protection of the Cyp1a2(−/−) null mouse against uroporphyria and hepatic injury following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 173, 89–98.
- Gasiewicz, T. A., Rucci, G., Henry, E. C., and Baggs, R. B. (1986). Changes in hamster hepatic cytochrome P-450, ethoxycoumarin O-deethylase, and reduced NAD(P):menadione oxidoreductase following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Partial dissociation of temporal and dose–response relationships from elicited toxicity. Biochemical Pharmacology, 35, 2737–2742.
- Carney, S. A., Peterson, R. E., and Heideman, W. (2004). 2, 3,7,8-Tetrachlorodibenzo-p-dioxin activation of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a CYP1A1-independent mechanism in zebrafish. Molecular Pharmacology, 66, 512–521.
- Sutter, T. R., Guzman, K., Dold, K. M., and Greenlee, W. F. (1991). Targets for dioxin: genes for plasminogen activator inhibtor-2 and interleukin-1 beta. Science, 254, 415–418.
- Boverhof, D. R., Burgoon, L. D., Tashiro, C., Chittim, B., Harkema, J. R., Jump, D. B., and Zacharewski, T. R. (2005). Temporal and dose-dependent hepatic gene expression patterns in mice provide new insights into TCDD-mediated hepatotoxicity. Toxicological Sciences, 85, 1048–1063.
- Boverhof, D. R., Burgoon, L. D., Tashiro, C., Sharratt, B., Chittim, B., Harkema, J. R., Mendrick, D. L., and Zacharewski, T. R. (2006). Comparative toxicogenomic analysis of the hepatotoxic effects of TCDD in Sprague Dawley rats and C57BL/6 mice. Toxicological Sciences, 94, 398–416.
- Fletcher, N., Wahlstrom, D., Lundberg, R., Nilsson, C. B., Nilsson, K. C., Stockling, K., Hellmold, H., and Hakansson, H. (2005). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters the mRNA expression of critical genes associated with cholesterol metabolism, bile acid synthesis, and bile transport in rat liver: a microarray study. Toxicology and Applied Pharmacology, 207, 1–24.
- Frueh, F. W., Hayashibara, K. C., Brown, P. O., and Whitlock, J. P., Jr. (2001). Use of cDNA microarrays to analyze dioxin-induced changes in human liver gene expression. Toxicology Letters, 122, 189–203.
- Kim, S., Dere, E., Burgoon, L. D., Chang, C. C., and Zacharewski, T. R. (2009). Comparative analysis of AhR-mediated TCDD-elicited gene expression in human liver adult stem cells. Toxicological Sciences, 112, 229–244.
- Laiosa, M. D., Mills, J. H., Lai, Z. W., Singh, K. P., Middleton, F. A., Gasiewicz, T. A., and Silverstone, A. E. (2010). Identification of stage-specific gene modulation during early thymocyte development by whole-genome profiling analysis after aryl hydrocarbon receptor activation. Molecular Pharmacology, 77, 773–783.
- Martinez, J. M., Afshari, C. A., Bushel, P. R., Masuda, A., Takahashi, T., and Walker, N. J. (2002). Differential toxicogenomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin in malignant and nonmalignant human airway epithelial cells. Toxicological Sciences, 69, 409–423.
- Puga, A., Maier, A., and Medvedovic, M. (2000). The transcriptional signature of dioxin in human hepatoma HepG2 cells. Biochemical Pharmacology, 60, 1129–1142.
- Thackaberry, E. A., Nunez, B. A., Ivnitski-Steele, I. D., Friggins, M., and Walker, M. K. (2005). Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on murine heart development: alteration in fetal and postnatal cardiac growth, and postnatal cardiac chronotropy. Toxicological Sciences, 88, 242–249.
- Thomas, R. S., Rank, D. R., Penn, S. G., Zastrow, G. M., Hayes, K. R., Pande, K., Glover, E., Silander, T., Craven, M. W., Reddy, J. K., Jovanovich, S. B., and Bradfield, C. A. (2001). Identification of toxicologically predictive gene sets using cDNA microarrays. Molecular Pharmacology, 60, 1189–1194.
- Johnson, C. D., Balagurunathan, Y., Tadesse, M. G., Falahatpisheh, M. H., Brun, M., Walker, M. K., Dougherty, E. R., and Ramos, K. S. (2004). Unraveling gene–gene interactions regulated by ligands of the aryl hydrocarbon receptor. Environmental Health Perspectives, 112, 403–412.
- Sartor, M. A., Schnekenburger, M., Marlowe, J. L., Reichard, J. F., Wang, Y., Fan, Y., Ma, C., Karyala, S., Halbleib, D., Liu, X., Medvedovic, M., and Puga, A. (2009). Genomewide analysis of aryl hydrocarbon receptor binding targets reveals an extensive array of gene clusters that control morphogenetic and developmental programs. Environmental Health Perspectives, 117, 1139–1146.
- Fernandez-Salguero, P. M., Pineau, T., Hilbert, D. M., McPhail, T., Lee, S. S. T., Kimura, S., Nebert, D. W., Rudikoff, S., Ward, J. M., and Gonzalez, F. J. (1995). Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science, 268, 722–726.
- Lahvis, G. P. and Bradfield, C. A. (1998). Ahr null alleles: distinctive or different? Biochemical Pharmacology, 56, 781–787.
- Mimura, J., Yamashita, K., Nakamura, K., Morita, M., Takagi, T. N., Nakao, K., Ema, M., Sogawa, K., Yasuda, M., Katsuki, M., and Fujii-Kuriyama, Y. (1997). Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells, 2, 645–654.
- Schmidt, J. V., Huei-Ting, G., Reddy, J. K., Simon, M. C., and Bradfield, C. A. (1996). Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proceedings of the National Academy of Sciences of the United States of America, 93, 6731–6736.
- Buchanan, D. L., Sato, T., Peterson, R. E., and Cooke, P. S. (2002). Antiestrogenic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in mouse uterus: critical role of the aryl hydrocarbon receptor in stromal tissue. Toxicological Sciences, 57, 302–311.
- Fernandez-Salguero, P. M., Hilbert, D. M., Rudikoff, S., Ward, J. M., and Gonzalez, F. J. (1996). Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicology and Applied Pharmacology, 140, 173–179.
- Kerkvliet, N. I., Shepherd, D. M., and Baecher-Steppan, L. (2002). T lymphocytes are direct, aryl hydrocarbon receptor (AhR)-dependent targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): AhR expression in both CD4+ and CD8+ T cells is necessary for full suppression of a cytotoxic T lymphocyte response by TCDD. Toxicology and Applied Pharmacology, 185, 146–152.
- Ko, K., Moore, R. W., and Peterson, R. E. (2004). Aryl hydrocarbon receptors in urogenital sinus mesenchyme mediate the inhibition of prostatic epithelial bud formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 96, 149–155.
- Lin, T.-M., Ko, K., Moore, R. W., Buchanan, D. L., Cooke, P. S., and Peterson, R. E. (2001). Role of the aryl hydrocarbon receptor in the development of control and 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed male mice. Journal of Toxicology and Environmental Health, Part A, 64, 327–342.
- Peters, J. M., Narotsky, M. G., Elizondo, G., Fernandez-Salguero, P. M., Gonzalez, F. J., and Abbott, B. (1999). Amelioration of TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null mice. Toxicological Sciences, 47, 86–92.
- Staples, J. E., Murante, F. G., Fiore, N. C., Gasiewicz, T. A., and Silverstone, A. E. (1998). Thymic alterations induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are strictly dependent on aryl hydrocarbon receptor activation in hemopoietic cells. Journal of Immunology, 160, 3844–3854; Erratum, 163, 1092.
- Thurmond, T. S., Silverstone, A. E., Baggs, R. B., Quimby, F. W., Staples, J. E., and Gasiewicz, T. A. (1999). A chimeric aryl hydrocarbon receptor knockout mouse model indicates that aryl hydrocarbon receptor activation in hematopoietic cells contributes to the hepatic lesions induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 158, 33–40.
