Cartilage Scaffolds
Grace E. Park
Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana
Search for more papers by this authorThomas J. Webster
Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana
Search for more papers by this authorGrace E. Park
Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana
Search for more papers by this authorThomas J. Webster
Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana
Search for more papers by this authorAbstract
Perhaps due to its complex structure and composition, articular cartilage has been known to be one of the most common sources of pain and suffering in the body. Moreover, few biomaterials exist to treat the numerous problems associate cartilage decomposition and injury. This chapter will first present cartilage structure and properties useful in understanding cartilage problems and why it has been so difficult to repair cartilage damage. Then, this chapter will cover current technologies for articular cartilage repairs, emphasizing natural and synthetic materials. Lastly, this chapter will stress one promising approach for creating the next generation of cartilage scaffolds that involves nanotechnology. In this manner, this chapter will present a comprehensive view of cartilage structure, disease, and associate treatment methods.
Many attempts to design better cartilage replacements are being attempted, from natural to synthetic materials. In the synthetic materials world, it seems that the best advances are being realized when attempting to mimic the unique nano- and micro-structure of cartilage tissue, which includes mimicking the arrangement of collagen in each zone of cartilage tissue. It is through these attempts of manipulating chondrocyte function to regrow cartilage tissue that new materials may be found to heal this traditionally difficult anatomical area.
Bibliography
- 1R. R. Wroble, Articular cartilage injury and autologous chondrocyte implantation: which patients might benefit? Phys. Sportsmed. 2000; 28: 11.
10.3810/psm.2000.11.1288 Google Scholar
- 2J. R. Parsons, Cartilage, In: J. Black and G. Hasting, eds., Handbook of Biomaterial Properties. London: Chapman & Hall, 1998, pp. 40–44.
- 3A. Naumann, J. E. Dennis, A. Awadallah, D. A. Carrino, J. M. Mansour, E. Kastenbauer, and A. I. Caplan, Immunochemical and mechanical characterization of cartilage subtypes in rabbit. J. Histochem. Cytochem. 2002; 50(8): 1049–1058.
- 4A. Unsworth, D. Dowson, and V. Wright, Some new evidence on human joint lubrication. Ann. Rheum. Dis. 1975; 34: 277.
- 5C. G. Armstrong and V. C. Mow, Friction, lubrication, and wear of synovial joints. In: R. Owen, J. Goodfellow, P. Bullough, eds., Scientific Foundations of Orthopaedics and Traumatology. London: William Heinemann, 1980: 223–232.
- 6W. A. Hodge, R. S. Fijan, K. L. Carlson, R. G. Burgess, W. H. Harris, and R. W. Mann, Contact pressure in the human hip joint measured in vivo. Proc. Natural Acad. Sci. 1986; 83: 2879–2883.
- 7S. Akizuki, et al., Tensile properties of knee joint cartilage. I. Influence of ionic condition, weight bearing, and fibrillation on the tensile modulus. J. Orthop. Res. 1986; 4: 379.
- 8V. C. Mow and W. M. Lai, Recent developments in synovial joint biomechanics. SIAM Rev. 1980; 22: 275.
- 9V. C. Mow, M. H. Holmes, and W. M. Lai, Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 1984; 17: 377.
- 10M. D. Buschmann, Y. A. GLuzband, A. J. Grodzinsky, and E. B. Hunziker, Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 1995; 108: 1497–1508.
- 11I. Takahashi, G. H. Nuckolls, K. Takahashi, O. Tanaka, I. Semba, R. Dashner, L. Shum, and H. C. Slavkin, Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrocgenesis in mouse embryonic limb bud mesenchymal cells. J. Cell Sci. 1998; 111: 2067–2076.
- 12D. E. Thompson, C. M. Agrawal, and K. Athanasiou, The effects of dynamic compressive loading on biodegradable implants of 50–50% polylactic acid-polyglycolic acid. Tissue Eng. 1996; 2: 61–74.
- 13C. A. Heath and S. R. Magari, Mini-review: mechanical factors affecting cartilage regeneration in vitro. Biotech. Bioengg. 1996; 50: 430–437.
10.1002/(SICI)1097-0290(19960520)50:4<430::AID-BIT10>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 14J. Steinmeyer and S. Knue, The proteoglycan metabolism of mature bovine articular cartilage explants superimposed to continuously applied cyclic mechanical loading. Biochem. Biophys. Res. Commun. 1997; 240: 216–221.
- 15G. P. Van Kampen, J. P. Veldhuijzen, R. Kuijer, R. J. van de Stadt, and C. A. Schipper, Cartilage response to mechanical force in high density chondrocyte cultures. Arth. Rheum. 1985; 28: 419–424.
