Bone, Mechanical Testing of
M.P. Horan
Medical University of South Carolina, Department of Orthopaedic Surgery And College of Medicine, Charleston, South Carolina
Search for more papers by this authorY.H. An
Medical University of South Carolina, Department of Orthopaedic Surgery, Charleston, South Carolina
Clemson University, Department of Bioengineering, Clemson, South Carolina
Search for more papers by this authorM.P. Horan
Medical University of South Carolina, Department of Orthopaedic Surgery And College of Medicine, Charleston, South Carolina
Search for more papers by this authorY.H. An
Medical University of South Carolina, Department of Orthopaedic Surgery, Charleston, South Carolina
Clemson University, Department of Bioengineering, Clemson, South Carolina
Search for more papers by this authorAbstract
Bone is a complex heterogeneous material or structure that in the animal or human body serves the function of support, movement and protection, body mineral homeostasis, and hematopoesis. The mechanical properties of bone, expressed as strength, stiffness or elastic modulus, depend on its hierarchical structure at the macro, micro, sub-micro, nano and sub-nano levels. There are numerous methods for testing the mechanical properties of bone at its different structural levels. A laboratory equipped with basic tools, devices, and mechanical testing machines is essential for mechanical testing of bone. This chapter presents basic concepts and principles of bone biomechanics and introduces basic methodologies of mechanical testing of bone at the macro level. The importance and basic design of testing fixtures are included. Common errors and precautions for mechanical testing of bone are also discussed.
Bibliography
- 1C. E. Hoffler, B. R. McCreadie, and S. A. Goldstein, A Hiearchieal Approach to Exploring Bone Mechanical Properties. In: R. A. Draughn, ed., Mechanical testing of bone and the bone-implant interface. Boca Raton, FL: CRC Press, 2000. p. 133– 149.
- 2J. Katz, The Structure and Biomechanics of Bone. Symp. Soc. Exp. Biol. 1980; 34 137–168.
- 3H. Yamada and F. G. Evans, Strength of biological materials. Baltimore: Williams & Wilkins, 1970.
- 4F. G. Evans, Mechanical properties of bone. American lecture series; publication No. 881. Springfield, Ill.: Thomas, 1973.
- 5J. D. Currey, The mechanical adaptations of bones. Princeton, N.J.: Princeton University Press, 1984.
10.1515/9781400853724 Google Scholar
- 6S. C. Cowin, Bone mechanics handbook, 2nd ed. Boca Raton, FL: CRC Press, 2001.
10.1201/b14263 Google Scholar
- 7R. B. Martin, D. E. Burr, Skeletal tissue mechanics, NewYork: Springer, 1998.
10.1007/978-1-4757-2968-9 Google Scholar
- 8M. Nordin and V. H. Frankel, Biomechanics of Whole Bones and Bone Tissue. In: M. Nordin and V. H. Frankel, eds., Basic biomechanics of the musculoskeletal system. Philadelphia: Lea & Febiger, 1989.
- 9J. Albright, Bone: Physical Properties, In: J.A. Allbright and R.A. Brand, eds., The Scientific Basis of Orthopaedics. Norwalk, CT: Appleton & Lange, 1987.
- 10T. Einhorn, Biomechanics of Bone, In: J. P. Bilezikian, L. G. Raisz, and G. A. Rodan, eds., Principles of bone biology. San Diego: Academic Press, 2002.
- 11W. Hayes and M. Bouxsein, Biomechanics of Cortical and Trabecular Bone: Implications for Assessment of Fracture Risk. In: V. C. Mow and W. C. Hayes, eds., Basic orthopaedic biomechanics. Philadelphia: Lippincott-Raven, 1997.
- 12W. C. Whiting and R. F. Zernicke, Biomechanical Concepts. In: W. C. Whiting and R. F. Zernicke, eds., Biomechanics of musculoskeletal injury. Champaign, IL: Human Kinetics, 1998.
- 13J. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998; 20(2): 92–102.
- 14C. Hoffler et al., A Hierarchical Approach to Exploring Bone Mechanical Properties. In: Y. H. An and R. A. Draughn, eds., Mechanical testing of bone and the bone-implant interface. Boca Raton, FL: CRC Press, 2000, p. 133–149.
- 15E. D. Sedlin and C. Hirsch, Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop. Scand. 1966; 37(1): 29–48.
- 16L. Stromberg and N. Dalen, The influence of freezing on the maximum torque capacity of long bones. An experimental study on dogs. Acta Orthop. Scand. 1976; 47(3): 254–256.
- 17T. I. Malinin, O. V. Martinez, and M. D. Brown, Banking of massive osteoarticular and intercalary bone allografts–12 years’ experience. Clin. Orthop. 1985; 197: 44–57.
- 18M. M. Panjabi et al., Biomechanical time-tolerance of fresh cadaveric human spine specimens. J. Orthop. Res. 1985; 3(3): 292–300.
