EEG-Based Brain-Computer Interface System
Gert Pfurtscheller
University of Technology Graz, BCI-Lab, Department of Medical Informatics, Graz, Austria
Search for more papers by this authorBernhard Graimann
University of Technology Graz, BCI-Lab, Department of Medical Informatics, Graz, Austria
Search for more papers by this authorChrista Neuper
University of Technology Graz, BCI-Lab, Department of Medical Informatics, Graz, Austria
Search for more papers by this authorGert Pfurtscheller
University of Technology Graz, BCI-Lab, Department of Medical Informatics, Graz, Austria
Search for more papers by this authorBernhard Graimann
University of Technology Graz, BCI-Lab, Department of Medical Informatics, Graz, Austria
Search for more papers by this authorChrista Neuper
University of Technology Graz, BCI-Lab, Department of Medical Informatics, Graz, Austria
Search for more papers by this authorAbstract
A brain computer interface (BCI) transforms electrophysiological signals originating from the human brain into commands that control devices or applications. In this way, a BCI provides a new nonmuscular communication channel, which can be extremely useful for people with severe neuromuscular disorders such as amyotrophic lateral sclerosis and brainstem stroke. The immediate goal of our current research is to provide these users with an opportunity to communicate with their environment. Future applications also include the field of multimedia and virtual reality.
Present day BCIs use a variety of electrophysiological signals such as slow cortical potentials, evoked potentials (P300), oscillatory activity recorded from scalp or subdural electrodes, and cortical neuronal activity recorded from implanted electrodes. EEG is by far the most frequently used input source, because it is readily available and noninvasive. The poor signal-to-noise ratio of scalp–recorded signals requires the application of advanced signal processing methods.
This article outlines and explains the current approaches and methods used in BCI research with emphasis on the signal processing part of the system, consisting of preprocessing, feature extraction, and classification. However, the success of a BCI depends not only on the methodologies applied, but also on the capability of the user to develop and maintain the skill to produce the brain patterns employed by the BCI. Therefore, the interaction between the BCI system and the user, in terms of adaptation and learning, is a challenging aspect of any BCI development and application.
Bibliography
- 1J. Vidal, Toward direct brain-computer communication. Ann. Rev. Biophys. Bioeng., 1973; 2: 157–180.
- 2J. R. Wolpaw, D. J. McFarland, G. W. Neat, and C. A. Forneris, An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 1991; 78(3): 252–259.
- 3J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, Brain-computer interfaces for communication and control. Clin. Neurophysiol. 2002; 113(6): 767–791.
- 4R. Leeb and G. Pfurtscheller, Walking through a virtual city by Thought. Proc. of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society-EMBC 2004, San Francisco, USA, 2004, pp. 4503–4506.
10.1109/IEMBS.2004.1404251 Google Scholar
- 5S. P. Levine, J. E. Huggins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and B. J. Smith, A direct brain interface based on event-related potentials. IEEE Trans. Rehabil. Eng. 2000; 8(2): 180–185.
- 6R. Scherer, G. R. Muller, C. Neuper, B. Graimann, and G. Pfurtscheller, An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Trans. Biomed. Eng. 2004; 51(6): 979–984.
- 7S. G. Mason and G. E. Birch, A brain-controlled switch for asynchronous control applications. IEEE Trans. Biomed. Eng. 2000; 47(10): 1297–1307.
- 8B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller, Toward a direct brain interface based on human subdural recordings and wavelet-packet analysis. IEEE Trans. Biomed. Eng. 2004; 51(6): 954–962.
- 9G. Pfurtscheller, C. Neuper, and N. Birbaumer, Human Brain-Computer Interface. In: A. Riehle and E. Vaadia, eds., Motor Cortex in Voluntary Movements: a distributed system for distributed functions, CRC Press, 2005, pp. 367–401.
- 10E. Donchin, K. M. Spencer, and R. Wijesinghe, The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehabil. Eng. 2000; 8(2): 174–179.
- 11N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kubler, J. Perelmouter, E. Taub, and H. Flor, A spelling device for the paralysed. Nature 1999; 398: 297–298.
- 12L. A. Farwell and E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 1988; 70(6): 510–523.
- 13N. Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor, The thought translation device (TTD) for completely paralyzed patients. IEEE Trans. Rehabil. Eng. 2000; 8(2): 190–193.
- 14A. Kübler, B. Kotchoubey, J. Kaiser, J. R. Wolpaw, and N. Birbaumer, Brain-computer communication: unlocking the locked in. Psychol. Bull. 2001; 127(3): 358–375.
- 15D. J. McFarland, A. T. Lefkowicz, and J. R. Wolpaw, Design and operation of an EEG-based brain-computer interface with digital signal processing technology. Behav. Res. Methods, Instruments Comput. 1997; 29(3): 337–345.
- 16D. J. McFarland, W. A. Sarnacki, T. M. Vaughan, and J. R. Wolpaw, EEG-based brain-computer interface (BCI) communication: effects of target number and trial length on information transfer rate. Soc. Neurosci. Abst. 2000; 26: 1228.
- 17G. Pfurtscheller and F. H. Lopes da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 1999; 110(11): 1842–1857.
- 18B. Obermaier, G. R. Muller, and G. Pfurtscheller, “Virtual keyboard” controlled by spontaneous EEG activity. IEEE Trans. Neural Syst. Rehabil. Eng. 2003; 11(4): 422–426.
- 19G. Pfurtscheller, G. R. Muller, J. Pfurtscheller, H. J. Gerner, and R. Rupp, Thought—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci. Lett. 2003; 351(1): 33–36.
