Real-Time Techniques for Aerodynamic Size Measurement
Paul A. Baron
Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
Search for more papers by this authorMalay K. Mazumder
Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts, USA
Search for more papers by this authorYung-Sung Cheng
Inhalation Toxicology Research Institute, Albuquerque, New Mexico, USA
Search for more papers by this authorThomas M. Peters
Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
Search for more papers by this authorPaul A. Baron
Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
Search for more papers by this authorMalay K. Mazumder
Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts, USA
Search for more papers by this authorYung-Sung Cheng
Inhalation Toxicology Research Institute, Albuquerque, New Mexico, USA
Search for more papers by this authorThomas M. Peters
Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
Search for more papers by this authorPramod Kulkarni
Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
Search for more papers by this authorPaul A. Baron
Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
Search for more papers by this authorKlaus Willeke
Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
Search for more papers by this authorThe findings and conclusions in this chapter are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.
Summary
This chapter contains sections titled:
-
Introduction
-
Electric-Single Particle Aerodynamic Relaxation Time Analyzer
-
Aerodynamic Particle Sizer
-
Aerosizer
-
List of Symbols
-
References
14.6 REFERENCES
- Agarwal, A. R., and R. J. Ramiarz (1981). Development of an Aerodynamic Particle Size Analyzer. Cincinnati, OH, USDHEW-NIOSH.
- Agranovski, V., and Z. D. Ristovski (2005). Real-time monitoring of viable bioaerosols: Capability of the UVAPS to predict the amount of individual microorganisms in aerosol particles. J. Aerosol Sci. 36(5–6): 665–676.
- Ali, M., R. N. Reddy, and M. K. Mazumder (2008). Simultaneous characterization of aerodynamic size and electrostatic charge characterization of inhaled dry powder inhaler aerosol. Curr. Resp. Med. Rev. 4: 2–5.
- Ananth, G., and J. C. Wilson (1988). Theoretical-analysis of the performance of the TSI aerodynamic particle sizer—The effect of density on response. Aerosol Sci. Technol. 9(3): 189–199.
- Baron, P. A. (1986). Calibration and use of the aerodynamic particle sizer (APS 3300). Aerosol Sci. Technol. 5(1): 55–67.
- Baron, P. A., and K. Willeke (1986). Respirable droplets from whirlpools—Measurements of size distribution and estimation of disease potential. Environ. Res. 39(1): 8–18.
- Baron, P. A., J. M. Yacher, and W. A. Heitbrink (1996). Some observations on the response of the Aerosizer to droplets in the 4–18 µm range. Presented at the American Asssication for Aerosol Research Annual Conference, October, Orlando FL.
- Baron, P., G. J. Deye, A. B. Martinez, E. N. Jones, and J. S. Bennett (2008). Size shifts in measurements of droplets with the aerodynamic particle sizer and the aerosizer. Aerosol Sci. Technol. 42(3): 201–209.
- Bartley, D. L., P. A. Baron, A. B. Martinez, D. R. Secker, and E. Hirsch (2000). Droplet distortion in accelerating flow. J. Aerosol Sci. 31: 1447–1460.
- Blackford, D., A. E. Hanson, D. Y. H. Pui, P. D. Kinney, and G. P. Ananth (1988). Details of recent work towards improving the performance of the TSI aerodynamic particle sizer. Second Annual Meeting of the Aerosol Society, Bournemouth, UK March 22-24.
- Brosseau, L. M., D. Vesley, N. Rice, K. Goodell, M. Nellis, and P. Hairston (2000). Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector. Aerosol Sci. Technol. 32(6): 545–558.
- Caldow, R., F. R. Quant, R. L. Holm, and P. P. Hairston (1997). Design of a next-generation aerodynamic particle sizing time-of-flight spectrometer. Sixteenth Annual American Association for Aerosol Research Meeting, October, Denver, CO.
- Chen, B. T., Y. S. Cheng, and H. C. Yeh (1985). Performance of a TSI aerodynamic particle sizer. Aerosol Sci. Technol. 4, 89–97.
