Carbyne-Containing Surface Coatings
Gregory M. Demyashev
Swinburne University of Technology, Melbourne, Australia
Search for more papers by this authorAlexander L. Taube
Swinburne University of Technology, Melbourne, Australia
Search for more papers by this authorGregory M. Demyashev
Swinburne University of Technology, Melbourne, Australia
Search for more papers by this authorAlexander L. Taube
Swinburne University of Technology, Melbourne, Australia
Search for more papers by this authorAbstract
Synthesis of carbyne-containing surface coatings for a variety of biomedical applications is a matter of a great importance. Carbynes with a one-dimensional chain-like molecular structure that were discovered a few decades ago represent a basic allotropic form of carbon equally with diamond and graphite. Carbynes appear as quasi-crystalline structures of carbon-chains with double (CC)n and alternating single/triple (–CC–)n covalent bonds. The aim of this article is to summarize existing information about carbyne-containing surface coatings for biomedical applications and to outline novel approaches for synthesis of such functional biomaterials in the form of coatings.
The first research and development of carbyne-containing materials demonstrated their great potential for biomedical applications. Carbynes possess a high biocompatibility, low litho- and thrombogenic activity, high resistance to chemically aggressive biological liquids, antibacterial and antifungal activities, and so on.
Equally with the state-of-the-art biomaterials in question, three novel carbyne-containing surface coatings are here highlighted: (1) carbynes-W3C composite coatings chemically vapor-deposited, (2) carbyne-containing layers formed by electropolishing of the surface of transition metal carbides, and (3) microwave-induced defluorination of polytetrafluoroethylene (PTFE or Teflon) on the interface of “PTFE-Water” at ∼95°C.
This article demonstrates opportunities to synthesize the carbyne-containing surface coatings that can be practically realized for biomedical applications. The three coating processes afford the opportunity to modify the surfaces of the basic artificial implants; i.e., metallic/ceramic artificial implants can be coated by the Carbynes-W3C composite; artificial implants manufactured from transition metal alloys can be electrochemically modified by carbyne-containing coating; and PTFE-implants can be modified by microwave-induced surface defluorination leading to the formation of a carbyne-containing surface layer.
Bibliography
- 1 R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999.
- 2M. S. Dresselhaus, Future directions in carbon science. Annu. Rev. Mater. Sci. 1997; 27: 1–34.
- 3H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerines: Properties, Processing and Applications. Park Ridge: Noes Publications, 1993.
- 4R. B. Hermann, S. E. Evsyukov, and Y. Koga, Carbon allotropes: A suggested classification scheme based on valence orbital hybridisation. Carbon. 1997; 35: 1654–1658.
- 5M. Springborg, Structural and electronic properties of polyyne. In: R. B. Hermann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 215–233.
10.1007/978-94-011-4742-2_16 Google Scholar
- 6S. E. Evsyukov, Chemical dehydrohalogenation of polymers. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 55–74.
10.1007/978-94-011-4742-2_7 Google Scholar
- 7R. B. Heimann, Should carbyne be described by paracrystal theory? Carbon. 1997; 35: 1669–1671.
- 8I. A. Udod, Carbyne intercalation compounds. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 269–294.
10.1007/978-94-011-4742-2_18 Google Scholar
- 9V. G. Babaev and M. B. Guseva, Ion-assisted condensation of carbon. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 159–171.
10.1007/978-94-011-4742-2_13 Google Scholar
- 10 S. Patai, ed., The Chemistry of Double-Bonded Functional Groups. Chichester: Wiley, 1977, supplement A, part 1 and 2.
- 11 S. Patai, ed., The Chemistry of the Carbon-Carbon Triple Bond. Chichester: Wiley, 1978, part 1 and 2.
10.1002/9780470771563 Google Scholar
- 12M. C. McCarthy, M. J. Travers, A. Kovacs, W. Chen, S. E. Novick, C. A. Gottlieb, and P. Thaddeus, Detection and characterization of the cumulene carbenes H2C5 and H2C6. Science. 1997; 275: 518–520.
