Real-Time Particle Analysis by Mass Spectrometry
Anthony S. Wexler
Departments of Mechanical and Aeronautical Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California, USA
Search for more papers by this authorMurray V. Johnston
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
Search for more papers by this authorAnthony S. Wexler
Departments of Mechanical and Aeronautical Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California, USA
Search for more papers by this authorMurray V. Johnston
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
Search for more papers by this authorPramod Kulkarni
Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
Search for more papers by this authorPaul A. Baron
Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
Search for more papers by this authorKlaus Willeke
Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Inlet Design
-
Particle Sizing
-
Particle Vaporization and Ionization
-
Mass Analysis
-
Spectrum Categorization Methods
-
Putting It All Together-Selected Instruments
-
List of Symbols
-
References
11.9 REFERENCES
- Bein, K.J., Y. Zhao, A.S. Wexler, and M.V. Johnston. 2005. Speciation of size-resolved individual ultrafine particles in Pittsburgh, Pennsylvania. J. Geophys. Res. 110, D07S05, doi: 10.1029/2004JD004708.
- Bein, K.J., Y. Zhao, N.J. Pekney, C.I. Davidson, M.V. Johnston, and A.S. Wexler. 2006. Identification of sources of atmospheric PM at the Pittsburgh Supersite. Part II: Quantitative comparisons of single particle, particle number, and particle mass measurements. Atmos. Environ. 40(Suppl. 2): 424–444.
- Bocker, S. and V. Makinen. 2008. Combinatorial approaches for mass spectra recalibration. IEEE/ACM Trans. on Comp. Biology & Bioinformatics 5: 91–100.
- Carson, P.G., M.V. Johnston, and A.S. Wexler. 1997. Real-time monitoring of the surface and total composition of aerosol particles. Aerosol Sci. Technol. 26: 291–300.
- Canagaratna, M.R., J.T. Jayne, J.L. Jimenez, J.D. Allan, M.R. Alfarra, Q. Zhang, T.B. Onasch, F. Drewnick, H. Coe, A. Middlebrook, A. Delia, L.R. Williams, A.M. Trimborn, M.J. Northway, P.F. DeCarlo, C.E. Kolb, P. Davidovits, and D.R. Worsnop. 2007. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 26: 185–222.
- Christian, N.P., R.J. Arnold, and J.P. Reilly. 2000. Improved calibration of time-of-flight mass spectra by simplex optimization of electrostatic ion calculations. Anal. Chem. 72: 3327–3337.
- Cotter, R.J. 2007. Time-of-Flight Mass Spectrometry: Instrumentation and Applications in Biological Research. American Chemical Society, Washington, DC.
- Dahneke, B., J. Hoover, and Y.S. Cheng. 1982. Similarity theory for aerosol beams. J. Colloid Interface Sci. 87: 167–179.
- DeCarlo, P.F., J.G. Slowik, D.R. Worsnop, P. Davidovits, and J.L. Jimenez. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Sci. Technol. 38: 1185–1205.
- DeCarlo, P.F., J.R. Kimmel, A. Trimborn, M.J. Northway, J.T. Jayne, A.C. Aiken, M. Gonin, K. Fuhrer, T. Horvath, K.S. Docherty, D.R. Worsnop, and J.L. Jimenez. 2006. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 78: 8281–8289.
- Erdmann, N., A. Dell'Acqua, P. Cavalli, C. Grüning, N. Omenetto, J.-P. Putaud, F. Raes, and R. Dingenen. 2005. Instrument characterization and first application of the single particle analysis and sizing system (SPASS) for atmospheric aerosols. Aerosol Sci. Technol. 39: 377–393.
- Fergenson, D.P., M.E. Pitesky, H.J. Tobias, P.T. Steele, G.A. Czerwieniec, S.C. Russell, C.B. Lebrilla, J.M. Horn, K.R. Coffee, A. Srivastava, S.P. Pillai, M.-T.P. Shih, H.L. Hall, A.J. Ramponi, J.T. Chang, R.G. Langlois, P.L. Estacio, R.T. Hadley, M. Frank, and E.E. Gard. 2004. Reagentless detection and classification of individual bioaerosol particles in seconds. Anal. Chem. 76: 373–378.
- Fernandez De La Mora, J. and P. Riesco-Chueca. 1988. Aerodynamic focusing of particles in a carrier gas. J. Fluid Mech. 195: 1–21.
- Flagan, R. 1993. Probing the chemical dynamics of aerosols. In Measurement Challenges in Atmospheric Chemistry, L. Newman (ed.). American Chemical Society, Washington, DC.