- Chen, B. T., Y. S. Cheng, and H. C. Yeh (1990). A study of density effect and droplet deformation in the TSI aerodynamic particle sizer. Aerosol Sci. Technol. 12: 278–285.
- Chen, Y., E. M. Barber, and Y. Zhang (1998). Sampling efficiency of the TSI aerodynamic particle sizer. Instrum. Sci. Technol. 26(4): 363–373.
- Chen, C. C., and S. H. Huang (1999). Shift of aerosol penetration in respirable cyclone samplers. American Industrial Hygiene Association Journal 60: 720–729.
- Cheng, Y. S., and B. E. Dahneke (1979). Properties of continuum source particle beams. II. beams generated in capillary expansions. J. Aerosol Sci. 10: 363–368.
- Cheng, Y. S., B. T. Chen, and H. C. Yeh (1990). Behaviour of isometric nonspherical aerosol particles in the aerodynamic particle sizer. J. Aerosol Sci. 21(5): 701–710.
- Cheng, Y. S., E. B. Barr, I. A. Marshall, and J. P Mitchell (1993). Calibration and performance of an API Aerosizer. J. Aerosol Sci. 24: 501–514.
- Clift, R., J. R. Grace, and M. E. Weber (1978). Bubbles, Drops and Particles. New York, Academic.
- Dahneke, B. 1973. Aerosol beam spectrometry. Nature Phys. Sci. 244: 54–55.
- Dahneke, B. E., and Y. S. Cheng (1979). Properties of continuum source particle beams I. calculation methods and results. J. Aerosol Sci. 10: 257–274.
- Dahneke, B., and D. Padliya (1977). Nozzle-inlet design for aerosol beam. Instruments in Rarefied Gas Dynamics, 51, Part II, pp. 1163–1172.
- DeCarlo, P. F., J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez (2004). Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Sci. Technol. 38(12): 1185–1205.
- DiVito, W. J. (1998). Digital Acquisition and Demodulation of LDV Signal Bursts to Obtain Particle Size and Charge Data, PhD Dissertation, University of Arkansas at Little Rock, Little Rock, AR.
- Drain, L. E. (1980). The Laser Doppler Technique. New York, John Wiley and Sons.
- Durst, F., A. Melling, and J. H. Whitelaw (1981). Principles and Practice of Laser-Doppler Anemometry. New York, Academic.
- Fuchs, N. A. (1964). Mechanics of Aerosols. New York, Pergamon.
- Griffiths, W. D., P. J. Iles, and N. P. Vaughan (1986). The behavior of liquid droplet aerosols in an Aps-3300. J. Aerosol Sci. 17(6): 921–930.
- Heitbrink, W. A., and P. A. Baron (1991). Coincidence in time-offlight aerosol spectrometers: Phantom particle creation. Aerosol Sci. Technol. 53: 427–531.
- Hinds, W. C. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2 ed. New York, Wiley-Interscience.
-
Jones, W., J. Jankovic, and P. A. Baron (1983). Design, Construction and Evaluation of a Multistage Cassette Impactor. Am. Indust. Hyg. Assoc. J. 44(6): 409–418.
10.1080/15298668391405058 Google Scholar
- Kanaani, H., M. Hargreaves, J. Smith, Z. Ristovski, V. Agranovski, and L. Morawska (2008). Performance of UVAPS with respect to detection of airborne fungi. J. Aerosol Sci. 39(2): 175–189.
- Kenny, L. C., and R. A. Gussman (2000). A direct approach to the design of cyclones for aerosol-monitoring applications. Journal of Aerosol Science 31(12): 1407–1420.
- Kenny, L. C., T. Merrifield, D. Mark, R. Gussman, and A. Thorpe (2004). The development and designation testing of a new USEPA-approved fine particle inlet: A study of the USEPA designation process. Aerosol Science and Technology 38: 15–22.
- Kinney, P. D., and D. Y. H. Pui (1995). Inlet efficiency study for the TSI aerodynamic particle sizer. Part. Part. Syst. Char. 12: 188–193.
- Kirsch, K. J., and Mazumder, M. K. (1975). Aerosol size spectrum analysis using relaxation time analyzer. Appl. Phys. Lett. 26(4): 193–195.