- Vorderstrasse, B. A., Steppan, L. B., Silverstone, A. E., and Kerkvliet, N. I. (2001). Aryl hydrocarbon receptor-deficient mice generate normal immune responses to model antigens and are resistant to TCDD-induced immune suppression. Toxicology and Applied Pharmacology, 171, 157–164.
- Fritsche, E., Schafer, C., Calles, C., Bernsmann, T., Bernshausen, T., Wurm, M., Hubenthal, U., Cline, J. E., Hajimiranha, H., Schroeder, P., Klotz, L. O., Rannug, A., Furst, P., Hananberg, H., Abel, J., and Krutmann, J. (2007). Lightening up the UV response by identification of the aryl hydrocarbon receptor as a cytoplasmic target for ultraviolet B radiation. Proceedings of the National Academy of Sciences of the United States of America, 104, 8851–8856.
- Shimizu, Y., Nakatsuru, Y., Ichinose, M., Takahashi, Y., Kume, H., Mimura, J., Fujii-Kuriyama, Y., and Ishikawa, T. (2000). Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America, 97, 779–782.
- Yoon, B. I., Hirabayashi, Y., Kawasaki, Y., Kodama, Y., Kaneko, T., Kanno, J., Kim, D. Y., Fujii-Kuriyama, Y., and Inoue, T. (2002). Aryl hydrocarbon receptor mediates benzene-induced hematoxicity. Toxicological Sciences, 70, 150–156.
- Bock, K. W. and Köhle, C. (2006). Ah receptor: dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochemical Pharmacology, 72, 393–404.
- Boutros, P. C., Yao, C. Q., Watson, J. D., Wu, A. H., Moffat, I. D., Prokopec, S. D., Smith, A. B., Okey, A. B., and Pohjanvirta, R. (2011). Hepatic transcriptomic responses to TCDD in dioxin-sensitive and dioxin-resistant rats during the onset of toxicity. Toxicology and Applied Pharmacology, 251, 119–129.
- Franc, M. A., Moffat, I. D., Boutros, P. C., Tuomisto, J. T., Tuomisto, J., Pohjanvirta, R., and Okey, A. B. (2008). Patterns of dioxin-altered mRNA expression in livers of dioxin-sensitive versus dioxin-resistant rats. Archives of Toxicology, 82, 809–830.
- Moffat, I. D., Roblin, S., Harper, P. A., Okey, A. B., and Pohjanvirta, R. (2007). Aryl hydrocarbon receptor splice variants in the dioxin-resistant rat: tissue expression and transactivational activity. Molecular Pharmacology, 72, 956–966.
- Xiong, K., Peterson, R. E., and Heideman, W. (2008). AHR activation by TCDD downregulates Sox9b expression producing jaw malformation in zebrafish embryos. Molecular Pharmacology, 74, 1544–1553.
- Yoshioka, W., Peterson, R. E., and Tohyama, C. (2010). Molecular targets that link dioxin exposure to toxicity phenotypes. Journal of Steroid Biochemistry and Molecular Biology. doi: 10.1016/j.jsbmb.2010.12.005.
- Harper, P. A., Riddick, D. S., and Okey, A. B. (2006). Regulating the regulator: factors that control levels and activity of the aryl hydrocarbon receptor. Biochemical Pharmacology, 72, 267–279.
- Giannone, J. V., Li, W., Probst, M., and Okey, A. B. (1998). Prolonged depletion of AH receptor without alteration of receptor mRNA levels after treatment of cells in culture with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochemical Pharmacology, 55, 489–497.
- Huang, P., Rannug, A., Ahlbom, F., Hakansson, H., and Ceccatelli, S. (2000). Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the expression of cytochrome P4501A1, the aryl hydrocarbon receptor, and aryl hydrocarbon receptor nuclear translocator in rat brain and pituitary. Toxicology and Applied Pharmacology, 169, 159–167.
- Pollenz, R. S. (1996). The aryl-hydrocarbon receptor, but not the aryl-hydrocarbon receptor nuclear translocator protein, is rapidly depleted in hepatic and nonhepatic culture cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Molecular Pharmacology, 49, 391–398.
- Roman, B. L., Pollenz, R. S., and Peterson, R. E. (1998). Responsiveness of the adult male rat reproductive tract to 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Ah receptor and ARNT expression, CYP1A1 induction, and Ah receptor down-regulation. Toxicology and Applied Pharmacology, 150, 228–239.
- Davarios, N. A. and Pollenz, R. S. (1999). Aryl hydrocarbon receptor imported into nucleusfollowing ligand binding is rapidly degraded via the cytoplasmic proteosome following nuclear export. Journal of Biological Chemistry, 274, 28708–28715.
- Ma, Q. and Baldwin, K. T. (2000). 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced degradation of the aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway. Role of the transcription activation and DNA binding of AhR. Journal of Biological Chemistry, 275, 8432–8438.
- Roberts, B. J. and Whitelaw, M. L. (1999). Degradation of the basic helix–loop–helix/Per-ARNT-Sim homology domain dioxin receptor via the ubiquitin/proteasome pathway. Journal of Biological Chemistry, 274, 36351–36356.
- Chen, S., Operana, T., Bonzo, J., Nguyen, N., and Tukey, R. H. (2005). ERK kinase inhibition stabilizes the aryl hydrocarbon receptor. Implications for transcriptional activation and protein degradation. Journal of Biological Chemistry, 280, 4350–4359.
- Dunham, E. E., Stevens, E. A., Glover, E., and Bradfield, C. A. (2006). The aryl hydrocarbon receptor signaling pathway is modified through interactions with a Kelch protein. Molecular Pharmacology, 70, 8–15.
- Pollenz, R. S. (2002). The mechanism of AH receptor protein down-regulation (degradation) and its impact on AH receptor-mediated gene regulation. Chemico-Biological Interactions, 141, 41–61.
- Pollenz, R. S., Popat, J., and Dougherty, E. J. (2005). Role of the carboxy-terminal transactivation domain and active transcription in the ligand-induced and ligand-independent degradation of the mouse Ahb-1 receptor. Biochemical Pharmacology, 70, 1623–1633.
- Andersen, M. E. and Barton, H. A. (1999). Biological regulation of receptor-hormone complex concentrations in relation to dose–response assessments for endocrine-active compounds. Toxicological Sciences, 48, 38–50.
- Ma, Q., Renzelli, A. J., Baldwin, K. T., and Antonini, J. M. (2000). Superinduction of CYP1A1 gene expression. Regulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of Ah receptor by cycloheximide. Journal of Biological Chemistry, 275, 12676–12683.
- Eguchi, H., Hayashi, S., Watanabe, J., Gotoh, O., and Kawajiri, K. (1994). Molecular cloning of the human AH receptor gene promoter. Biochemical and Biophysical Research Communications, 203, 615–622.
- Garrison, P. M. and Denison, M. S. (2000). Analysis of the murine AhR gene promoter. Journal of Biochemistry and Molecular Toxicology, 14, 1–10.
- Mimura, J., Ema, M., Sogawa, K., Ikawa, S., and FujiiKuriyama, Y. (1994). A complete structure of the mouse Ah receptor gene. Pharmacogenetics, 4, 349–354.
- Dohr, O., Sinning, R., Vogel, C. F. A., Munzel, P. A., and Abel, J. (1997). Effect of transforming growth factor-beta 1 on expression of aryl hydrocarbon receptor and genes of Ah gene battery: clues for independent down-regulation in A549 cells. Molecular Pharmacology, 51, 703–710.
- Tanaka, G., Kanaji, S., Hirano, A., Arima, K., Shinagawa, A., Goda, C., Yasunaga, S., Ikizawa, K., Yanagihara, Y., Kubo, M., Fujii-Kuriyama, Y., Sugita, Y., Inokuchi, A., and Izuhara, K. (2005). Induction and activation of the aryl hydrocarbon receptor by IL-4 in B cells. International Immunology 17, 797–805.