- 13 H. Fischer, P. Hofmann, F. R. Kreissl, R. R. Schrock, U. Schubert, and K. Weiss, eds., Carbyne Complexes. Weinheim: VCH Publishers, 1988.
- 14 F. R. Kreiss, ed., Transition Metal Carbyne Complexes. Dordrecht: Kluwer, 1993.
- 15Y. Zhou, J. W. Seyler, W. Weng, A. M. Arif, and J. A. Gladysz, New families of coordinated carbon: oxidative coupling of an ethynyl complex to isolable an crystallographically characterizes MCCCCM and +MCCCCM+ assemblies, J. Am. Chem. Soc. 1993; 115: 8509–8510.
- 16D. Touchard, P. Haquette, A. Daridor, L. Toupet, and P. H. Dixneuf, First isolable pentatertraenylidene metal complex containing the RuCCCCCPh2 assembly. A key intermediate to provide functional allenylidene complexes. J. Am. Chem. Soc. 1994; 116: 11157–11158.
- 17R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, and J. A. Gladysz, Toward metal-capped one-dimensional carbon allotropes: Wirelike C6–C20 polyynediyl chains that span two redox-active (η5-C5Me5) ReNO(PPh3) endgroups. J. Am. Chem. Soc. 2000; 122: 810–822.
- 18R. B. Heimann, The nature of carbyne—pros and cons. In: R. B. Heimann, S. E. Evsynkov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 7–15.
- 19J. I. Kleiman, K. Yamada, A. B. Sawaoka, and R. B. Heimann, Dynamic pressure synthesis of carbynes. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 173–187.
10.1007/978-94-011-4742-2_14 Google Scholar
- 20L. Kavan and R. B. Heimann, Other natural carbynoid structures. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 31–38.
10.1007/978-94-011-4742-2_4 Google Scholar
- 21K. W. R. Gilkes and C. T. Pillinger, Carbon—how many allotropes associated with meteorites and impact phenomena? In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 17–30.
10.1007/978-94-011-4742-2_3 Google Scholar
- 22 D. F. Williams, ed., Biocompatibility of orthopaedic implants, vol. 1–2. Boca Raton: CRC Press, 1983.
- 23 H. S. Nalwa, ed., Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology, vol. 1–2. Los Angeles: American Scientific Publishers, 2005.
- 24J. V. Sloten, L. Labey, and R. V. Audekercke, Materials selection and design for orthopaedic implants with improved long-term performance. Biomaterials. 1998; 19: 1455–1459.
- 25M. Long and H. J. Rack, Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 1998; 19: 1621–1639.
- 26J. M. Anderson, Biological responses to materials. Annu. Rev. Matter. Sci. 2001; 31: 81–110.
- 27M. B. Guseva, V. G. Babaev, N. D. Novikov, A. F. Alexandrov, V. V. Khvostov, and N. F. Savchenko, New Carbon Materials for Medical and Ecological Applications. J. Wide Bandgap Mater. 2002; 9: 273–291.
- 28V. Stary, L. Bacakova, J. Hornik, and V. Chmelik, Bio-compatibility of the surface layer of pyrolytic graphite. Thin Solid Films. 2003; 433: 191–198.
- 29G. Ramage, M. M. Tunney, S. Patrick, S. P. Gorman, and J. R. Nixon, Formation of propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials. Biomaterials 2003; 24: 3221–3227.
- 30A. Grill, Diamond-like carbon coatings as biocompatible materials—an overview. Diamond Relat. Mater. 2003; 12: 166–170.
- 31R. Hauert and U. Muller, An overview on tailored tribological and biological behaviour of diamond-like corbon. Diamond Relat. Mater. 2003; 12: 171–177.
- 32M. B. Guseva, V. G. Babaev, Yu. P. Kudryavtsev, A. F. Alexandrov, and V. V. Khvostov, New medical material based on metastable form of carbon. Diamond Relat. Mater. 1995; 4: 1142–1144.
- 33V. I. Kirpatovsky, Medical applications of carbynoid materials. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 427–435.
