Aortic Stenosis and Systemic Hypertension, Modeling of
Damien Garcia
Institut de Recherches Cliniques de Montréal, Laboratory of biomedical engineering, Montreal, Canada
Search for more papers by this authorLouis-Gilles Durand
Institut de Recherches Cliniques de Montréal, Laboratory of biomedical engineering, Montreal, Canada
Search for more papers by this authorDamien Garcia
Institut de Recherches Cliniques de Montréal, Laboratory of biomedical engineering, Montreal, Canada
Search for more papers by this authorLouis-Gilles Durand
Institut de Recherches Cliniques de Montréal, Laboratory of biomedical engineering, Montreal, Canada
Search for more papers by this authorAbstract
Aortic stenosis is the most common cardiovascular disease after systemic hypertension and coronary artery disease in developed countries. It induces an obstruction to blood flow from the left ventricle to the aorta resulting in an increase in left ventricular afterload. More than 30% of patients with aortic stenosis have concomitant systemic hypertension. In such patients, the left ventricle faces a double pressure overload (valvular and vascular). A detailed understanding of the respective impacts of aortic stenosis and hypertension on left ventricular function would help to better predict whether aortic valve replacement and/or antihypertensive medical treatment would be beneficial. To better understand how coexisting aortic stenosis and hypertension affect the left ventricular function, we developed a relatively simple mathematical cardiovascular model to simulate the ventricular-valvular-vascular hemodynamic interaction(V3 model). The present chapter provides a detailed description of the V3 model along with numerical findings as well as their clinical implications. Several simulations with the V3 model were performed to describe the effect of aortic stenosis on left ventricular stroke work and show the effect of coexistent systemic hypertension. Our simulations demonstrated that mild or moderate aortic stenosis has a small impact on left ventricular stroke work, whereas the latter increases noticeably when aortic stenosis becomes severe. They also showed that even mild hypertension may greatly influence left ventricular stroke work in patients with aortic stenosis. The mathematical V3 model thus provides a potentially useful tool to investigate complex cardiovascular interactions that could be of great clinical interest.
Bibliography
- 1D. M. Shavelle and C. M. Otto, Aortic stenosis. In: Crawford MH, Dimarco JP, ed., Cardiology. London: Mosby, 2000: 9.1–9.9.
- 2P. Tornos, [New aspects in aortic valve disease]. Rev. Esp. Cardiol. 2001; 54(Suppl 1): 17–21.
- 3R. A. Nishimura, Cardiology patient pages. Aortic valve disease. Circulation 2002; 106(7): 770–772.
- 4F. Antonini-Canterin, G. Huang, E. Cervesato, P. Faggiano, D. Pavan, R. Piazza, and G. L. Nicolosi, Symptomatic aortic stenosis: Does systemic hypertension play an additional role? Hypertension 2003; 41(6): 1268–1272.
- 5M. Briand, J. G. Dumesnil, L. Kadem, A. G. Tongue, R. Rieu, D. Garcia, and P. Pibarot, Reduced systemic arterial compliance impacts significantly on LV afterload and function in aortic stenosis: Implications for diagnosis and treatment. J. Am. Coll. Cardiol. 2005; 46(2): 291–298.
- 6M. E. Safar, B. I. Levy, and H. Struijker-Boudier, Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 2003; 107(22): 2864–2869.
- 7K. E. Berkina and S. G. Ball, Essential hypertension: The heart and hypertension. Heart 2001; 86(4): 467–475.
- 8W. Grossman, D. Jones, and L. P. McLaurin, Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 1975; 56(1): 56–64.
- 9D. H. Fitchett, LV-arterial coupling: interactive model to predict effect of wave reflections on LV energetics. Am. J. Physiol. 1991; 261(4 Pt 2): H1026–H1033.
- 10R. R. Ha, J. Qian, D. L. Ware, J. B. Zwischenberger, A. Bidani, and J. W. Clark, An integrative cardiovascular model of the standing and reclining sheep. Cardiovasc. Eng 2005; 5(2): 53–75.
10.1007/s10558-005-5341-0 Google Scholar
- 11T. Korakianitis and Y. Shi, Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomech. 2005; doi:10.1016/j.jbiomech.2005.06.016.