- Timsit, Y. E., Chia, F. S. C., Bhanthena, A., and Riddick, D. S. (2002). Aromatic hydrocarbon receptor expression and function in liver of hypophysectomized male rats. Toxicology and Applied Pharmacology, 185, 136–145.
- Wolff, S., Harper, P. A., Wong, J. M. Y., Mostert, V., Wang, Y., and Abel, J. (2001). Cell-specific regulation of human aryl hydrocarbon receptor expression by transforming growth factor-β1. Molecular Pharmacology, 59, 716–724.
- Mimura, J., Ema, M., Sogawa, K., and Fujii-Kuriyama, Y. (1999). Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes & Development, 13, 20–25.
- Baba, T., Mimura, J., Gradin, K., Kuroiwa, A., Watanabe, T., Matsuda, Y., Inazawa, J., Sogawa, K., and Fujii-Kuriyama, Y. (2001). Structure and expression of the Ah receptor repressor gene. Journal of Biological Chemistry, 276, 33101–33110.
- Bernshausen, T., Jux, B., Esser, C., Abel, J., and Fritsche, E. (2006). Tissue distribution and function of the aryl hydrocarbon receptor repressor (AhRR) in C57BL/6 and aryl hydro-carbon receptor deficient mice. Archives of Toxicology, 80, 206–211.
- Evans, B. R., Karchner, S. I., Allan, L. L., Pollenz, R. S., Tanguay, R. L., Jenny, M. J., Sherr, D. H., and Hahn, M. E. (2008). Repression of aryl hydrocarbon receptor (AHR) signaling by AHR repressor: role of DNA binding and competition for AHR nuclear translocator. Molecular Pharmacology, 73, 387–398.
- Tsuchiya, Y., Nakajima, M., Itoh, S., Iwanari, M., and Yokoi, T. (2003). Expression of aryl hydrocarbon receptor repressor in normal human tissues and inducibility by polycyclic aromatic hydrocarbons in human tumor-derived cell lines. Toxicological Sciences, 72, 253–259.
- Hahn, M. E., Allan, L. L., and Sherr, D. H. (2009). Regulation of constitutive and inducible AHR signaling: complex interactions involving the AHR repressor. Biochemical Pharmacology, 77, 485–497.
- Kanno, Y., Takane, Y., Takizawa, Y., and Inouye, Y. (2008). Suppressive effect of aryl hydrocarbon receptor repressor on transcriptional activity of estrogen receptor alpha by protein– protein interaction in stably and transiently expressing cell lines. Molecular and Cellular Endocrinology 291, 87–94.
- Zudaire, E., Cuesta, N., Murty, V., Woodson, K., Adams, L., Gonzalez, N., Martinez, A., Narayan, G., Kirsch, I., Franklin, W., Hirsch, F., Birrer, M., and Cuttitta, F. (2008). The aryl hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers. Journal of Clinical Investigation 118, 640–650.
- Abbott, B., Birnbaum, L. S., and Perdew, G. H. (1995). Developmental expression of two members of a new class of transcription factors. I. Expression of aryl hydrocarbon receptor in C57BL/6N mouse embryo. Developmental Dynamics, 204, 133–143.
- Carlstedt-Duke, J., Elstrom, G., Hogberg, B., and Gustafsson, J. A. (1979). Ontogeny of the rat hepatic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin and its endocrine dependence. Cancer Research, 39, 4653–4656.
- Furness, S. G. B. and Whelan, F. (2009). The pleiotropy of dioxin toxicity: xenobiotic misappropriation of the aryl hydrocarbon receptor's alternative physiological roles. Pharmacology & Therapeutics, 124, 336–353.
- Gasiewicz, T. A., Ness, W. C., and Rucci, G. (1984). Ontogeny of the cytosolic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver, lung, and thymus. Biochemical and Biophysical Research Communications, 118, 183–190.
- Sommer, R. J., Sojka, K. M., Pollenz, R. S., Cooke, P. S., and Peterson, R. E. (1999). Ah receptor and ARNT protein and mRNA concentrations in rat prostate: effects of stage of development and 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment. Toxicology and Applied Pharmacology, 155, 177–189.
- Wu, Q., Ohsako, S., Baba, T., Miyamoto, K., and Tohyama, C. (2002). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on preimplantation embryos. Toxicology, 174, 119–129.
- Jaenish, R. and Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 33 (Suppl.) 245–254.
- Kiefer, J. C. (2007). Epigenetics in development. Developmental Dynamics, 236, 1144–1156.
- Cui, Y. J., Yeager, R. L., Zhong, X., and Klaassen, C. D. (2009). Ontogenic expression of hepatic Ahr mRNA is associated with histone H3K4 di-methylation during mouse liver development. Toxicology Letters, 189, 184–190.
- Fan, Y., Bovin, G. P., Knudsen, E. S., Nebert, D. W., Xia, Y., and Puga, A. (2010). The aryl hydrocarbon receptor functions as a tumor suppressor of liver carcinogenesis. Cancer Research, 70, 212–220.
- Fritz, W. A., Lin, T.-M., Cardiff, R. D., and Peterson, R. E. (2007). The aryl hydrocarbon receptor inhibits prostate carcinogenesis in TRAMP mice. Carcinogenesis 28, 497–505.
- Mulero-Navarro, S., Carvajal-Gonzalez, J. M., Herranz, M., Ballestar, E., Fraga, M. F., Ropero, S., Esteller, M., and Fernandez-Salguero, P. M. (2006). The dioxin receptor is silenced by promoter hypermethylation in human acute lymphoblastic leukemia through inhibition of Sp1 binding. Carcinogenesis, 27, 1099–1104.
- Blankenship, A. and Matsumura, F. (1997). 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced activation of a protein tyrosine kinase, pp60src, in murine hepatic cytosol using a cell-free system. Molecular Pharmacology, 52, 667–675.
- Enan, E. and Matsumura, F. (1996). Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the protein phosphorylation pathway. Biochemical Pharmacology, 52, 1599–1612.
- Köhle, C., Gschaidmeier, H., Lauth, D., Topell, S., Zitzer, H., and Bock, K. W. (1999). 2, 3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-mediated membrane translocation of c-Src protein kinase in liver WB-F344 cells. Archives of Toxicology, 73, 152–158.
- Park, S., Dong, B., and Matsumura, F. (2007). Rapid activation of c-Src kinase by dioxin is mediated by the Cdc37–HSP90 complex as part of Ah receptor signaling in MCF10A cells. Biochemistry 46, 899–908.
- Kim, D. W., Gazourian, L., Quadri, S. A., Romieu-Mourez, R., Sherr, D. H., and Sonenshein, G. E. (2000). The RelA NFkappaB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene 19, 5498–5506.
- Ruby, D. E., Leid, M., and Kerkvliet, N. I. (2002). 2,3,7,8-Tetrachlorodibenzo-p-dioxin suppresses tumor necrosis factor-alpha and anti-CD40-induced activation of NF-kappaB/ Rel in dendritic cells: p50 homodimer activation is not affected. Molecular Pharmacology, 62, 722–728.
- Thatcher, T. H., Maggirwar, S. B., Baglole, C. J., Lakatos, H. F., Gasiewicz, T. A., Phipps, R. P., and Sime, P. J. (2007). Aryl hydrocarbon receptor-deficient mice develop heightened inflammatory responses to cigarette smoke and endotoxin associated with rapid loss of the nuclear factor-κB component RelB. American Journal of Physiology, 170, 855–864.
- Tian, Y., Ke, S., Denison, M. S., Rabson, A. B., and Gallo, M. A. (1999). Ah receptor and NF-κB interactions, a potential mechanism for dioxin toxicity. Journal of Biological Chemistry, 274, 510–515.
- Vogel, C. F. A. and Matsumura, F. (2009). A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-κB family. Biochemical Pharmacology, 77, 734–745.
- Vogel, C. F. A., Sciullo, E., Li, W., Wong, P., Lazennec, G., and Matsumura, F. (2007). RelB, a new partner of aryl hydrocarbon receptor-mediated transcription. Molecular Endocrinology, 21, 2941–2955.