10.1007/978-94-011-4742-2_28 Google Scholar
- 34G. M. Demyashev, A. L. Taube, and E. Siores, Novel surface modification of PTFE with carbynes for bio-applications. In: The 13th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide, Granada, Spain, September 8–13, 2002, Abstract Book, abst. # 15.08.04.
- 35G. M. Demyashev, A.L. Taube, and E. Siores, Surface modification of titanium carbide with carbyne-containing nanocoatings. J. Nanosci. Nanotech. 2002; 2: 133–137.
- 36R. B. Heimann, Linear carbon allotropes (carbyne): Potential biocompatible materials with low litho- and thrombogenic as well as antibacrerial/antifungal activity. In: The 6th Interdisciplinary Essen Symposium “Biomaterials: Fundamentals and Clinical Application,” University Hospital Essen, Germany, October 8–10, 2003.
- 37Yu. P. Kudryavtsev, R. B. Heimann, and S. E. Evsyukov, Carbynes: Advances in the field of linear carbon-chain compounds. J. Mater. Sci. 1996; 31: 5557–5571.
- 38P. Scharff, New carbon materials for research and technology. Carbon. 1998; 36: 481–486.
- 39J. R. Heath, Q. Zhang, S. C. O'Brien, R. F. Curl, H. W. Kroto, and R. E. Smalley, The formation of long carbon chain molecules during laser vaporization of graphite. J. Am. Chem. Soc. 1987; 109: 359–363.
- 40M. Anchel, Acetylenic compounds from fungi. J. Am. Chem. Soc. 1952; 74: 1588–1590.
- 41S. C. Shim and T. S. Lee, Photocycloaddition reaction of some conjugated hexatriynes with 2,3-dimethyl-2-butane. J. Org. Chem. 1988; 53: 2410–2413.
- 42D. Grandjean, P. Pale, and J. Chuche, A general access to optically pure epoxypolyynes: Asymmetric synthesis of antifeedant natural products. Tetrahedron 1993; 49: 5225–5236.
- 43C. C. Trapalis,. P. Keivanidis, G. Kordas, M. Zaharescu, M. Crosan, A. Szatvanyi, and M. Gartner, TiO2(Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films. 2003; 433: 186–190.
- 44R. Hauert, Modification of DLC coatings for biological applications. In: A. Dorner-Reisel and C. Schürer, eds., Surface Engineering of Biomaterials—Properties, Processing and Potentials of Carbon Coatings, Weinheim: Wiley-VCH. In press.
- 45G. Francz, A. Schroeder, and R. Hauert, Surface analysis and bioreactions of Ti- and V-containing a-C:H. In: A. Dorner-Reisel and C. Schürer, eds., Surface Engineering of Biomaterials—Properties, Processing and Potentials of Carbon Coatings. Weinheim: Wiley-VCH. In press.
- 46A. G. Whittaker, Chaoite coating process. U. S. Patent 4,248,909, Feb. 3, 1981.
- 47G. M. Demyashev, A. L. Taube, and E. Siores, Nanostructured tungsten-based composite coatings and their application. Nano. Lett. 2001; 1: 183–187.
- 48G. M. Demyashev, A. L. Taube, and E. Siores, Superhard nanocomposite coatings. In: H. S. Nalwa, ed., Handbook of Organic-Inorganic Hybrid Materials and Nanocomposities. Los Angeles: American Scientific Publishers, 2003, vol. 2, pp. 1–61.
- 49G. M. Demyashev, A. L. Taube, and E. Siores, Superhard nanocomposites. In: H. S. Nalwa, ed., Encyclopedia of Nanoscience and Nanotechnology. Stevenson Ranch, CA: American Scientific Publishers, 2004, vol. 10, pp. 191–236.
- 50E. M. Baitinger, Electrical and optical properties. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 333–341.
10.1007/978-94-011-4742-2_22 Google Scholar
- 51A. Sokolowska and A. Olszyna, Decomposition of hydrocarbon. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 117–131.
10.1007/978-94-011-4742-2_10 Google Scholar
- 52Yu. P. Kudryavtsev, Dehydropolycondensation of acetylene. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structure. Dordrecht: Kluwer, 1999, pp. 39–45.