- Friedlander, S.K. 1971. The characterization of aerosols distributed with respect to size and chemical composition—II. Classification and design of aerosol measuring devices. J. Aerosol Sci. 2: 331–340.
- Gard, E., J.E. Mayer, B.D. Morrical, T. Dienes, D.P. Fergenson, and K.A. Prather. 1997. Real-time analysis of individual atmospheric aerosol particles: Design and performance of a portable ATOFMS. Anal. Chem. 69: 4083–4091.
- Gieray, R.A., P.T.A. Reilly, M. Yang, W.B. Whitten, and J.M. Ramsey. 1997. Real-time detection of individual airborne bacteria. J. Microbiol. Methods 29: 191–199.
- Haas, G.J.R. and K. Kalcher. 1996. Fast recording software with automatic mass calibration for the laser-microprobe-mass-analyzer LAMMA 500. Computer Chem. 20: 341–352.
- Hearn, J.D. and G.D. Smith. 2004. A chemical ionization mass spec-trometry method for the online analysis of organic aerosols. Anal. Chem. 76: 2820–2826.
- Hinz, K.-P. and B. Spengler. 2007. Instrumentation, data evaluation and quantification in on-line aerosol mass spectrometry. J. Mass Spectrom. 42: 843–860.
- Hinz, K.-P., R. Kaufmann, and B. Spengler. 1996. Simultaneous detection of positive and negative ions from single airborne particles by real-time laser mass spectrometry. Aerosol Sci. Technol. 24: 233–242.
- Hunt, A.L. and G.A. Petrucci. 2002. Analysis of ultrafine and organic particles by aerosol mass spectrometry. Trends Anal. Chem. 21: 74–81.
- Jayne, J.T., D.C. Leard, X. Zhang, P. Davidovits, K.A. Smith, C. Kolb, and D.R. Worsnop. 2000. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 33: 49–77.
-
Johnston, M.V. 2000. Sampling and analysis of individual particles by aerosol mass spectrometry. J. Mass Spectrom. 35: 585–595.
10.1002/(SICI)1096-9888(200005)35:5<585::AID-JMS992>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- Kane, D.B. and M.V. Johnston. 2000. Size and composition biases on the detection of individual ultrafine particles by aerosol mass spectrometry. Environ. Sci. Technol. 34: 4887–4893.
- Kaufmann, R.L. 1986. Laser-microprobe mass spectroscopy of particulate matter. In Physical and Chemical Characterization of Individual Airborne Particles, K.R. Spurny (ed.). John Wiley and Sons, New York, Chap. 12.
- Kaye, P.H., J.E. Barton, E. Hirst, and J.M. Clark. 2000. Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles. Appl. Opt. 39: 3738–3745.
- Kurten, A., J. Curtius, F. Helleis, E.R. Lovejoy, and S. Borrmann. 2007. Development and characterization of an ion trap mass spectrometer for the on-line chemical analysis of atmospheric aerosol particles. Int. J. Mass Spectrom. 265: 30–39.
- LaFranchi, B.W., J. Zahardis, and G.A. Petrucci. 2004. Photoelectron resonance capture ionization mass spectrometry: A soft ionization source for mass spectrometry of particle-phase organic compounds. Rapid Commun. Mass Spectrom. 18: 2517–2521.
- Lazar, A.C., P.T.A. Reilly, W.B. Whitten, and J.M. Ramsey. 2000. Laser desorption/in situ chemical ionization aerosol mass spec-trometry for monitoring tributyl phosphate on the surface of environmental particles. Anal. Chem. 72: 2142–2147.
- Lee, W.-B., J. Wu, Y.I. Lee, and J. Sneddon. 2004. Recent applications of laser-induced breakdown spectrometry: A review of material approaches. Appl. Spectros. Rev. 39: 27–97.
- Liu, P., P.J. Ziemann, D.B. Kittleson, and P.H. McMurry. 1995a. Generating particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol. 22: 293–313.
- Liu, P., P.J. Ziemann, D.B. Kittleson, and P.H. McMurry. 1995b. Generating particle beams of controlled dimensions and divergence: II. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol. 22: 314–324.
- Mahadevan, R., D. Lee, H. Sakurai, and M.R. Zachariah. 2002. Measurement of condensed-phase reaction linetics in the aerosol phase using single particle mass spectrometry. J. Phys. Chem. A 106: 11083–11092.
- Mallina, R.V., A.S. Wexler, and M.V. Johnston. 1997. Particle growth in high-speed particle beam inlets. J. Aerosol Sci. 28: 223–238.
- Mallina, R.V., A.S. Wexler, and M.V. Johnston. 1999. High-speed particle beam generation: Simple focusing mechanisms. J. Aerosol Sci. 30: 719–738.