- Elferink, C. J., Ge, N. L., and Levine, A. (2001). Maximal aryl hydrocarbon receptor activity depends on an interaction with the retinoblastoma protein. Molecular Pharmacology, 59, 664–673.
- Ge, N. L. and Elferink, C. J. (1998). A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein. Linking dioxin signaling to the cell cycle. Journal of Biological Chemistry, 273, 22708–22713.
- Puga, A., Barnes, S. J., Dalton, T. P., Chang, C., Knudsen, E. S., and Maier, M. A. (2000). Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. Journal of Biological Chemistry, 275, 2943–2950.
- Ohtake, F., Baba, A., Takada, I., Okada, M., Iwasaki, K., Miki, H., Takahashi, S., Kouzmenko, A., Nohara, K., Chiba, T., Fujii-Kuriyama, Y., and Kato, S. (2007). Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature, 446, 562–566.
- Wormke, M., Stoner, M., Saville, B., Walker, K., Abdelrahim, M., Burghardt, R., and Safe, S. (2003). The aryl hydrocarbon receptor mediates degradation of estrogen receptor alpha through activation of proteasomes. Molecular and Cellular Biology, 23, 1843–1855.
- Antenos, M., Casper, R. F., and Brown, T. J. (2002). Interaction with Nedd8, a ubiquitin-like protein, enhances the transcriptional activity of the aryl hydrocarbon receptor. Journal of Biological Chemistry, 277, 44028–44034.
- Jones, L. C., Okino, S. T., Gonda, T. J., and Whitlock, J. P., Jr. (2002). Myb-binding protein 1a augments AhR-dependent gene expression. Journal of Biological Chemistry, 277, 22515–22519.
- Ma, Q., Kinneer, K., Bi, Y., Chan, J. Y., and Kan, Y. W. (2004). Induction of murine NAD(P)H:quinone oxidoreductase by 2,3,7,8-tetrachlorodibenzo-p-dioxin requires the CNC (cap ‘n’ collar) basic leucine zipper transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2): cross-interaction between AhR (aryl hydrocarbon receptor) and Nrf2 signal transduction. Biochemical Journal, 377, 205–213.
- Miao, W., Hu, L., Scrivens, P. J., and Batist, G. (2005). Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. Journal of Biological Chemistry, 280, 20340–20348.
- Weiss, C., Faust, D., Durk, H., Kolluri, S. K., Pelzer, A., Schneider, S., Dietrich, C., Oesch, F., and Gottlicher, M. (2005). TCDD induces c-jun expression via a novel Ah (dioxin) receptor-mediated p38-MAPK-dependent pathway. Oncogene 24, 4975–4983.
- Kawajiri, K., Kobayashi, Y., Ohtake, F., Ikuta, T., Matsushima, Y., Mimura, Y., Pettersson, S., Pollenz, R. S., Sakaki, T., Hirokawa, T., Akiyama, T., Kurisumi, M., Poellinger, L., Kato, S., and Fujii-Kuriyama, Y. (2009). Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+mice with natural ligands. Proceedings of the National Academy of Sciences of the United States of America, 106, 13481–13486.
- Marlowe, J. L., Fan, Y., Chang, X., Peng, L., Knudsen, E. S., Xia, Y., and Puga, A. (2008). The aryl hydrocarbon receptor binds to E2F1 and inhibits E2F1-induced apoptosis. Molecular and Cellular Biology, 19, 3263–3271.
- Barhoover, M. S., Hall, J. M., Greenlee, W. F., and Thomas, R. S. (2010). Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4. Molecular Pharmacology, 77, 195–201.
- Hankinson, O. (2005). Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Archives of Biochemistry and Biophysics, 433, 379–386.
- Matsumura, F. (2009). The significance of the nongenomic pathway in mediating inflammatory signaling of the dioxin- activated Ah receptor to cause toxic effects. Biochemical Pharmacology, 77, 608–626.
- Patel, R. D., Murray, I. A., Flaveny, C. A., Kusnadi, A., and Perdew, G. H. (2009). Ah receptor represses acute phase response gene expression without binding to its cognate response element. Laboratory Investigation, 89, 695–707.
- Bunger, M. K., Glover, E., Moran, S. M., Walisser, J. A., Lahvis, G. P., Hsu, E. L., and Bradfield, C. A. (2008). Abnormal liver development and resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in mice carrying a mutation in the DNA binding domain of the aryl hydrocarbon receptor. Toxicological Sciences, 106, 83–92.
- Bunger, M. K., Moran, S. M., Glover, E., Thomae, T. L., Lahvis, G. P., Lin, B. C., and Bradfield, C. A. (2003). Resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity and abnormal liver development in mice carrying a mutation in the nuclear localization sequence of the aryl hydrocarbon receptor. Journal of Biological Chemistry, 278, 17767–17774.
- Tijet, N., Boutros, P. C., Moffat, I. D., Okey, A. B., Tuomisto, J., and Pohjanvirta (2006). Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Molecular Pharmacology, 69, 140–153.
- Nebert, D. W. (1989). The Ah locus: genetic differences in toxicity, cancer, mutation and birth defects. Critical Reviews in Toxicology, 20, 153–174.
- Nebert, D. W., Brown, D. D., Towne, D. W., and Eisen, H. J. (1984). Association of fertility, fitness, and longevity with the murine Ah locus among (C57BL/6N) (C3H/HeN) recombinant inbred mice. Biology of Reproduction, 30, 363–373.
- Bankoti, J., Rase, B., Simones, T., and Shepherd, D. M. (2010). Functional and phenotypic effects of AhR activation in inflammatory dendritic cells. Toxicology and Applied Pharmacology, 246, 18–28.
- Esser, C., Rannug, A., and Stockinger, B. (2009). The aryl hydrocarbon receptor in immunity. Trends in Immunology 30, 447–454.
- Funatake, C. J., Ao, K., Suzuki, T., Yamamoto, M., FujiiKuriyama, Y., Kerkvliet, N. I., and Nohara, K. (2009). Expression of constitutively-active aryl hydrocarbon receptor in T-cells enhances the down-regulation of CD62L, but does not alter expression of CD25 or suppress the allogeneic CTL response. Journal of Immunotoxicology 6, 194–203.
- Hauben, E., Gregory, S., Draghici, E., Migliavacca, B., Olivieri, S., Woisetschläger, M., and Roncarolo, M. G. (2008). Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells. Blood, 112, 1214–1222.
- Head, J. L. and Lawrence, B. P. (2009). The aryl hydrocarbon receptor is a modulator of anti-viral immunity. Biochemical Pharmacology, 77, 642–653.
- Kerkvliet, N. I. (2009). AHR-mediated immunomodulation: the role of altered gene transcription. Biochemical Pharmacology, 77, 746–760.
- Kimura, A., Naka, T., Nohara, K., Fujii-Kuriyama, Y., and Kishimoto, T. (2008). Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 9721–9726.
- Marshall, N. B., Vorachek, W. R., Steppan, L. B., Mourich, D. V., and Kerkvliet, N. I. (2008). Functional characterization and gene expression analysis of CD4+ CD25+ regulatory T cells generated in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of Immunology, 181, 2382–2391.
- Quintana, F. J., Basso, A. S., Iglesias, A. H., Korn, T., Farez, M. F., Bettelli, E., Caccamo, M., Oukka, M., and Weiner, H. L. (2008). Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature, 453, 65–71.
- Aragon, A. C., Kopf, P. G., Campen, M. J., Huwe, J. K., and Walker, M. K. (2008). In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology. Toxicological Sciences, 101, 321–330.
- Dalton, T. P., Kerzee, J. K., Wang, B., Miller, M., Dieter, M. Z., Lorenz, J. N., Shertzer, H. G., and Nebert, D. W. (2001). Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovascular Toxicology, 1, 285–298.
- Wang, Y., Fan, Y., and Puga, A. (2010). Dioxin exposure disrupts the differentiation of mouse embryonic stem cells into cardiomyocytes. Toxicological Sciences, 115, 225–237.