10.1007/978-94-011-4742-2_5 Google Scholar
- 53M. Kijima and H. Shirakawa, Polycondensation reactions of halides. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structure. Dordrecht: Kluwer, 1999, pp. 47–54.
- 54R. B. Heimann, Resistive heating and laser irradiation. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structure. Dordrecht: Kluwer, 1999, pp. 139–148.
10.1007/978-94-011-4742-2_12 Google Scholar
- 55B. P. Stoicheff, The variation of carbon-carbon bond lengths with environment as determined by spectroscopic studies of simple polyatomic molecules. Tetrahedron 1962; 17: 135–145.
- 56R. B. Heimann, Kinked chains and layered structure. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structure. Dordrecht: Kluwer, 1999, pp. 235–268.
10.1007/978-94-011-4742-2_17 Google Scholar
- 57K. S. Pitzer and E. Clementi, Large molecules in carbon vapor. J. Am. Chem. Soc. 1959; 81: 4477–4485.
- 58A. Lamperti and P. M. Ossi, Energetic condition for carbyne formation. Chem. Phys. Lett. 2003; 376: 662–665.
- 59V. V. Korshak, Yu. P. Kudryavtsev, V. V. Khvostov, M. B. Guseva, V. G. Babaev, and O. Yu. Rylova, Electronic structure of carbynes studied by Auger and electron energy loss spectroscopy. Carbon 1987; 25: 735–738.
- 60L. Kavan, Electrochemical methods. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 189–214.
10.1007/978-94-011-4742-2_15 Google Scholar
- 61A. Zerr and R. Riedel, Introductions: novel ultrahard materials. In: R. Riedel, ed., Handbook of Ceramic Hard Materials. Wienheim: Wiley-VCH, 2000, pp. XLV–LXXVII.
- 62V. Parasuk and J. Almlof, C20: the smallest fullerene? Chem. Phys. Lett. 1991; 184: 187–190.
- 63R. J. Lagow, J. J. Kampa, H. C. Wei, S. L. Battle, J. W. Genge, D. A. Laude, C. J. Harper, R. Bau, R. C. Stevens, J. F. Haw, and E. Munson, Synthesis of linear carbon: the sp carbon allotrope. Science 1995; 267: 362–367.
- 64W. Weltner, Jr. and R. J. Van Zee, Carbon molecules, ions, and clusters. Chem. Rev. 1989; 89: 1713–1747.
- 65L. Kavan and J. Kastner, Raman and infrared spectroscopy. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 343–356.
10.1007/978-94-011-4742-2_23 Google Scholar
- 66L. A. Pesin, Electron spectroscopy. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 371–394.
10.1007/978-94-011-4742-2_25 Google Scholar
- 67A. G. Fitzgerald, Electron diffraction and microscopy. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 295–308.
10.1007/978-94-011-4742-2_19 Google Scholar
- 68S. Tanuma, Quasi one dimensional carbon crystal “carbolate”. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 149–158.
- 69A. I. Krasovsky, R. K. Chuzhko, V. R. Tregulov, and O. A. Balachovsky, Fluorine Process of Receipt of Tungsten. (in Russian). Moscow: Nauka, 1981.
- 70R. B. Heimann, J. K. Kleiman, N. M. Salansky, A unified structural approach to linear carbon polytypes. Nature 1983; 306: 164–167.
- 71B. V. Lebedev, Thermophysical properties. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 317–331.
- 72L. Kavan, Synthesis of all-carbon chains and nanoparticles by chemical transformation of halogenated hydrocarbons at low temperatures. TANSO 2001; 196: 23–38.
- 73S. E. Evsyukov, B. Thomas, and R. B. Heimann, Chemical dehydrohalogenation of poly(ethylene-alt-chlorotrifluoroethylene). Mater. Chem. Phys. 2000; 66: 34–40.
- 74L. Kavan, P. Janda, and J. Weber, Surface modification of poly(tetrafluoroethylene) by magnesium amalgam. J. Mater. Sci. 2001; 36: 879–885.