- Lee, K. W., J. C. Kim, and D. S. Han (1990). Effects of gas-density and viscosity on response of aerodynamic particle sizer. Aerosol Sci. Technol. 13(2): 203–212.
- Lee, S. J., P. Demokritou, and P. Koutrakis (2005). Performance evaluation of commonly used impaction substrates under various loading conditions. Journal of Aerosol Science 36(7): 881–895.
- Lee, S. J., P. Demokritou, and P. Koutrakis (2006). Development and evaluation of personal respirable particulate sampler (PRPS). Atmos. Environ. 40(2): 212–224.
- Lefebvre, A. H. (1989). Atomization and Sprays. Bristol, PA, Taylor and Francis.
- Marshall, I. A., J. P. Mitchell, and W. D. Griffiths (1991). The behaviour of regular-shaped non-spherical particles in a TSI aerodynamic particle sizer. J. Aerosol Sci. 22(1): 73–89.
- Maynard, A. D., L. C. Kenny, and P. E. J. Baldwin (1999). Development of a system to rapidly measure sampler penetration up to 20 µm aerodynamic diameter in calm air, using the aerodynamic particle sizer. J. Aerosol Sci. 30(9): 1215–1226.
- Mazumder, M. K. (1970). Laser Doppler velocity measurement without directional ambiguity by using frequency shifted incident beams. Appl. Phys. Lett. 16(11): 462–464.
- Mazumder, M. K., and K. J. Kirsch (1977). Single particle aerodynamic relaxation time analyzer. Rev. Sci. Instrum. 48(4): 622.
- Mazumder, M. K., and Ware, R. E. (1987). Aerosol Particle Charge and Size Analyzer, US Patent 4633714.
- Mazumder, M. K., R. E. Ware, J. D. Wilson, R. G. Renninger, F. C. Hiller, P. C. McLeod, R. W. Raible, and M. K. Testerman (1979). SPART analyzer: its application to aerodynamic size distribution measurements. J. Aerosol Sci. 10: 561–569.
- Mazumder, M. K., R. E. Ware, and W. G. Hood (1983). Simultaneous measurements of aerodynamic diameter and electrostatic charge on single-particle basis. In Measurements of Suspended Particles by Quasi-Elastic Light Scattering, B. Dahneke (ed.). New York, John Wiley and Sons.
- Mazumder, M. K., R. E. Ware, T. Yokoyama, B. J. Rubin, and D. Kamp (1991). Measurement of particle size and electrostatic charge distributions on toners using ESPART analyzer. IEEE Trans. Ind. Appl. 27(4): 611–619.
- Mazumder, M. K., N. Grable, Y. Tang, S. O'Connor, and R. A. Sims (1999). Real-time particle size and electrostatic charge distribution analysis and its applications to electrostatic processes. Inst. Phys. Conf. No. 163. pp. 335–347.
- Misra, C., M. Singh, S. Shen, C. Sioutas, and P. A. Hall (2002). Development and evaluation of a personal cascade impactor sampler (PCIS). J. Aerosol Sci. 33(7): 1027–1047.
- Mu, Q. (1994). In-situ Measurements of Aerodynamic Size and Electrostatic Charge Distributions of Particles on a Powder Cloud by Image Analysis, PhD Dissertation, University of Arkansas at Little Rock, Little Rock, AR.
- Oskouie, A. K., H.-C. Wang, R. Mavliev, and K. E. Noll (1998). Calculated calibration curves for particle size determination based on time-of-flight (TOF). Aerosol Sci. Technol. 29(5): 433–441.
- Peters, T. M. (2006). Use of the Aerodynamic Particle Sizer to measure ambient PM10-2.5: the coarse fraction of PM10. J. Air Waste Manag. Assoc. 56: 411–416.
- Peters, T. M., and D. Leith (2003). Concentration measurement and counting efficiency of the aerodynamic particle sizer 3321. J. Aerosol Sci. 34(5): 627–634.
- Peters, T. M., H. M. Chein, D. A. Lundgren, and P. B. Keady (1993). Comparison and combination of aerosol size distributions measured with a low pressure impactor, differential mobility particle sizer, electrical aerosol analyzer, and aerodynamic particle sizer. Aerosol Sci. Technol. 19: 396–405.