- Mallina, R.V., A.S. Wexler, K. Rhoads, and M.V. Johnston. 2000. High speed particle beam generation: A dynamic focusing mechanism for selecting ultrafine particles. Aerosol Sci. Technol. 33: 87–104.
- March, R.E. 1989. Quadrupole Storage Mass Spectrometry. John Wiley & Sons, New York.
- McLafferty, F.W. and F. Turecek. 1993. Interpretation of Mass Spectra, 4 ed. University Science Books, Mill Valley, CA.
- Middha, P. and A.S. Wexler. 2003. Particle focusing characteristics of sonic jets. Aerosol Sci. Technol. 37: 907–915.
- Morrical, B.D., D.P. Fergenson, and K.A. Prather. 1998. Coupling two-step laser desorption/ionization with aerosol time-of-flight mass spectrometry for the analysis of individual organic particles. J. Am. Soc. Mass Spectrom. 9: 1068–1073.
- Murphy, D.M. 2007. The design of single particle laser mass spectrometers. Mass Spectrom. Rev. 26: 150–165.
- Murphy, D.M. and D.S. Thomson. 1995. Laser ionization mass spectroscopy of single aerosol particles. Aerosol Sci. Technol. 22: 237–249.
- Murphy, D.M. and D.S. Thomson. 1997. Chemical composition of single aerosol particles at Idaho Hill: Negative ion measurements. J. Geophys. Res. 102(D5): 6252–6368.
- Nash, D.G., T. Baer, and M.V. Johnston. 2006. Aerosol mass spec-trometry: An introductory review. Int. J. Mass Spectrom. 258: 2–12.
- Neubauer, K.R., S.T. Sum, M.V. Johnston, and A.S. Wexler, 1996. Sulfur speciation in individual aerosol particles. J. Geophys. Res. 101: 18,701–18,707.
- Neubauer, K.R., M.V. Johnston, and A.S. Wexler. 1998. Humidity effects on the mass spectra of single aerosol particles. Atmos. Environ. 32: 2521–2529.
- Noble, C. and K.A. Prather. 2000. Real-time single particle mass spectrometry: A historical review of a quarter century of the chemical analysis of aerosols. Mass Spectrom. Rev. 19: 248–274.
- Oktem, B., M.P. Tolocka, and M.V. Johnston. 2004. On-line analysis of organic components in fine and ultrafine particles by photo-ionization aerosol mass spectrometry. Anal. Chem. 76: 253–261.
- Owega, S., G.J. Evans, R.E. Jervis, J. Tsai, E. Kremer, and P.V. Tan. 2002. Comparison between urban Toronto PM and selected materials: Aerosol characterization using laser ablation/ionization mass spectrometry (LAMS). Environ. Pollut. 120: 125–135.
- Paatero, P. 2007. User's Guide for Positive Matrix Factorization Programs PMF2 and PMF3, Parts 1 and 2. Department of Physics University of Helsinki.
- Reents, Jr. W.D., S.W. Downey, A.B. Emerson, A.M. Mujsce, A.J. Muller, D.J. Siconolfi, J.D. Sinclair, and A.G. Swanson. 1995. Single particle characterization by time-of-flight mass spectrometry. Aerosol Sci. Technol. 23: 263–270.
- Reff, A., S.I. Eberly, and P.V. Bhave. 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. J. Air Waste Manag. Assoc. 57: 146–154.
- Reinard, M.S. and M.V. Johnston. 2008. Ion formation mechanism in laser desorption ionization of individual nanoparticles. J. Am. Soc Mass Spectrom. 19: 389–399.
- Seuss, D.T. and K.A. Prather. 1999. Mass spectrometry of aerosols. Chem. Rev. 99: 3007–3035.
- Smith, J.N., K.F. Moore, P.H. McMurry, and F.L. Eisele. 2004. Atmospheric measurements of sub-20 nm diameter particle chemical composition by thermal desorption chemical ionization mass spectrometry. Aerosol Sci. Technol. 38: 100–110.
- Song, X.-H., P.K. Hopke, D.P. Fergenson, and K.A. Prather. 1999. Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A. Anal. Chem. 71: 860–865.
- Stoffels, J.J. and J. Allen. 1986. Mass spectrometry of single particles in situ. In Physical and Chemical Characterization of Individual Airborne Particles, K.R. Spurny (ed.). John Wiley and Sons, New York, Chap. 20.
- Svane, M., M. Hagstrom, and J.B.C. Pettersson. 2004. Chemical analysis of individual alkali-containing particles: Design and performance of a surface ionization particle beam mass spectrometer. Aerosol Sci. Technol. 38: 655–663.