- 75C. R. Deible, P. Petrosko, P. C. Johnson, E. J. Bechman, A. J. Russell, and W. R. Wagner, Molecular barriers to biomaterial thrombosis by modification of surface proteins with polyethylene glycol. Biomaterials 1998; 19: 1885–1893.
- 76U. Konig, M. Nitschke, A. Menning, C. Sperling, F. Simon, C. Arnhold, C. Werner, and H. -J. Jacobasch, Plasma modification of polytetrafluoroethylene for immobilization of the fibrinolytic protein urokinase. Surf. Coat. Technol. 1999; 116–119: 1011–1015.
- 77M. Mason, K. P. Vercruysse, K. R. Kirker, R. Frisch, D. M. Marecak, G. D. Prestwich, and W. G. Pitt, Attachment of hyaluronic acid to polypropylene, polystyrene, and Polytetrafluoroethylene. Biomaterials 2000; 21: 31–36.
- 78T. Chandy, G. S. Das, R. F. Wilson, and G. H. R. Rao, Use of plasma glow for surface-engineering biomolecules to enhance bloodcompatibility of Dacron and PTFE vascular prosthesis. Biomaterials 2000; 21: 699–712.
- 79J. M. Bellon, N. G. Honduvilla, F. Jurado, A. G. Carranza, and J. Bujan, In vitro interaction of bacteria with polypropylene/ePTFE prostheses. Biomaterials 2001; 22: 2021–2024.
- 80X. P. Zou, E. T. Kang, and K. G. Neoh, Plasma-induced graft polymerization of poly(ethylene glycol) methyl ether methacrylate on poly(tetrafluoroethylene) films for reduction in protein adsorption. Surf. Coat. Technol. 2002; 149: 119–128.
- 81G. J. Toes, K. W. van Muiswinkel, W. van Oereren, A. J. H. Suurmeijer, W. Timens, I. Stokroos, and J. J. A. M. van den Dungen, Superhydrophobic modification fails to improve the performance of small diameter expanded polytetrafluoroethylene vascular graft. Biomaterials 2002; 23: 255–262.
- 82F. R. Pu, R. L. Williams, T. K. Markkula, and J. A. Hunt, Effects of plasma treated PET and PTFE on expression of adhesion molecules by human endothelial cells in vitro. Biomaterials 2002; 23: 2411–2428.
- 83L. Kavan, Electrochemical carbon. Chem. Rev. 1997; 97: 3061–3082.
- 84L. Kavan, Electrochemical preparation of hydrogen free carbyne-like materials. Carbon 1998; 36: 801–808.
- 85L. Kavan, F. P. Dousek, P. Janda, and J. Weber, Carbonization of highly oriented poly(tetrafluoroethylene). Chem. Mater. 1999; 11: 329–335.
- 86A. Yabe, Photo- and laser-induced denydrohalogenation of polymers. In: R. B. Heimann, S. E. Evsyukov, and L. Kavan, eds., Carbynes and Carbynoid Structures. Dordrecht: Kluwer, 1999, pp. 75–91.
10.1007/978-94-011-4742-2_8 Google Scholar
- 87G. M. Demyashev and A. L. Taube, Carbyne-containing nanostructured coatings for bio-applications: synthesis and structure. In: A. Dorner-Reisel and C. Schürer, eds., Surface Engineering of Biomaterials – Properties, Processing and Potentials of Carbon Coatings. Weinheim: Wiley-VCH, 2005, in press.
- 88R. Strietzel, A. Hösch, H. Kalbfleisch, and D. Buch, In vitro corrosion of titanium. Biomaterials 1998; 19: 1495–1499.
- 89M. Aziz-Kerrzo, K. G. Conroy, A. M. Fenelon, S. T. Farrell, and C. B. Breslin, Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 2001; 22: 1531–1539.
- 90H. B. Wen, J. R. de Wijn, F. Z. Cui, and K. de Groot, Preparation of bioactive Ti6A14V surfaces by a simple method. Biomaterials 1998; 19: 215–221.
- 91I. Milosev, Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscoy. Biomaterials 2000; 21: 2103–2113.