- Hernandez-Ochoa, I., Karman, B. N., and Flaws, J. A. (2009). The role of the aryl hydrocarbon receptor in the female reproductive system. Biochemical Pharmacology, 77, 547–559.
- Loertscher, J. A., Sattler, C. A., and Allen-Hoffman, B. L. (2001). 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters the differentiation pattern of human keratinocytes in organotypic culture. Toxicology and Applied Pharmacology, 175, 121–129.
- Panteleyev, A. A. and Bicker, D. R. (2006). Dioxin-induced chloracne: reconstructing the cellular and molecular mechanisms of a classic environmental disease. Experimental Dermatology, 15, 705–730.
- Vorderstrasse, B. A., Fenton, S. E., Bohn, A. A., Cundiff, J. A., and Lawrence, B. P. (2004). A novel effect of dioxin: exposure during pregnancy severely impairs mammary gland differentiation. Toxicological Sciences, 78, 248–257.
- Huang, G. and Elferink, C. J. (2005). Multiple mechanisms are involved in Ah receptor-mediated cell cycle arrest. Molecular Pharmacology, 67, 88–96.
- Mitchell, K. A. and Elferink, C. J. (2009). Timing is everything: consequences of transient and sustained AhR activity. Biochemical Pharmacology, 77, 947–956.
- Ray, S. S. and Swanson, H. I. (2009). Activation of the aryl hydrocarbon receptor by TCDD inhibits senescence: a tumor promoting event? Biochemical Pharmacology, 77, 681–688.
- Garrett, R. W. and Gasiewicz, T. A. (2006). The aryl hydro-carbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin alters the circadian rhythms, quiescence, and expression of clock genes in murine hematopoietic stem and progenitor cells. Molecular Pharmacology, 69, 2076–2083.
- Mukai, M., Lin, T.-M., Peterson, R. E., Cooke, P. S., and Tischkau, S. A. (2008). Behavioral rhythmicity of mice lacking AhR and attenuation of light-induced phase shift by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of Biological Rhythms, 23, 200–210.
- Shimba, S. and Watabe, Y. (2009). Crosstalk between the AHR signaling pathway and circadian rhythm. Biochemical Pharmacology, 77, 560–565.
- Abbott, B. D. and Birnbaum, L. S. (1991). TCDD exposure of human palatal shelves in organ culture alters the differentiation of medial epithelial cells. Teratology, 43, 119–132.
- Vezina, C. M., Lin, T.-M., and Peterson, R. E. (2009). AHR signaling in prostate growth, morphogenesis, and disease. Biochemical Pharmacology, 77, 566–576.
- Dietrich, C. and Kaina, B. (2010). The aryl hydrocarbon receptor (AhR) in the regulation of cell–cell contact and tumor growth. Carcinogenesis, 31, 1319–1328.
- Fritz, W. A., Lin, T.-M., Safe, S., Moore, R. W., and Peterson, R. E. (2009). The selective aryl hydrocarbon receptor modulator 6-methyl-1,3,8,-trichlorodibenzofuran inhibits prostate tumor metastasis in TRAMP mice. Biochemical Pharmacology, 77, 1151–1160.
- Kung, T., Murphy, K. A., and White, L. A. (2009). The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism. Biochemical Pharmacology, 77, 536–546.
- Villano, C. M., Murphy, K. A., Akintobi, A., and White, L. A. (2006). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces matrix metalloproteinase (MMP) expression and invasion in A2058 melanoma cells. Toxicology and Applied Pharmacology, 210, 212–224.
- Birnbaum, L. S. (1995). Developmental effects of dioxins and related endocrine disrupting chemicals. Toxicology Letters, 82–83, 743–750.
- Kakeyama, M. and Tohyama, C. (2003). Developmental neurotoxicity of dioxin and its related compounds. Industrial Health, 41, 215–230.
- Nakajima, S., Saijo, Y., Kato, S., Sasaki, S., Uno, A., Kanagami, N., Hirakawa, H., Hori, T., Tobiishi, K., Todaka, T., Nakamura, Y., Yanagiya, S., Senogoku, Y., Iida, T., Sata, F., and Kishi, R. (2006). Effects of prenatal exposure to polychlorinated biphenyls and dioxins on mental and motor development in Japanese children at 6 months of age. Environmental Health Perspectives, 114, 147–152.
- Williamson, M. A., Gasiewicz, T. A., and Opanashuk, L. A. (2005). Aryl hydrocarbon receptor expression and activity in cerebellar granule neuroblasts: implications for development and dioxin neurotoxicity. Toxicological Sciences, 83, 340–348.
- Herlin, M., Kalantari, F., Stern, N., Sand, S., Larsson, S., Viluksela, M., Tuomisto, J. T., Tuomisto, J., Tuukkanen, J., Jamsa, T., Lind, P. M., and Hakansson, H. (2010). Quantitative characterization of changes in bone geometry, mineral density, and biomechanical properties in two rat strains with different Ah-receptor structures after long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology 273, 1–11.
- Hermsen, S. A., Larsson, S., Arima, A., Muneoka, A., Ihara, T., Sumida, H., Fukasato, T., Kubota, S., Yasuda, M., and Lind, P. M. (2008). In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects bone tissue in rhesus monkeys. Toxicology 253, 147–152.
- Korkalainen, M., Kallio, E., Olkku, A., Nelo, K., Ilvesaro, J., Tuukkanen, J., Mahonen, A., and Viluksela, M. (2009). Dioxins interfere with differentiation of osteoblasts and osteoclasts. Bone, 44, 1134–1142.
- Wijheden, C., Brunnberg, S., Larsson, S., Lind, P. M., Andersson, G., and Hanberg, A. (2010). Transgenic mice with a constitutively active aryl hydrocarbon receptor display a gender-specific bone phenotype. Toxicological Sciences, 114, 48–58.
- Haarmann-Stemmann, T., Bothe, H., and Abel, J. (2009). Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochemical Pharmacology, 77, 508–250.
- Nebert, D. W., Eisen, H. J., and Hankinson, O. (1984). The Ah receptor: binding specific only for foreign chemicals? Biochemical Pharmacology, 33, 917–924.
- Denison, M. S. and Nagy, S. R. (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annual Review of Pharmacology and Toxicology, 43, 309–334.
- Nguyen, L. P. and Bradfield, C. A. (2008). The search for endogenous activators of the aryl hydrocarbon receptor. Chemical Research in Toxicology, 21, 102–116.
- Ashida, H., Fukuda, I., Yamashita, T., and Kanazawa, K. (2000). Flavones and flavonols at dietary levels inhibit a transformation of aryl hydrocarbon receptor induced by dioxin. FEBS Letters, 476, 213–217.
- Adachi, J., Mori, Y., Matsui, S., Takigami, H., Fujino, J., Kitagawa, H., Miller, C. A., Kato, T., Saeki, K., and Matsuda, T. (2001). Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. Journal of Biological Chemistry, 276, 31475–31478.
- Ciolino, H. P., Daschner, P. J., and Yeh, G. C. (1999). Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochemical Journal, 340, 715–722.
- Heath-Pagliuso, S., Rogers, W. J., Tullis, K., Seidel, S. D., Cenijn, P. H., Brouwer, A., and Denison, M. S. (1998). Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry, 37, 11508–11515.
- Sinal, C. J. and Bend, J. R. (1997). Aryl hydrocarbon receptor-dependent induction of cyp1a1 by bilirubin in mouse hepatoma Hepa 1c1c7 cells. Molecular Pharmacology, 52, 590–599.
- Rannug, A., Rannug, U., Rosenkranz, H. S., Winqvist, L., Westerholm, R., Agurell, E., and Grafstrom, A.-K. (1987). Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances. Journal of Biological Chemistry, 262, 15422–15427.