- 16J. P. Veldhuijzen, A. H. Huisman, J. P. Vermeiden, and B. Prahl-Andersen, The growth of cartilage cells in vitro and the effect of intermittent compressive force. A histological evaluation. Connective Tissue Res. 1987; 16: 187–196.
- 17M. J. Palmoski and K. D. Brandt, Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arth. Rheum. 1984; 27: 675–681.
- 18R. G. LeBaron and K. A. Athanassiou, Ex vivo synthesis of articular cartilage. Biomaterials 2000; 21: 2575–2587.
- 19V. Roth and V. C. Mow, The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J. Bone Jt. Surg. 1980; 62: 1102–1117.
- 20J. A. Buckwalter and H. J. Mankin, Articular cartilage. Part I: tissue design and chondrocyte-matrix interactions. J. Bone Jt. Surg. 1997; 79-A: 600–611.
10.2106/00004623-199704000-00021 Google Scholar
- 21V. C. Mow, C. S. Proctor, and M. A. Kelly, Biomechanics of articular cartilage. In: M. Nordin and V. H. Frankel, eds., Basic Biomechanics of the Musculoskeletal System, 2nd ed. Philadelphia: Lea & Febiger, 1989, pp. 31–57.
- 22H. J. Mankin, V. C. Mow, J. A. Buckwalter, J. P. Iannotti, and A. Ratcliffe, Form and function of articular cartilage. In: Orthopaedic Basic Science. Columbus, OH: American Academy of Orthopaedic Surgeons, 1994, p. 5.
- 23I. C. Clarke, Articular cartilage: a review and scanning electron microscope study. I. The interterritorial fibrillar architecture. J. Bone Joint Surg. 1971; 53B: 732.
- 24G. A. Pringle and C. M. Dodd, Immunoelectron microscopic localization of the core protein of decorin near the d and e bands of tendon collagen fibrils by the use of monoclonal antibodies. J. Histochem. Cytochem. 1990; 38: 1405–1411.
- 25H. Hedbom and D. Heinegard, Binding of fibromodulin and decorin to separate sites on fibrillar collagens. J. Biol. Chem. 1993; 268: 27307–27312.
- 26A. H. Reddi, Cartilage-derived morphogenetic proteins and cartilage morphogenesis. Microsc. Res. Tech. 1998; 43: 131–136.
10.1002/(SICI)1097-0029(19981015)43:2<131::AID-JEMT6>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 27Vinall, 2002.
- 28P. D. Brown and P. D. Benya, Alterations in chondrocyte cytoskeletal architecture during phenotypic modulation by retinoic acid and dihydrocytochalasin B-induced reexpression. J. Cell Biol. 1988; 106: 171–179.
- 29E. B. Hunziker and L. C. Rosenberg, Repair of partial-thickness articular cartilage defects. Cell recruitment from the synovium. J. Bone J. Surg. 1996; 78A: 721–733.
- 30Laprade, et al., 2001.
- 31A. R. Poole., Cartilage in health and disease. In: D. J. McCarty, and W. P. Koopman, eds., Arthritis and Allied Conditions: A Textbook of Rheumatology. Philadelphia: Lea & Febiger, 1993, pp. 279–333.
- 32G. J. Van Osch, W. B. van den Berg, E. B. Hunziker, and H. J. Hauselmann, Differential effects of IGF-1 and TGF-β 2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthritis Cart. 1998; 6: 187–195.
- 33Y. Nishida, C. B. Knudson, K. E. Kuettner, and W. Knudson, Osteogenic protein-1 promotes the synthesis and retention of extracellular matrix with bovine articular cartilage and chondrocyte cultures. Osteoarthritis Cart. 2000; 8: 127–136.
- 34K. Messner, A. Fahlgren, J. Persliden, and B. Andersson, Radiographic joint space narrowing and histologic changes in a rabbit meniscectomy model of early knee osteoarthrosis. Am. J. Sports Med. 2001; 29: 151–160.
- 35D. W. Hutmacher, Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J. Biomater. Sci. 2001; 12(1): 107–124.
- 36E. A. Sander, A. M. Alb, E. A. Nauman, W. F. Reed, and K. C. Dee, Solvent effects on the microstructure and properties of 75/25 poly(D,L-lactide-co-glycolide) tissue scaffolds. J. Biomed. Mater. Res. A. 2003; 70A(3): 506–513.
- 37C. E. Holy, J. A. Fialkov, J. E. Davies, and M. S. Shoichet, Use of a biomimetic strategy to engineer bone. J. Biomed. Mater. Res. 2003; 65A: 447–453.
- 38M. C. Peters and D. J. Mooney, Synthetic extracellular matrices for cell transplantation. Mater. Sci. Forum. 1997; 250: 43–52.
