Artificial Heart Valves
Dan T. Simionescu
Clemson University, Department of Bioengineering, Clemson, South Carolina
Search for more papers by this authorDan T. Simionescu
Clemson University, Department of Bioengineering, Clemson, South Carolina
Search for more papers by this authorAbstract
A significant article in the study of cardiovascular diseases must necessarily address the degeneration of natural heart valves. As the anticipated mission of cardiovascular biomedical engineering is to develop devices and approaches to safely and effectively treat heart disease, substantial efforts have been made in the last 35 years to develop artificial heart valves and pioneer exciting research in heart valve tissue regeneration. This chapter gives an overview on these efforts describing the biology and pathology of heart valves, the status of current replacement devices, and the trends of future research.
Bibliography
- 1J. M. Icardo and E. Colvee, Atrioventricular valves of the mouse: III. Collagenous skeleton and myotendinous junction. Anat. Rec. 1995; 243(3): 367–375.
- 2I. Vesely and R. Noseworthy, Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J. Biomech. 1992; 25(1): 101–113.
- 3I. Vesely, The role of elastin in aortic valve mechanics. J. Biomech. 1998; 31(2): 115–123.
- 4J. Lovekamp and N. Vyavahare, Periodate-mediated glycosaminoglycan stabilization in bioprosthetic heart valves. J. Biomed. Mater. Res. 2001; 56(4): 478–486.
10.1002/1097-4636(20010915)56:4<478::AID-JBM1119>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 5J. J. Lovekamp, D. T. Simionescu, J. J. Mercuri, B. Zubiate, M. S. Sacks, and N. R. Vyavahare, Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves. Biomaterials, in press.
- 6F. J. Schoen, Cardiac valves and valvular pathology: update on function, disease, repair, and replacement. Cardiovasc. Pathol. 2005; 14(4): 189–194.
- 7X. Y. Jin and J. R. Pepper, Do stentless valves make a difference? Eur. J. Cardiothorac. Surg. 2002; 22(1): 95–100.
- 8E. Rabkin-Aikawa, J. E. Mayer, Jr., and F. J. Schoen, Heart valve regeneration. Adv. Biochem. Eng. Biotechnol. 2005; 94: 141–179.
- 9M. I. Ionescu, B. C. Pakrashi, D. A. Mary, I. T. Bartek, and G. H. Wooler, Replacement of heart valves with frame-mounted tissue grafts. Thorax. 1974; 29(1): 56–67.
- 10Y. S. Morsi, I. E. Birchall, and F. L. Rosenfeldt, Artificial aortic valves: an overview. Int. J. Artif. Organs 2004; 27(6): 445–451.
- 11F. J. Schoen and R. J. Levy, Founder's Award, 25th Annual Meeting of the Society for Biomaterials, perspectives. Providence, RI, April 28–May 2, 1999. Tissue heart valves: current challenges and future research perspectives. J. Biomed. Mater. Res. 1999; 47(4): 439–465.
10.1002/(SICI)1097-4636(19991215)47:4<439::AID-JBM1>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 12J. Butany, M. S. Ahluwalia, C. Munroe, C. Fayet, C. Ahn, P. Blit, C. Kepron, R. J. Cusimano, and R. L. Leask, Mechanical heart valve prostheses: identification and evaluation. Cardiovasc. Pathol. 2003; 12(6): 322–344.
- 13D. Horstkotte, Prosthetic valves or tissue valves–a vote for mechanical prostheses. Z. Kardiol. 1985; 74 (Suppl 6): 19–37.
- 14J. Butany, C. Fayet, M. S. Ahluwalia, P. Blit, C. Ahn, C. Munroe, N. Israel, R. J. Cusimano, and R. L. Leask, Biological replacement heart valves. Identification and evaluation. Cardiovasc. Pathol. 2003; 12(3): 119–139.
- 15M. Dahm, M. Husmann, M. Eckhard, D. Prufer, E. Groh, and H. Oelert, Relevance of immunologic reactions for tissue failure of bioprosthetic heart valves. Ann. Thorac. Surg. 1995; 60(2 Suppl): S348–S352.
- 16D. T. Cheung, N. Perelman, E. C. Ko, and M. E. Nimni, Mechanism of crosslinking of proteins by glutaraldehyde III. Reaction with collagen in tissues. Connect. Tissue Res. 1985; 13(2): 109–115.
- 17A. M. Borkon, L. M. Soule, K. L. Baughman, W. A. Baumgartner, T. J. Gardner, L. Watkins, V. L. Gott, K. A. Hall, and B. A. Reitz, Aortic valve selection in the elderly patient. Ann. Thorac. Surg. 1988; 46(3): 270–277.
- 18F. J. Schoen and C. E. Hobson, Anatomic analysis of removed prosthetic heart valves: causes of failure of 33 mechanical valves and 58 bioprostheses, 1980 to 1983. Hum. Pathol. 1985; 16(6): 549–559.
- 19M. S. Sacks and F. J. Schoen, Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 2002; 62(3): 359–371.
- 20D. T. Simionescu, J. J. Lovekamp, and N. R. Vyavahare, Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves. J. Biomed. Mater. Res. A 2003; 66(4): 755–763.
- 21I. Vesely, J. E. Barber, and N. B. Ratliff, Tissue damage and calcification may be independent mechanisms of bioprosthetic heart valve failure. J. Heart Valve Dis. 2001; 10(4): 471–477.
- 22I. Vesely, The evolution of bioprosthetic heart valve design and its impact on durability. Cardiovasc. Pathol. 2003; 12(5): 277–286.
- 23D. T. Simionescu, Prevention of calcification in bioprosthetic heart valves: challenges and perspectives. Expert Opin. Biol. Ther. 2004; 4(12): 1971–1985.