- Bjeldanes, L. F., Kim, J. Y., Grose, K. R., Bartholomew, J. C., and Bradfield, C. A. (1991). Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparison with 2,3,7,8-tetrachlorodi- benzo-p-dioxin. Proceedings of the National Academy of Sciences of the United States of America, 88, 9543–9547.
- Song, J., Clagett-Dame, M., Peterson, R. E., Hahn, M. E., Westler, W. M., Sicinski, R. R., and DeLuca, H. F. (2002). A ligand for the aryl hydrocarbon receptor isolated from lung. Proceedings of the National Academy of Sciences of the United States of America, 99, 14694–14699.
- Henry, E. C., Bemis, J. C., Henry, O., Kende, A. S., and Gasiewicz, T. A. (2006). A potential endogenous ligand for the aryl hydrocarbon receptor has potent agonist activity in vitro and in vivo. Archives of Biochemistry and Biophysics, 450, 67–77.
- Wincent, E., Amini, N., Luecke, S., Glatt, H., Bergman, J., Crescenzi, C., Rannug, A., and Rannug, U. (2009). The suggested physiologic aryl hydrocarbon receptor activator and cytochrome P4501 substrate 6-formylindolo[3,2-b]carbazole is present in humans. Journal of Biological Chemistry, 284, 2690–2696.
- Agostinis, P., Garmyn, M., and Van Laethem, A. (2007). The aryl hydrocarbon receptor: an illuminating effector of the UVB response. Science STKE pe49.
- Mukai, M. and Tischkau, S. A. (2007). Effects of tryptophan photoproducts in the circadian timing system: searching for a physiological role for aryl hydrocarbon receptor. Toxicological Sciences, 95, 172–181.
- Bittinger, M. A., Nguyen, L. P., and Bradfield, C. A. (2003). Aspartate aminotransferase generates proagonists of the aryl hydrocarbon receptor. Molecular Pharmacology, 64, 550–556.
- Chowdhury, G., Dostalek, M., Hsu, E. L., Stec, D. F., Bradfield, C. A., and Guengerich, F. P. (2009). Structural identification of diindole agonists of the aryl hydrocarbon receptor derived from degradation of indole-3-pyruvic acid. Chemical Research in Toxicology, 22, 1905–1912.
- Nguyen, L. P., Hsu, E. L., Chowdhury, G., Dostalek, M., Guengerich, F. P., and Bradfield, C. A. (2009). D-amino acid oxidase generates agonists of the aryl hydrocarbon receptor from D-tryptophan. Chemical Research in Toxicology, 22, 1897–1904.
- DiNatale, B. C., Murray, I. A., Schroeder, J. C., Flaveny, C. A., Lahoti, T. S., Laurenzana, E. M., Omiecinski, C. J., and Perdew, G. H. (2010). Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicological Sciences, 115, 89–97.
- Mezrich, J. D., Fechner, J. H., Zhang, X., Johnson, B. P., Burlingham, W. J., and Bradfield, C. A. (2010). An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. Journal of Immunology, 185, 3190–3198.
- Nguyen, N. T., Kimura, A., Nakahama, T., Chinen, I., Masuda, K., Nohara, K., Fujii-Kuriyama, Y., and Kishimoto, T. (2010). Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 107, 19961–19966.
- Chiaro, C. R., Morales, J. L., Prabhu, K. S., and Perdew, G. H. (2008). Leukotriene A4 metabolites are endogenous ligands for the Ah receptor. Biochemistry 47, 8445–8455.
- Chiaro, C. R., Patel, R. D., and Perdew, G. H. (2008). 12(R)Hydroxy-5(Z),8(Z),10(E),14(Z)-eicosatetraenoic acid [12(R)HETE], an arachadonic acid derivative, is an activator of the aryl hydrocarbon receptor. Molecular Pharmacology, 74, 1649–1656.
- Schaldach, C. M., Riby, J., and Bjeldanes, L. F. (1999). Lipoxin A4: a new class of ligand for the Ah receptor. Biochemistry, 38, 7594–7600.
- Seidel, S. D., Winters, G. M., Rogers, W. J., Ziccardi, M. H., Li, V., Keser, B., and Denison, M. S. (2001). Activation of the Ah receptor signaling pathway by prostaglandins. Journal of Biochemistry and Molecular Toxicology, 15, 187–196.
- Nebert, D. W. and Karp, C. L. (2008). Endogenous functions of the aryl hydrocarbon receptor (AHR): intersection of cytochrome P4501 (CYP1)-metabolized eicosanoids and AHR biology. Journal of Biological Chemistry, 283, 36061–36065.
- McMillan, B. J. and Bradfield, C. A. (2007). The aryl hydro-carbon receptor is activated by modified low-density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 104, 1412–1417.
- Ma, Q. and Whitlock, J. P., Jr. (1996). The aromatic hydro-carbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin. Molecular and Cellular Biology, 16, 2144–2150.
- Weiss, C., Kolluri, S. K., Kiefer, F., and Gottlicher, M. (1996). Complementation of Ah receptor deficiency in hepatoma cells: negative feedback regulation and cell cycle control by the Ah receptor. Experimental Cell Research, 226, 154–163.
- Chang, C.-Y. and Puga, A. (1998). Constitutive activation of the aromatic hydrocarbon receptor. Molecular and Cellular Biology, 18, 525–535.
- Crawford, R. B., Holsapple, M. P., and Kaminski, N. E. (1997). Leukocyte activation induces aryl hydrocarbon receptor up-regulation, DNA binding, and increased Cyp1a1 expression in the absence of exogenous ligand. Molecular Pharmacology, 52, 921–927.
- Ikuta, T., Kobayashi, Y., and Kawajiri, K. (2004). Cell density regulates intracellular localization of aryl hydrocarbon receptor. Journal of Biological Chemistry, 279, 19209– 19216.
- Sadek, C. M. and Allen-Hoffmann, B. L. (1994). Suspension-mediated induction of Hepa 1c1c7 Cyp1a-1 expression is dependent on the Ah receptor signal transduction pathway. Journal of Biological Chemistry, 269, 31505–31509.
- Santiago-Josefat, B., Pozo-Guisado, E., Mulero-Navarro, S., and Fernandez-Salguero, P. M. (2001). Proteasome inhibition induces nuclear translocation and transcriptional activation of the dioxin receptor in mouse embryo primary fibroblasts in the absence of xenobiotics. Molecular and Cellular Biology, 21, 1700–1709.
- Singh, S., Nord, N., and Perdew, G. H. (1996). Characterization of the activated form of the aryl hydrocarbon receptor in the nucleus of HeLa cells in the absence of endogenous ligand. Archives of Biochemistry and Biophysics, 329, 47–55.
- Hu, W., Sorrentino, C., Denison, M. S., Kolaja, K., and Fielden, M. R. (2007). Induction of cyp1a1 is a nonspecific biomarker of aryl hydrocarbon receptor activation: results of a large scale screening of pharmaceuticals and toxicants in vivo and in vitro. Molecular Pharmacology, 71, 1475–1486.
- Lawrence, B. P., Denison, M. S., Novak, H., Vorderstrasse, B. A., Harrer, N., Neruda, W., Reichel, C., and Woisetschläger, M. (2008). Activation of the aryl hydrocarbon receptor is essential for mediating the anti-inflammatory effects of a novel low-molecular-weight compound. Blood, 112, 1158–1165.
- Morales, J. L., Krzeminski, J., Amin, S., and Perdew, G. H. (2008). Characterization of the antiallergic drugs 3-[2-(2-phenylethyl)benzoimidazole-4-yl]-3-hydroxypropanoic acid and ethyl 3-hydroxy-3-[2-(2-phenylethyl)benzoimidazol-4-yl]propanoate as full aryl hydrocarbon receptor agonists. Chemical Research in Toxicology, 21, 472–482.
- Negishi, T., Kato, Y., Ooneda, O., Mimura, J., Takada, T., Mochizuki, H., Yamamoto, M., Fujii-Kuriyama, Y., and Furusako, S. (2005). Effects of aryl hydrocarbon receptor signaling on the modulation of Th1/Th2 balance. Journal of Immunology, 175, 7348–7356.