- 39M. E. Gomes, V. I. Sikavitsas, E. Behravesh, R. L. Reis, and A. G. Mikos, Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three dimensional scaffolds, J. Biomed. Mater. Res. 2003; 67A: 87–95.
- 40J. J. Rosen and M. B. Schway, Kinetics of cell adhesion to a hydrophilic-hydrophobic copolymer model system. Polym. Sci. Technol. 1980; 12B: 667–675.
- 41M. J. Lydon, T. W. Minett, and B. J. Tighe, Cellular interactions with synthetic polymer surfaces in culture. Biomaterials 1985; 6: 396–402.
- 42L. Lu, S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite, J. A. Tamada, S. Uyama, J. P. Vacanti, R. Langer, and A. G. Mikos, In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 2000; 21: 1837–1845.
- 43S. Kay, A. Thapa, K. M. Haberstroh, and T. J. Webster, Nanostructured polymer: nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng. 2002; 8(5): 753–761.
- 44D. M. Miller, A. Thapa, K. M. Haberstroh, and T. J. Webster, An in vitro study of nano-fiber polymers for guided vascular regeneration. MRS Symposium Proceedings. 2002; 711: GG3.2.1–GG3.2.4.
- 45A. Thapa, T. J. Webster, and K. M. Haberstroh, An investigation of nano-structured polymers for use as bladder tissue replacement constructs. Materials Research Society Symposium Proceedings, 711: GG3.4.1–GG3.4.6, 2002.
- 46A. G. Gristina, Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 1987; 237: 1588–1595.
- 47T. A. Horbett and M. B. Schway, Correlations between mouse 3T3 cell spreading and serum fibronectin adsorption on glass and hydroxyethyl methacrylate copolymers. J. Biomed. Mater. Res. 1988; 22: 763–793.
- 48R. F. Loeser, Integrin-mediated attachment of articular chondrocytes to extracellular matrix proteins. Arthritis Rheum. 1993; 36(8): 1103–1110.
- 49J. M. Schakenraad, In: B. Ratner, et al., eds., Biomaterial Science. San Diego: Academic Press, 1996, pp. 140–141.
- 50T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res. 2000; 51: 475–483.
- 51M. H. Helfrich and M. A. Horton, Integrins and adhesion molecules. In: M. J. Seibel, S. P. Robins, and J. P. Bilezikian, eds., Dynamics of Bone and Cartilage Metabolism. London: Academic Press, 1999, pp. 118–123.
- 52Y. Sommarin, T. Larsson, and D. Heinegard, Chondrocyte-matrix interactions. Attachment to proteins isolated from cartilage. Exp. Cell Res. 1989; 284: 181–192.
- 53A. Ramachandrula, K. Tiku, and M. L. Tiku, Tripeptide RGD-dependent adhesion of articular chondrocytes to synovial fibroblasts. J. Cell Sci. 1992; 101: 859–871.
- 54S. L. Ishaug, G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos, Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J. Biomed. Mater. Res. 1997; 36: 17–28.
10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 55S. L. Ishaug-Riley, G. M. Crane, A. Gurlek, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos, Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J. Biomed. Mater. Res. 1997; 36: 1–8.
10.1002/(SICI)1097-4636(199707)36:1<1::AID-JBM1>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 56J. K. Sherwood, S. L. Riley, R. Palazzolo, S. C. Brown, D. C. Monkhouse, M. Coates, L. G. Griffith, L. K. Landeen, and A. Ratcliffe, A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 2002; 23: 4739–4751.
- 57C. M. Agrawal and R. B. Ray, Biodegradable polymer scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 2001; 55: 141–150.
- 58K. A. Athanasiou, J. P. Schmitz, and C. M. Agrawal, The effects of porosity on in vitro degradation of polylactic acid-polyglycolic acid implants used in repair of articular cartilage. Tissue Eng. 1998; 4: 53–63.
- 59C. M. Agrawal, J. S. McKinney, D. Lanctot, and K. A. Athanasiou, Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials 2000; 21: 2443–2452.
- 60W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 2002; 60: 613–621.
- 61S. G. Lévesque, R. M. Lim, and M. S. Shoichet, Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials 2005; 26(35): 7436–7446.
- 62J. Aigner, J. Tegeler, P. Hutzler, D. Campoccia, A. Pavesio, C. Hammer, E. Kastenbauer, and A. Naumann, Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J. Biomed. Mat. Res. 1998; 42: 172–181.
10.1002/(SICI)1097-4636(199811)42:2<172::AID-JBM2>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 63S. Nehrer, H. A. Breinan, A. Ramappa, S. Shortkroff, G. Young, T. Minas, C. B. Sledge, I. V. Yannas, and M. Spector, Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J. Biomed. Mater. Res. 1997; 38: 95–104.