- Tafreshi, H.V., G. Benedek, P. Piseri, S. Vinati, E. Barborini, and P. Milani. 2002. A simple nozzle configuration for the production of low divergence supersonic cluster beam by aerodynamic focusing. Aerosol Sci. Technol. 36: 593–606.
- Tan, P.V., O. Malpica, G.J. Evans, S. Owega, and M.S. Fila. 2002. Chemically-assigned classification of aerosol mass spectra. J. Am. Soc. Mass Spectrom. 13: 826–838.
- Thomson, D.S. and D.M. Murphy. 1993. Laser-induced ion formation threshold of aerosol particles in a vacuum. Appl. Opt. 32: 6818–6826.
- Thomson, D.S., A.M. Middlebrook, and D.M. Murphy. 1997. Threshold for laser-induced ion formation from aerosols in a vacuum using ultraviolet and vacuum-ultraviolet laser wavelengths. Aerosol Sci. Technol. 26: 544–559.
- Tobias, H.J., P.M. Kooiman, K.S. Docherty, and P.J. Ziemann. 2000. Real-time chemical analysis of organic aerosols using a thermal desorption particle beam mass Spectrometer. Aerosol Sci. Technol. 33: 170–190.
- Trimborn, A., K.-P. Hinz, and B. Spengler. 2000. On-line analysis of atmospheric particles with a transportable laser mass spectrometer. Aerosol Sci. Technol. 33: 191–201.
- Wang, S. and M.V. Johnston. 2006. Airborne nanoparticle characterization with a digital ion trap–reflectron time of flight mass spectrometer. Intl J. Mass Spectr. 258: 50–57.
- Wang, X. and P.H. McMurry. 2006. A design tool for aerodynamic lens systems. Aerosol Sci. Technol. 40: 320–334.
- Wang, S., C.A. Zordan, and M.V. Johnston. 2006. Chemical characterization of individual, airborne sub-10 nm particles and molecules. Anal. Chem. 78: 1750–1754.
- Weiss, M., P.J.T. Verheijen, J.C.M. Marijnissen, and B. Scarlett. 1997. On the performance of an on-line time-of-flight mass spectrometer for aerosols. J. Aerosol Sci. 28: 159–171.
- Wexler, A.S. and M.V. Johnston. 2008. What have we learned from highly time-resolved measurements during EPA's supersite program and related studies? J. Air Waste Manage. Assoc. 58: 303–319.
- Wieser, P. and R. Wurster. 1986. Application of laser-microprobe mass analysis to particle collections. In Physical and Chemical Characterization of Individual Airborne Particles, K.R. Spurny (ed.). John Wiley and Sons, New York, Chap. 14.
- Yang, M., P.T.A. Reilly, K.B. Boraas, W.B. Whitten, and J.M. Ramsey. 1996. Real-time chemical analysis of aerosol particles using an ion trap mass spectrometer. Rapid Commun. in Mass Spectrom. 10: 347–351.
- Zelenyuk, A. and D. Imre. 2005. Single particle laser ablation time-of-flight mass spectrometer: An introduction to SPLAT. Aerosol Sci. Technol. 39: 554–568.
- Zelenyuk, A., J. Cabalo, T. Baer, and R.E. Miller. 1999. Mass spec-trometry of liquid aniline aerosol particles by IR/UV laser irradiation. Anal. Chem. 71: 1802–1808.
- Zelenyuk, A., D. Imre, and L.A. Cuadra-Rodriguez. 2006. Evaporation of water from particles in the aerodynamic lens inlet: An experimental study. Anal. Chem. 78: 6942–6947.
- Zelenyuk, A., D. Imre, Y. Cai, K. Mueller, Y. Han, and P. Imrich. 2006. Spectraminer, an interactive data mining and visualization software for single particle mass spectroscopy: A laboratory test case. Int. J. Mass Spectrom. 258: 58–73.
- Zelenyuk, A., J. Yang, C. Song, R. Zaveria, and D. Imre. 2008. A new real-time method for determining particles' sphericity and density: Application to secondary organic aerosol formed by ozonolysis of α-pinene. Environ. Sci. Technol. 42: 8033–8038.
- Zhang, Q., M.R. Alfarra, D.R. Worsnop, J.D. Allan, H. Coe, M.R. Canagaratna, and J.-L. Jimenez. 2005. Deconvolution and quantification of hydrocarbon-line and oxygenated organic aerosols based on aerosol mass spectrometry. Environ. Sci. Technol. 39: 4938–4952.
- Zhao, W., P.K. Hopke, and K.A. Prather. 2008. Comparison of two cluster analysis methods using single particle mass spectra. Atmos. Environ. 42: 881–892.