- Murray, I. A., Morales, J. L., Flaveny, C. A., DiNatale, B. C., Chiaro, C., Gowdahalli, K., Amin, S., and Perdew, G. H. (2010). Evidence for ligand-mediated selective modulation of aryl hydrocarbon receptor activity. Molecular Pharmacology, 77, 247–254.
- Murray, I. A., Krishnegowda, G., DiNatale, B. C., Flaveny, C. A., Chiaro, C., Lin, J.-M., Sharma, A. K., Amin, S., and Perdew, G. H. (2010). Development of a selective modulator of aryl hydrocarbon (Ah) receptor activity that exhibits anti-inflammatory properties. Chemical Research in Toxicology, 23, 955–966.
- Boitano, A. E., Wang, J., Romeo, R., Bouchez, L. C., Parker, A. E., Sutton, S. E., Walker, J. R., Flaveny, C. A., Perdew, G. H., Denison, M. S., Schultz, P. G., and Cooke, M. P. (2010). Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science, 329, 1345–1348.
- Sakai, R., Kajiume, T., Inoue, H., Kanno, R., Miyazaki, M., Ninomiya, Y., and Kanno, M. (2003). TCDD treatment eliminates the long-term reconstitution activity of hematopoietic stem cells. Toxicological Sciences, 72, 84–91.
- Singh, K. P., Garrett, R. W., Casado, F. L., and Gasiewicz, T. A. (2011). Aryl hydrocarbon receptor-null allele mice have hematopoietic stem/progenitor cells with abnormal characteristics and functions. Stem Cells and Development, 20, 769–784.
- Singh, K. P., Wyman, A., Casado, F. L., Garrett, R. W., and Gasiewicz, T. A. (2009). Treatment of mice with the Ah receptor agonist and human carcinogen dioxin results in altered numbers and function of hematopoietic stem cells. Carcinogenesis 30, 11–19.
- Thurmond, T. S., Staples, J. E., Silverstone, A. E., and Gasiewicz, T. A. (2000). The aryl hydrocarbon receptor has a role in the in vivo maturation of murine bone marrow B lymphocytes and their response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 165, 227–236.
- Kociba, R. J., Keyes, D. G., Beyer, J. E., Carreon, R. M., Wade, C. E., Dittenber, D. A., Kalnins, R. P., Frauson, L. E., Park, C. N., Barnard, S. D., Hummel, R. A., and Humiston, C. G. (1978). Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicology and Applied Pharmacology, 46, 279–303.
- Safe, S. and Wormke, M. (2003). Inhibitory aryl hydrocarbon receptor–estrogen receptor a cross-talk and mechanisms of action. Chemical Research in Toxicology, 16, 807–816.
- McDougal, A., Wormke, M., Calvin, J., and Safe, S. (2001). Tamoxifen-induced antitumorigenic/antiestrogenic action synergized by a selective Ah receptor modulator. Cancer Research, 61, 3901–3907.
- Safe, S. and McDougal, M. (2003). Mechanism of action and development of selective aryl hydrocarbon receptor modulators for treatment of hormone-dependent cancers. International Journal of Oncology, 20, 1123–1128.
- Safe, S., Qin, C., and McDougal, A. (1999). Development of selective aryl hydrocarbon receptor modulators (SARMs) for treatment of breast cancer. Expert Opinion on Drug Investigational Drugs, 8, 1385–1396.
- Zhang, S., Lei, P., Liu, X., Li, X., Walker, K., Kotha, L., Rowlands, C., and Safe, S. (2009). The aryl hydrocarbon receptor as a target for estrogen receptor-negative breast cancer chemotherapy. Endocrine-Related Cancer, 16, 835–844.
- Hall, J. M., Barhoover, M. A., Kazmin, D., McDonnell, D. P., Greenlee, W. F., and Thomas, R. S. (2010). Activation of the aryl hydrocarbon receptor inhibits invasive and metastatic features of human breast cancer cells and promotes breast cancer cell differentiation. Molecular Endocrinology, 24, 359–369.
- Prud'homme, G. J., Glinka, Y., Toulina, A., Ace, O., Venkateswaran, S., and Jothy, S. (2010). Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist. PLoS One, 5, e13831.
- DuSell, C. D., Nelson, E. R., Wittmann, B. M., Fretz, J. A., Kazmin, D., Thomas, R. S., Pike, J. W., and McDonnell, D. P. (2010). Regulation of aryl hydrocarbon receptor function by selective estrogen receptor modulators. Molecular Endocrinology, 24, 33–46.
- Bisson, W. H., Koch, D. C., O'Donnell, E. F., Khalil, S. M., Kerkvliet, N. I., Tanguay, R. L., Abagyan, R., and Kolluri, S. K. (2009). Modeling of the aryl hydrocarbon receptor (AhR) ligand binding domain and its utility in virtual ligand screening to predict new AhR ligands. Journal of Medicinal Chemistry, 52, 5635–5641.
- Pandini, A., Soshilov, A. A., Song, Y., Zhao, J., Bonati, L., and Denison, M. S. (2009). Detection of the TCDD binding-fingerprint within the Ah receptor ligand binding domain by structurally driven mutagenesis and functional analysis. Biochemistry 48, 5972–5983.
- Procopio, M., Lahm, A., Tramontano, A., Bonati, L., and Pitea, D. (2002). A model for recognition of polychlorinated dibenzo-p-dioxins by the aryl hydrocarbon receptor. European Journal of Biochemistry, 269, 13–18.
- Flaveny, C. A., Murray, I. A., Chiaro, C. R., and Perdew, G. H. (2009). Ligand selectivity and gene regulation by the human aryl hydrocarbon receptor in transgenic mice. Molecular Pharmacology, 75, 1412–1420.
- Flaveny, C. A. and Perdew, G. H. (2009). Transgenic humanized AHR mouse reveals differences between human and mouse AHR ligand selectivity. Molecular and Cellular Pharmacology, 1, 119–123.
- McGuire, J., Okamoto, K., Whitelaw, M. L., Tanaka, H., and Poellinger, L. (2001). Definition of a dioxin receptor mutant that is a constitutive activator of transcription: delineation of overlapping repression and ligand binding functions within the PAS domain. Journal of Biological Chemistry, 276, 41841–41849.
- Tauchi, M., Hida, A., Negishi, T., Katsuoka, F., Noda, S., Mimura, J., Hosoya, T., Yanaka, A., Aburatani, H., FujiiKuriyama, Y., Motohashi, H., and Yamamoto, M. (2005). Constitutive expression of aryl hydrocarbon receptor in keratinocytes causes inflammatory skin lesions. Molecular and Cellular Biology, 25, 9360–9368.
- Walisser, J. A., Bunger, M. K., Glover, E., and Bradfield, C. A. (2004). Gestational exposure of Ahr and Arnt hypomorphs to dioxin rescues vascular development. Proceedings of the National Academy of Sciences of the United States of America, 101, 16677–16682.
- Walisser, J. A., Glover, E., Pande, K., Liss, A. L., and Bradfield, C. A. (2005). Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types. Proceedings of the National Academy of Sciences of the United States of America, 102, 17858–17863.
- Harstad, E. B., Guite, C. A., Thomae, T. L., and Bradfield, C. A. (2006). Liver deformation in Ahr-null mice: evidence for aberrant hepatic perfusion in early development. Molecular Pharmacology, 69, 1534–1541.
- Lahvis, G. P., Lindell, S. L., Thomas, R. S., McCuskey, R. S., Murphy, C., Glover, E., Bentz, M., Southard, J., and Bradfield, C. A. (2000). Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 97, 10442–10447.
- Lahvis, G. P., Pyzalski, R. W., Glover, E., Pitot, H. C., McElwee, H. K., and Bradfield, C. A. (2005). The aryl hydrocarbon receptor is required for developmental closure of the ductus venosus in the neonatal mouse. Molecular Pharmacology, 67, 714–720.