10.1002/(SICI)1097-4636(199722)38:2<95::AID-JBM3>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 64L. A. Solchaga, J. U. Yoo, M. Lundberg, J. E. Dennis, B. A. Huibregtse, V. M. Goldberg, and A. I. Caplan, Hyaluronan-based polymers in the treatment of osteochondral defects. J. Orthop. Res. 2000; 18: 773–780.
- 65E. Bell, Strategy for the selection of scaffolds for tissue engineering. Tissue Eng. 1995; 1(2): 163–179.
- 66L. E. Freed, A. P. Hollander, I. Martin, J. R. Barry, R. Langer, and G. Vunjak-Novakovic, Chondrogenesis in a cell-polymer-bioreactor system. Exp. Cell Res. 1998; 240: 58–65.
- 67C. A. Vacanti, R. Langer, B. Schloo, and J. P. Vacanti, Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast. Recon. Surg. 1991; 88: 753–759.
- 68N. S. Dunkelman, M. P. Zimber, R. G. LeBaron, R. Pavelec, M. Kwan, and A. F. Purchio, Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotech. Bioengng. 1995; 46: 299–305.
- 69L. W. Breck, The use of certain plastic materials in reconstructive surgery of the knee joint. Clin. Orthop. 1967; 54: 133–137.
- 70K. Messner and J. Gillquist, Synthetic implants for the repair of osteochondral defects of the medial femoral condyle: a biomechanical and histological evaluation in the rabbit knee. Biomaterials 1993; 14: 513–521.
- 71K. Messner, Durability of artificial implants for repair of osteochondral defects of the medial femoral condyle in rabbits. Biomaterials 1994; 15: 657–664.
- 72J. Klompmaker, H. W. Jansen, R. P. Veth, H. K. Nielsen, J. H. de Groot, and A. J. Pennings, Porous polymer implants for repair of full-thickness defects of articular cartilage: an experimental study in rabbit and dog. Biomaterials 1992; 13: 625–634.
- 73G. Zheng-Qiu, X. Jiu-Mei, and Z. Xiang-Hong, The development of artificial articular cartilage – PVA-hydrogel. Biomed. Mater. Eng. 1998; 8: 75–81.
- 74J. V. Cauich-Rodriguez, S. Deb, and R. Smith, Effect of cross-linking agents on the dynamic mechanical properties of hydrogel blends of poly(acrylic acid)-poly(vinyl alcohol-vinyl acetate). Biomaterials 1996; 17: 2259–2264.
- 75P. Lopour, Z. Plichta, Z. Volfova, P. Hron, and P. Vondracek, Silicon rubber—hydrogel composites as polymeric biomaterials. Biomaterials 1993; 14: 1051–1055.
- 76J. A. Stammen, S. Williams, D. N. Ku, and R. E. Guldberg, Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 2001; 22: 799–806.
- 77M. Sittinger, D. Reitzel, M. Dauner, H. Hierlemann, C. Hammer, E. Kastenbauer, H. Planck, G. R. Burmester, and J. Bujia, Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J. Biomed. Mater. Res. 1996; 33: 57–63.
10.1002/(SICI)1097-4636(199622)33:2<57::AID-JBM1>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 78P. X. Ma and R. Langer, Degradation, structure and properties of fibrous nonwoven poly(glycolic acid) scaffolds for tissue engineering. In: A. G. Mikos, et al., eds., Polymers in Medicine and Pharmacy. Pittsburgh: MRS, 1995, pp. 99–104.
10.1557/PROC-394-99 Google Scholar
- 79P. X. Ma and R. Langer, Fabrication of biodegradable polymer foams for cell transplantation and tissue engineering. In: M. Yarmus and J. Morgan, eds., Tissue Engineering Methods and Protocols. Towowa, NJ: Humana Press, 1998, pp. 47–56.
10.1385/0-89603-516-6:47 Google Scholar
- 80B. Matlaga and T. Salthouse, Ultrastructural observations of cells at the interface of a biodegradable polymer: Polyglactin 910. J. Biomed. Mater. Res. 1983; 17: 185–197.
- 81G. E. Park, Surface modified PLGA/carbon nanofiber composite enhances articular chondrocyte functions. PhD dissertation, Purdue University, 2005, pp. 75–77.
- 82S. Wakitani, T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, and V. M. Goldberg, Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Jt. Surg. 1994; 76A: 579–591.
- 83G. Vunjak-Novakovic, B. Obradovic, I. Martin, and L. E. Freed, Bioreactor studies of native and tissue engineered cartilage. Biorheology. 2002; 39(1–2): 259–268.