- 92H. M. Kim, H. Takadama, T. Kokubo, S. Nishiguchi, and T. Nakamura, Formation of a bioactive graded surface structure on Ti-I5Mo-5Zr-3-Al alloy by chemical treatment. Biomaterials 2002; 21: 353–358.
- 93C. H. Ku, D. P. Pioletti, M. Browne, and P. J. Gregson, Effect of different T1-6A1-4V surface treatments on osteoblasts behaviour. Biomaterials 2002; 23: 1447–1454.
- 94Y. Okazaki, S. Rao, Y. Ito, and T. Tateishi, Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials 1998; 19: 1197–1215.
- 95Y. Okazaki, E. Nishimura, H. Nakada, and K. Kobayashi, Surface analysis of Ti-15Zr-4Nb-4Ta alloy after implantation in rat tibia. Biomaterials 2001; 22: 599–607.
- 96H. Matsuno, A. Yokoyama, F. Watari, M. Uo, and T. Kawasaki, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 2001; 22: 1253–1262.
- 97G. M. Demyashev, N. N. Repnikov, and R. K. Chuzhko, Certain laws of the change in nano-structure of the TiC-surface during electro-polishing. (in Russian). POVERKHNOST’ 1982; 3: 165–176.
- 98G. M. Demyashev, A. L. Taube, and E. Siores, Synthesis and TEM-investigation of Carbynes. The 12th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide, Budapest, Hungary, September 2–7, 2001: 5.8.24.
- 99A. L Krasovsky, I. L. Sinani, I. V. Kirillov, and Yu. N. Golovanov, CVD of tungsten carbides. (in Russian). USSR Patent 413,753.
- 100G. M. Demyashev, A. I. Krasovsky, V. P. Kuzmin, M. B. Malandin, and R. K. Chuzhko, Electron-microscopic investigation of the superhard nanocomposite of nc-W3C/nc-Carbynes (in Russian). Izvestiya AN USSR. Ser. Inorganic Mater. 1985; 21: 1155–1159.
- 101G. M. Demyashev, A. L. Taube, E. Siores, and A. Hasna, Microwave hot water system for the malting industry. Proceedings of the IMPI’s 36th Annual International Microwave Symposium, San Francisco, CA, April 18–21, 2001: 67–69
- 102R. B. Heimann, S. Fujiwara, Y. Kakudate, Y. Koga, T. Komatsu, and M. Nomura, A new carbon form obtained by ever shock compression of carbyne. Carbon 1995; 33: 859–863.
- 103A. Goresy and G. Donney, A new allotropic form of carbon from the rise crater. Science 1969; 161: 363.
10.1126/science.161.3839.363 Google Scholar
- 104R. B. Heimann, J. Kleiman, and N. M. Salansky, Structural aspects and conformation for linear carbon polytypes (carbynes). Carbon 1984; 22: 147–155.
- 105J. Konwerska-Hrabowska, S. Mitura, J. Szmidt, A. Werbowy, A. Sokowska, and K. Zdunek, Nanocrystalline CN thin films. Diamond Relat. Mater. 1996; 5: 564–569.
- 106V. D. Blank, B. A. Kulnitskiy, Y. V. Tatyanin, and O. M. Zhigalina, A new phase of carbon. Carbon 1999; 37: 549–554.
- 107L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, TEM characterization of nanodiamond thin films. NanoStructured Mater. 1998; 10: 649–660.
- 108E. K. Storms, The Refractory Carbides. New York: Academic Press, 1967.
- 109A. Cottrell, Chemical Bonding in Transition Metal Carbides, London: IoM, 1995.
- 110W. L. Grube, Plasma (ion) nitriding. In: ASM Handbook. Vol. 4: Heat Treating. Cleveland, OH: ASM International, 1995, pp. 352–364.
- 111N. Y. Pehlivanturk and O. T. Inal, Carburising of tungsten in a glow discharge methane plasma. In: T. Spalvins, ed., Ion Nitriding. Cleveland, OH: ASM International, 1986, pp. 179–188.
- 112C. A. Huber, In: Handbook of Nanophase Materials. New York: Marcel Dekker, Inc., 1997, p. 317.