- Lund, A. K., Goens, M. B., Kanagy, N. L., and Walker, M. K. (2003). Cardiac hypertrophy in aryl hydrocarbon receptor null mice is correlated with elevated angiotensin II, endothelin-1, and mean arterial blood pressure. Toxicology and Applied Pharmacology, 193, 177–187.
- Roman, A. C., Carvajal-Gonzalez, J. M., Rico-Leo, E. M., and Fernandez-Salguero, P. M. (2009). Dioxin receptor deficiency impairs angiogenesis by a mechanism involving VEGF-A depletion in the endothelium and transforming growth factor-beta overexpression in the stroma. Journal of Biological Chemistry, 284, 25135–25148.
- Thackaberry, E. A., Bedrick, E. J., Goens, M. B., Danielson, L., Lund, A. K., Gabaldon, D., Smith, S. M., and Walker, M. K. (2003). Insulin regulation in AhR-null mice: embryonic cardiac enlargement, neonatal macrosomia, and altered insulin regulation and response in pregnant and aging AhR-null females. Toxicological Sciences, 76, 407–417.
- Vasquez, A., Atallah-Yunes, N., Smith, F. C., You, X., Chase, S. E., Silverstone, A. E., and Vikstrom, K. L. (2003). A role for the aryl hydrocarbon receptor in cardiac physiology and function as demonstrated by AhR knockout mice. Cardiovascular Toxicology, 3, 153–163.
- Zhang, N., Agbor, L. N., Scott, J. A., Zalabowski, T., Elased, K. M., Trujillo, A., Duke, M. S., Wolf, V., Walsh, M. T., Born, J. L., Felton, L. A., Wang, J., Kanagy, N. L., and Walker, M. K. (2010). An activated renin-angiotensin system maintains normal blood pressure in aryl hydrocarbon receptor heterozygous mice but not in null mice. Biochemical Pharmacology, 80, 197–204.
- Kimura, A., Naka, T., Nakamura, T., Chinen, I., Masuda, K., Nohara, K., Fujii-Kuriyama, Y., and Kishimoto, T. (2009). Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. Journal of Experimental Medicine, 206, 2027–2035.
- Lindsey, S. and Papoutsakis, E. T. (2011). The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization. British Journal of Haematology, 154, 469–484.
- Rodriguez-Sosa, M., Elizondo, G., Lopez-Duran, R. M., Rivera, I., Gonzalez, F. J., and Vega, L. (2005). Over-production of IFN-γ and IL-12 in AhR-null mice. FEBS Letters, 579, 6403–6410.
- Sekine, H., Mimura, J., Oshima, M., Okawa, H., Kanno, J., Igarashi, K., Gonzalez, F. J., Ikuta, T., Kawijiri, K., and FujiiKuriyama, Y. (2009). Hypersensitivity of AhR-deficient mice to LPS-induced septic shock. Molecular and Cellular Biology, 29, 6391–6400.
- Shi, L. Z., Faith, N. G., Nakayama, Y., Suresh, M., Steinberg, H., and Czuprynski, C. J. (2007). The aryl hydrocarbon receptor is required for optimal resistance to Listeria monocytogenes infection in mice. Journal of Immunology, 179, 6952–6962.
- Veldhoen, M., Hirata, K., Bauer, J., Dumoutier, L., Renauld, J. C., and Stockinger, B. (2008). The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109.
- Jux, B., Kadow, S., Luecke, S., Rannug, A., Krutmann, J., and Esser, C. (2011). The aryl hydrocarbon receptor mediates UVB radiation-induced skin tanning. Journal of Investigative Dermatology, 131, 203–210.
- Abbott, B. D., Schmid, J. E., Pitt, J. A., Buckalew, A. R., Wood, C. R., Held, G. A., and Diliberto, J. J. (1999). Adverse reproductive outcomes in the transgenic Ah receptor-deficient mouse. Toxicology and Applied Pharmacology, 155, 62–70.
- Baba, T., Mimura, J., Nakamura, N., Harada, N., Yamamoto, M., Morohashi, K., and Fujii-Kuriyama, Y. (2005). Intrinsic function of the aryl hydrocarbon (dioxin) receptor as a key factor in female reproduction. Molecular and Cellular Biology, 25, 10040–10051.
- Barnett, K. R., Tomic, D., Gupta, R. K., Babus, J. K., Roby, K. F., Terranova, P. F., and Flaws, J. A. (2007). The aryl hydro-carbon receptor is required for normal gonadotropin responsiveness in the mouse ovary. Toxicology and Applied Pharmacology, 223, 66–77.
- Barnett, K. R., Tomic, D., Gupta, R. K., Miller, K. P., Mea-chum, S., Paulose, T., and Flaws, J. A. (2007). The aryl hydrocarbon receptor affects mouse ovarian follicle growth via mechanisms involving estradiol regulation and responsiveness. Biology of Reproduction, 76, 1062–1070.
- Benedict, J. C., Lin, T.-M., Loeffler, I. K., Peterson, R. E., and Flaws, J. A. (2000). Physiological role of the aryl hydrocarbon receptor in mouse ovary development. Toxicological Sciences, 56, 382–388.
- Robles, R., Morita, Y., Mann, K. K., Perez, G. I., Yang, S., Matikainen, T., Sherr, D. H., and Tilly, J. L. (2000). The aryl hydrocarbon receptor, a basic helix–loop–helix transcription factor of the PAS gene family, is required for normal ovarian germcell dynamics in themouse. Endocrinology 141, 450–453.
- Hushka, L. J., Williams, J. S., and Greenlee, W. F. (1998). Characterization of 2,3,7,8-tetrachlorodibenzofuran-dependent suppression and AH receptor pathway gene expression in the developing mouse mammary gland. Toxicology and Applied Pharmacology, 152, 200–210.
- Lin, T.-M., Ko, K., Moore, R. W., Simanainen, U., Oberley, T. D., and Peterson, R. E. (2002). Effects of aryl hydrocarbon receptor null mutation and in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on prostate and seminal vesicle development in C57BL/6 mice. Toxicological Sciences, 68, 479–487.
- Carvajal-Gonzalez, J. M., Roman, A. C., Cerezo-Guisado, M. I., Rico-Leo, E. M., Martin-Partido, G., and FernandezSalguero, P. M. (2009). Loss of dioxin-receptor expression accelerates wound healing in vivo by a mechanism involving TGFβ. Journal of Cell Science, 122, 1823–1833.
- Mulero-Navarro, S., Pozo-Guisado, E., Perez-Mancera, P. A., Alvarez-Barrientos, A., Catalina-Fernandez, I., Hernandez-Nieto, E., Saenz-Santamaria, J., Martinez, N., Rojas, J. M., Sanchez-Garcia, I., and Fernandez-Salguero, P. M. (2005). Immortalized mouse mammary fibroblasts lacking dioxin receptor have impaired tumorigenicity in a subcutaneous mouse xenograft model. Journal of Biological Chemistry, 280, 28731–28741.
- Fernandez-Salguero, P. M., Ward, J. M., Sundberg, J. P., and Gonzalez, F. J. (1997). Lesions of aryl-hydrocarbon receptor-deficient mice. Veterinary Pathology, 34, 605–614.
- Hirabayashi, Y. and Inoue, T. (2009). Aryl hydrocarbon receptor biology and xenobiotic responses in hematopoietic progenitor cells. Biochemical Pharmacology, 77, 521–535.
- Lin, B. C., Nguyen, N., Walisser, J. A., and Bradfield, C. A. (2008). A hypomorphic allele of aryl hydrocarbon receptor-associated protein-9 produces a phenocopy of the Ahr-null mouse. Molecular Pharmacology, 74, 1367–1371.
- Nukaya, M., Lin, B. C., Glover, E., Moran, S. M., Kennedy, G. D., and Bradfield, C. A. (2010). The aryl hydrocarbon receptor-interacting protein (AIP) is required for dioxin-induced hepatotoxicity but not for the induction of the Cyp1a1 and Cyp1a2 genes. Journal of Biological Chemistry, 285, 35599– 35605.