- Rader, D. J., J. E. Brockmann, D. L. Ceman, and D. A. Lucero (1990). A method to employ the aerodynamic particle sizer factory calibration under different operating-conditions. Aerosol Sci. Technol. 13(4): 514–521.
- Reid, J. S., and T. M. Peters (2007). Update to “Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site” regarding the use of aerodynamic particle sizers in marine environments. J. Geophys. Res.-Atmos. 112, D04202 http://www.agu.org/journals/jd/jd0704/2006JD007501/2006JD007501.pdf
- Reid, J. S., H. H. Jonsson, H. B. Maring, A. Smirnov, D. L. Savoie, S. S. Cliff, E. A. Reid, J. M. Livingston, M. M. Meier, O. Dubovik, and S. C. Tsay (2003). Comparison of size and morphological measurements of coarse mode dust particles from Africa. J. Geophys. Res.-Atmos. 108(D19): p–.
- Sharma, R., D. W. Clark, P. K. Srirama, and M. K. Mazumder (2008). Contact charging of Martian dust simulant. IEEE Trans. Indust. Applic. 44(1): 32–39.
- Sioutas, C., and E. Abt, J. M. Wolfson, and P. Koutrakis (1999). Evaluation of the measurement performance of the scanning mobility particle sizer and aerodynamic particle sizer. Aerosol Sci. Technol. 30: 84–92.
- Slowik, J. G., K. Stainken, P. Davidovits, L. R. Williams, J. T. Jayne, C. E. Kolb, D. R. Worsnop, Y. Rudich, P. F. DeCarlo, and J. L. Jimenez (2004). Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 2: Application to combustion-generated soot aerosols as a function of fuel equivalence ratio. Aerosol Sci. Technol. 38(12): 1206–1222.
- Srirama, P. K., J. Zhang, J. D. Wilson, and M. K. Mazumder (2007). Mars dust: real time and in-situ measurements of size and charge distributions. Proceedings of the ESA Annual Meeting on Electrostatics, Purdue University, West Lafayette, IN, pp. 184–19.
- Stanier, C. O., A. Y. Khlystov, S. N. Pandis, and N. Spyros (2004). Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmos. Environ. 38(20): 3275.
- Stein, S., G. Gabrio, D. Oberreit, P. P. Hairston, P. B. Myrdal, and T. J. Beck (2002). An evaluation of mass-weighted size distribution measurements with the model 3320 aerodynamic particle sizer. Aerosol Sci. Technol. 36: 845–854.
- Stein, S. W., P. B. Myrdal, B. J. Gabrio, D. Obereit, and T. J. Beck (2003). Evaluation of a new Aerodynamic Particle Sizer (R) spectrometer for size distribution measurements of solution metered dose inhalers. Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung 16(2): 107–119.
- Thornburg, S., J. Cooper, and D. Leith (1999). Counting efficiency of the API Aerosizer. J. Aerosol Sci. 30: 479–488.
- Tsai, C. J., H. M. Chein, S. T. Chang, and J. Y. Kuo (1998). Performance evaluation of an API Aerosizer. J. Aerosol Sci. 29: 839–853.
- Tsai, C. J., S. C. Chen, C. H. Huang, and D. R. Chen (2004). A universal calibration curve for the TSI aerodynamic particle sizer. Aerosol Sci. Technol. 38(5): 467–474.
- Volckens, J., and T. M. Peters (2005). Counting and particle transmission efficiency of the aerodynamic particle sizer. J. Aerosol Sci. 36: 1400–1408.
- Wang, H.-C., and W. John (1987). Particle density correction for the aerodynamic particle sizer. Aerosol Sci. Technol. 6: 191–198.
- Wang, H.-C., and W. John (1989). A simple iteration procedure to correct for the density effect in the aerodynamic particle sizer. Aerosol Sci. Technol. 10: 501–505.
- Wilson, J. C., and B. Y. H. Liu (1980). Aerodynamic particle size measurement by laser-Doppler velocimetry. J. Aerosol Sci. 11: 139–150.