- 19S. C. Roe, G. J. Pijanowski, and A. L. Johnson, Biomechanical properties of canine cortical bone allografts: effects of preparation and storage. Am. J. Vet. Res. 1988; 49(6): 873–877.
- 20Q. Kang, Y. H. An, and R. J. Friedman, Effects of multiple freezing-thawing cycles on ultimate indentation load and stiffness of bovine cancellous bone. Am. J. Vet. Res. 1997; 58(10): 1171–1173.
- 21F. Linde and H. C. Sorensen, The effect of different storage methods on the mechanical properties of trabecular bone. J. Biomech. 1993; 26(10): 1249–1252.
- 22C. H. Turner and D. B. Burr, Experimental Techniques for Bone Mechanics. In: S. C. Cowin, ed., Bone mechanics handbook. Boca Raton, FL: CRC Press, 2001, p. 1 v. (various pagings).
- 23T. Keller and M. Liebschner, Tensile and Compression Testing of Bone. In: Y. H. An and R. A. Draughn, eds., Mechanical testing of bone and the bone-implant interface. Boca Raton, FL: CRC Press, 2000. p. 175–206.
- 24Y. H. An and R. A. Draughn, Mechanical Properties and Testing Methods of Bone. In: Y. H. An and R. J. Friedman, ed., Animal models in orthopaedic research. Boca Raton, FL: CRC Press, 1999. p. 139–150.
- 25Y. H. An and R. A. Draughn, Mechanical testing of bone and the bone-implant interface. Boca Raton, FL: CRC Press, 2000.
- 26J. A. Szivek and R. A. Yapp, A testing technique allowing cyclic application of axial, bending, and torque loads to fracture plates to examine screw loosening. J. Biomed. Mater. Res. 1989; 23(A1 Suppl): 105–116.
- 27Z. Damián, P. A. Lomelí, and L. Núñez, A Device for Biomechanical Torsion Tests of Long Bones in an Instron Test Machine. Journal of the Mexican Society of Instrumentation. 1997; 3(Nr. 7): 3.
- 28A. Ascenzi, P. Baschieri, and A. Benvenuti, The torsional properties of single selected osteons. J. Biomech. 1994; 27(7): 875–884.
- 29P. L. Mente and J. L. Lewis, Experimental method for the measurement of the elastic modulus of trabecular bone tissue. J. Orthop. Res. 1989; 7(3): 456–461.
- 30W. E. Caler, D. R. Carter, and W. H. Harris, Techniques for implementing an in vivo bone strain gage system. J. Biomech. 1981; 14(7): 503–507.
- 31D. R. Carter, Anisotropic analysis of strain rosette information from cortical bone. J. Biomech. 1978; 11(4): 199–202.
- 32V. L. Roberts, Strain gage techniques in biomechanics. Experimental Mechanics 1966; 19A-22A.
- 33Y. H. An and C. V. Bensen, General Considerations of Mechanical Testing. In: Y. H. An and R. A. Draughn, eds., Mechanical testing of bone and the bone-implant interface. Boca Raton, FL: CRC Press, 2000. p. 119–132.
- 34T. M. Wright and W. C. Hayes, Strain gage application on compact bone. J. Biomech. 1979; 12(6): 471–475.
- 35T. S. Keller and D. M. Spengler, In vivo strain gage implantation in rats. J. Biomech. 1982; 15(12): 911–917.
- 36S. Boyd et al., Measurement of cancellous bone strain during mechanical tests using a new extensometer device. Med. Eng. Phys. 2001; 23(6): 411–416.
- 37C. V. Bensen and Y. H. An, Basic Facilities and Instruments for Mechanical Testing of Bone. In: Y. H. An and R. A. Draughn, eds., Mechanical testing of bone and the bone-implant interface. Boca Raton, FL: CRC Press, 2000. p. 87–102.
- 38F. Linde and I. Hvid, The effect of constraint on the mechanical behaviour of trabecular bone specimens. J. Biomech. 1989; 22(5): 485–490.
- 39T. M. Keaveny et al., Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. J. Biomech. 1993; 26(4–5): 599–607.
- 40T. M. Keaveny et al., Trabecular bone modulus and strength can depend on specimen geometry. J. Biomech. 1993; 26(8): 991–1000.
- 41K. Choi et al., The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J. Biomech. 1990; 23(11): 1103–1113.
- 42T. M. Keaveny et al., Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J. Biomech. 1994; 27(9): 1127–1136.
- 43M. Zhu, T. S. Keller, and D. M. Spengler, Effects of specimen load-bearing and free surface layers on the compressive mechanical properties of cellular materials. J. Biomech. 1994; 27(1): 57–66.
- 44B. E. McKoy, Q. Kang, and Y. H. An, Indentation Testing of Bone. In: Y. H. An and R. A. Draughn, eds., Mechanical testing of bone and the bone-implant interface. Boca Raton, FL: CRC Press, 2000. p. 233–240.