- 24A. Simionescu, D. Simionescu, and R. Deac, Biochemical pathways of tissue degeneration in bioprosthetic cardiac valves. The role of matrix metalloproteinases. Asaio. J. 1996; 42(5): M561–M567.
- 25N. Vyavahare, M. Ogle, F. J. Schoen, and R. J. Levy, Elastin calcification and its prevention with aluminum chloride pretreatment. Am. J. Pathol. 1999; 155(3): 973–982.
- 26C. M. Giachelli, Ectopic calcification: gathering hard facts about soft tissue mineralization. Am. J. Pathol. 1999; 154(3): 671–675.
- 27J. P. Gott, C. Pan, L. M. Dorsey, J. L. Jay, G. K. Jett, F. J. Schoen, J. M. Girardot, and R. A. Guyton, Calcification of porcine valves: a successful new method of antimineralization. Ann. Thorac. Surg. 1992; 53(2): 207–215; discussion 216.
- 28R. J. Levy, G. Golomb, J. Wolfrum, S. A. Lund, F. J. Schoen, and R. Langer, Local controlled-release of diphosphonates from ethylenevinylacetate matrices prevents bioprosthetic heart valve calcification. Trans. Am. Soc. Artif. Intern. Organs 1985; 31: 459–463.
- 29M. A. Moore, PhotoFix: unraveling the mystery. J. Long Term Eff. Med. Implants 2001; 11(3–4): 185–197.
- 30T. Gudbjartsson, S. Aranki, and L. H. Cohn, Mechanical/bioprosthetic mitral valve replacement. In: L. H. Cohn and L. H. Edmunds, eds., Cardiac Surgery in the Adult. New York: McGraw-Hill, 2003, pp. 951–986.
- 31A. P. Yoganathan, Z. He, and S. Casey Jones, Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 2004; 6: 331–362.
- 32K. Iwasaki, M. Umezu, K. Iijima, and K. Imachi, Implications for the establishment of accelerated fatigue test protocols for prosthetic heart valves. Artif. Organs 2002; 26(5): 420–429.
- 33F. J. Schoen, G. Golomb, and R. J. Levy, Calcification of bioprosthetic heart valves: a perspective on models. J. Heart Valve Dis. 1992; 1(1): 110–114.
- 34M. F. Ogle, S. J. Kelly, R. W. Bianco, and R. J. Levy, Calcification resistance with aluminum-ethanol treated porcine aortic valve bioprostheses in juvenile sheep. Ann. Thorac. Surg. 2003; 75(4): 1267–1273.
- 35S. Goldstein, D. R. Clarke, S. P. Walsh, K. S. Black, and M. F. O'Brien, Transpecies heart valve transplant: advanced studies of a bioengineered xeno-autograft. Ann. Thorac. Surg. 2000; 70(6): 1962–1969.
- 36P. Simon, M. T. Kasimir, G. Seebacher, G. Weigel, R. Ullrich, U. Salzer-Muhar, E. Rieder, and E. Wolner, Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur. J. Cardiothorac. Surg. 2003; 23(6): 1002–1006; discussion 1006.
- 37M. T. Kasimir, E. Rieder, G. Seebacher, E. Wolner, G. Weigel, and P. Simon, Presence and elimination of the xenoantigen gal (alpha1, 3) gal in tissue-engineered heart valves. Tissue Eng. 2005; 11(7–8): 1274–1280.
- 38F. Sayk, I. Bos, U. Schubert, T. Wedel, and H. H. Sievers, Histopathologic findings in a novel decellularized pulmonary homograft: an autopsy study. Ann. Thorac. Surg. 2005; 79(5): 1755–1758.
- 39M. A. Sharp, D. Phillips, I. Roberts, and L. Hands, A cautionary case: the SynerGraft vascular prosthesis. Eur. J. Vasc. Endovasc. Surg. 2004; 27(1): 42–44.
- 40H. E. Wilcox, S. A. Korossis, C. Booth, K. G. Watterson, J. N. Kearney, J. Fisher, and E. Ingham, Biocompatibility and recellularization potential of an acellular porcine heart valve matrix. J. Heart Valve Dis. 2005; 14(2): 228–236; discussion 236–237.
- 41E. Rieder, G. Seebacher, M. T. Kasimir, E. Eichmair, B. Winter, B. Dekan, E. Wolner, P. Simon, and G. Weigel, Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation 2005; 111(21): 2792–2797.
- 42D. T. Simionescu, Q. Lu, Y. Song, J. Lee, T. N. Rosenbalm, C. Kelley, and N. R. Vyavahare, Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds. Biomaterials 2006; 27(5): 702–713.
- 43A. Ramamurthi and I. Vesely, Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves. Biomaterials 2005; 26(9): 999–1010.
- 44Y. Shi, A. Ramamurthi, and I. Vesely, Towards tissue engineering of a composite aortic valve. Biomed. Sci. Instrum. 2002; 38: 35–40.
- 45S. P. Hoerstrup, R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer, Jr., Functional living trileaflet heart valves grown in vitro. Circulation 2000; 102(19 Suppl 3): III44–III49.
- 46F. W. Sutherland and J. E. Mayer, Jr., Tissue engineering for cardiac surgery. In: L. H. Cohn and L. H. Edmunds, eds., Cardiac Surgery in the Adult. New York: McGraw-Hill, 2003, pp. 1527–1536.
- 47F. W. Sutherland, T. E. Perry, Y. Yu, M. C. Sherwood, E. Rabkin, Y. Masuda, G. A. Garcia, D. L. McLellan, G. C. Engelmayr, Jr., M. S. Sacks, F. J. Schoen, and J. E. Mayer, Jr., From stem cells to viable autologous semilunar heart valve. Circulation 2005; 111(21): 2783–2791.