- 12J. K. Li, J. Y. Zhu, and M. Nanna, Computer modeling of the effects of aortic valve stenosis and arterial system afterload on left ventricular hypertrophy. Comput. Biol. Med. 1997; 27(6): 477–485.
- 13P. Segers, N. Stergiopulos, and N. Westerhof, Quantification of the contribution of cardiac and arterial remodeling to hypertension. Hypertension 2000; 36(5): 760–765.
- 14B. W. Smith, J. G. Chase, R. I. Nokes, G. M. Shaw, and G. Wake, Minimal haemodynamic system model including ventricular interaction and valve dynamics. Med. Eng. Phys. 2004; 26(2): 131–139.
- 15N. Stergiopulos, J. J. Meister, and N. Westerhof, Determinants of stroke volume and systolic and diastolic aortic pressure. Am. J. Physiol. 1996; 270(6 Pt 2): H2050–H2059.
- 16M. Ursino, Interaction between carotid baroregulation and the pulsating heart: A mathematical model. Am. J. Physiol. 1998; 275(5 Pt 2): H1733–H1747.
- 17M. Zacek and E. Krause, Numerical simulation of the blood flow in the human cardiovascular system. J. Biomech. 1996; 29(1): 13–20.
- 18D. Garcia, P. Pibarot, and L. G. Durand, Analytical modeling of the instantaneous pressure gradient across the aortic valve. J. Biomech. 2005; 38(6): 1303–1311.
- 19D. Garcia, P. J. Barenbrug, P. Pibarot, A. L. Dekker, F. H. van der Veen, J. G. Maessen, J. G. Dumesnil, and L. G. Durand, A ventricular-vascular coupling model in presence of aortic stenosis. Am. J. Physiol. Heart Circ. Physiol. 2005; 288(4): H1874–H1884.
- 20A. J. Ward-Smith, Internal fluid flow. The fluid dynamics of flow in pipes and ducts. Oxford: Clarendon Press, 1980.
- 21D. S. Miller, Internal flow systems. second ed. Bedford: BHR, 1996.
- 22H. Baumgartner, T. Stefenelli, J. Niederberger, H. Schima, and G. Maurer, “Overestimation” of catheter gradients by Doppler ultrasound in patients with aortic stenosis: a predictable manifestation of pressure recovery. J. Am. Coll Cardiol. 1999; 33(6): 1655–1661.
- 23J. D. Thomas, and Z. B. Popovic, Intraventricular pressure differences: A new window into cardiac function. Circulation 2005; 112(12): 1684–1686.
- 24B. R. Munson, D. F. Young, and T. H. Okiishi, Viscous flow in pipes. Fundamentals of fluid mechanics. Second edition. New York: John Wiley & Sons, Inc., 1994: 455–547.
- 25A. A. Sonin, A generalization of the Pi-theorem and dimensional analysis. Proc. Natl. Acad. Sci. U S A. 2004; 101(23): 8525–8526.
- 26D. Garcia, P. Pibarot, J. G. Dumesnil, F. Sakr, and L. G. Durand, Assessment of aortic valve stenosis severity: A new index based on the energy loss concept. Circulation 2000; 101(7): 765–771.
- 27D. Burkhoff, I. Mirsky, and H. Suga, Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: A guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. 2005; 289: H501–H512.
- 28J. Bermejo, R. Odreman, J. Feijoo, M. M. Moreno, P. Gomez-Moreno, and M. A. Garcia-Fernandez, Clinical efficacy of Doppler-echocardiographic indices of aortic valve stenosis: A comparative test-based analysis of outcome. J. Am. Coll. Cardiol. 2003; 41(1): 142–151.
- 29D. A. Kass, and W. L. Maughan, From ‘Emax’ to pressure-volume relations: A broader view. Circulation 1988; 77(6): 1203–1212.
- 30H. Suga, K. Sagawa, and A. A. Shoukas, Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 1973; 32(3): 314–322.
- 31H. Senzaki, C. H. Chen, and D. A. Kass, Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation 1996; 94(10): 2497–2506.
- 32R. Fogliardi, M. Di Donfrancesco, and R. Burattini, Comparison of linear and nonlinear formulations of the three-element windkessel model. Am. J. Physiol. 1996; 271(6 Pt 2): H2661–H2668.
- 33N. Westerhof, G. Elzinga, and P. Sipkema, An artificial arterial system for pumping hearts. J. Appl. Physiol. 1971; 31(5): 776–781.
- 34D. Garcia, Personal home page. http://garciadam.free.fr. 2006.
- 35R. O. Bonow, B. Carabello, A. C. DeLeon, L. H. Edmunds, Jr., B. J. Fedderly, M. D. Freed, W. H. Gaasch, C. R. McKay, R. A. Nishimura, P. T. O'Gara, R. A. O'Rourke, S. H. Rahimtoola, J. L. Ritchie, M. D. Cheitlin, K. A. Eagle, T. J. Gardner, A. Garson, Jr., R. J. Gibbons, R. O. Russell, T. J. Ryan, and S. C. Smith Jr., Guidelines for the management of patients with valvular heart disease: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Valvular Heart Disease). Circulation 1998; 98(18): 1949–1984.
- 36A. L. Dekker, P. J. Barenbrug, F. H. van der Veen, P. Roekaerts, B. Mochtar, and J. G. Maessen, Pressure-volume loops in patients with aortic stenosis. J. Heart Valve Dis. 2003; 12(3): 325–332.
- 37R. J. Bache, Y. Wang, and J. C. Greenfield, Jr. Left ventricular ejection time in valvular aortic stenosis. Circulation 1973; 47(3): 527–533.
- 38P. Kligfield, P. Okin, R. B. Devereux, H. Goldberg, and J. S. Borer, Duration of ejection in aortic stenosis: effect of stroke volume and pressure gradient. J. Am. Coll. Cardiol. 1984; 3(1): 157–161.
- 39L. M. Beauchesne, R. deKemp, K. L. Chan, and I. G. Burwash, Temporal variations in effective orifice area during ejection in patients with valvular aortic stenosis. J. Am. Soc. Echocardiogr. 2003; 16(9): 958–964.
- 40J. Chambers, R. Rajani, M. Hankins, and R. Cook, The peak to mean pressure decrease ratio: a new method of assessing aortic stenosis. J. Am. Soc. Echocardiogr. 2005; 18(6): 674–678.
- 41K. Yamamoto, Q. N. Dang, Y. Maeda, H. Huang, R. A. Kelly, and R. T. Lee, Regulation of cardiomyocyte mechanotransduction by the cardiac cycle. Circulation 2001; 103(10): 1459–1464.
- 42B. H. Lorell and B. A. Carabello, Left ventricular hypertrophy: Pathogenesis, detection, and prognosis. Circulation 2000; 102(4): 470–479.
- 43G. E. Pate, Association between aortic stenosis and hypertension. J. Heart Valve Dis. 2002; 11(5): 612–614.
- 44Guidelines committee. 2003 European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J. Hypertens. 2003; 21(6):1011–1053.
- 45D. Chemla, I. Antony, Y. Lecarpentier, and A. Nitenberg, Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. Am. J. Physiol. Heart Circ. Physiol. 2003; 285(2): H614–H620.
- 46D. Chemla, J. L. Hebert, C. Coirault, K. Zamani, I. Suard, P. Colin, and Y. Lecarpentier, Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am. J. Physiol. 1998; 274(2 Pt 2): H500–H505.
- 47J. Bermejo, The effects of hypertension on aortic valve stenosis. Heart 2005; 91(3): 280–282.
- 48R. E. Mates and R. M. Judd, Models for coronary pressure-flow relationships. In: Sideman S., Beyar R., ed., Interactive phenomena in the cardiac system. New York: Plenum Press, 1993: 153–161.
- 49J. I. Hoffman and J. A. Spaan, Pressure-flow relations in coronary circulation. Physiol. Rev. 1990; 70(2): 331–390.
- 50M. Arsenault, N. Masani, G. Magni, J. Yao, L. Deras, and N. Pandian, Variation of anatomic valve area during ejection in patients with valvular aortic stenosis evaluated by two-dimensional echocardiographic planimetry: Comparison with traditional Doppler data. J. Am. Coll. Cardiol. 1998; 32(7): 1931–1937.
- 51A. J. Fenlon and T. David, Numerical models for the simulation of flexible artificial heart valves: part I–computational methods. Comput. Methods Biomech. Biomed. Engin. 2001; 4(4): 323–339.