- 20F. Babiloni, F. Cincotti, L. Bianchi, G. Pirri, R. M. J. Del, J. Mourino, S. Salinari, and M. G. Marciani, Recognition of imagined hand movements with low resolution surface Laplacian and linear classifiers. Med. Eng. Phys. 2001; 23(5): 323–328.
- 21D. J. McFarland, L. M. McCane, S. V. David, and J. R. Wolpaw, Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 1997; 103(3): 386–394.
- 22W. D. Penny, S. J. Roberts, E. A. Curran, and M. J. Stokes, EEG-based communication: a pattern recognition approach. IEEE Trans. Rehabil. Eng. 2000; 8(2): 214–215.
- 23H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 2000; 8(4): 441–446.
- 24I. T. Jolliffe, Principal Component Analysis. New York: Springer-Verlag, 1986, pp. xiii, 271.
10.1007/978-1-4757-1904-8 Google Scholar
- 25T. D. Lagerlund, F. W. Sharbrough, and N. E. Busacker, Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition. J. Clin. Neurophysiol. 1997; 14(1): 73–82.
- 26C. W. Anderson, E. A. Stolz, and S. Shamsunder, Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks. IEEE Trans. Biomed. Eng. 1998; 45(3) 277–286.
- 27H. Ramoser, Online classification of multichannel EEG data, PhD thesis, University of Technology Graz, 2001.
- 28A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. New York: McGraw-Hill, 1991.
- 29A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis. New York: J. Wiley, 2001.
10.1002/0471221317 Google Scholar
- 30T. P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T. J. Sejnowski, Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 2000; 111(10): 1745–1758.
- 31T. P. Jung, S. Makeig, C. Humphries, T. W. Lee, M. J. McKeown, V. Iragui, and T. J. Sejnowski, Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000; 37(2): 163–178.
- 32A. Ziehe, K.-R. Müller, G. Nolte, B.-M. Mackert, and G. Curio, Artifact reduction in magnetoneurography based on time-delayed second-order correlations. IEEE Trans. Biomed. Eng. 2000; 47(1): 75–87.
- 33S. Makeig, S. Enghoff, T. P. Jung, and T. J. Sejnowski, A natural basis for efficient brain-actuated control. IEEE Trans. Rehabil. Eng. 2000; 8(2): 208–211.
- 34S. Makeig, M. Westerfield, T. P. Jung, S. Enghoff, J. Townsend, E. Courchesne, and T. J. Sejnowski, Dynamic brain sources of visual evoked responses. Science 2002; 295(5555): 690–694.
- 35B. Graimann, Movement-related patterns in ECoG and EEG: visualization and detection, PhD thesis, TU Graz, Austria, 2002.
- 36K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed. Boston, MA: Academic Press, 1990.
10.1016/B978-0-08-047865-4.50011-9 Google Scholar
- 37Z. J. Koles, The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalogr. Clin. Neurophysiol. 1991; 79(6): 440–447.
- 38Z. J. Koles, J. C. Lind, and A. C. Soong, Spatio-temporal decomposition of the EEG: a general approach to the isolation and localization of sources. Electroencephalogr. Clin. Neurophysiol. 1995; 95(4): 219–230.
- 39C. Guger, H. Ramoser, and G. Pfurtscheller, Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI). IEEE Trans. Rehabil. Eng. 2000; 8(4): 447–456.
- 40J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 1999; 110(5): 787–798.
- 41J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, Classification of movement-related EEG in a memorized delay task experiment. Clin. Neurophysiol. 2000; 111(8): 1353–1365.
- 42E. Yom-Tov and G. F. Inbar, Feature selection for the classification of movements from single movement-related potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 2002; 10(3): 170–177.
- 43J. Millan, M. Franze, J. Mourino, F. Cincotti, and F. Babiloni, Relevant EEG features for the classification of spontaneous motor-related tasks. Biol. Cybern. 2002; 86(2): 89–95.
- 44M. Pregenzer and G. Pfurtscheller, Frequency component selection for an EEG-based brain to computer interface. IEEE Trans. Rehabil. Eng. 1999; 7(4): 413–419.
- 45D. J. McFarland, L. A. Miner, T. M. Vaughan, and J. R. Wolpaw, Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 2000; 12(3): 177–186.
- 46G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlogl, B. Obermaier, and M. Pregenzer, Current trends in Graz brain-computer interface (BCI) research. IEEE Trans. Rehabil. Eng. 2000; 8(2): 216–219.
- 47J. R. Wolpaw, D. J. McFarland, and T. M. Vaughan, Brain-computer interface research at the Wadsworth Center. IEEE Trans. Rehabil. Eng. 2000; 8(2): 222–226.
- 48B. Obermaier, C. Neuper, C. Guger, and G. Pfurtscheller, Information transfer rate in a five-classes brian-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2001; 9(3): 283–288.
- 49B. Hjorth, EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 1970; 29(3): 306–310.
- 50B. Obermaier, C. Munteano, A. Ross, and G. Pfurtscheller, Asymmetric hemisphere modeling in an offline brain-computer interface. IEEE Trans. Systems, Man Cybernet. 2001; 31(4): 536–540.
- 51G. Schalk, J. R. Wolpaw, D. J. McFarland, and G. Pfurtscheller, EEG-based communication: presence of an error potential. Clin. Neurophysiol. 2000; 111(12): 2138–2144.
- 52A. Schlögl, The Electroencephalogram and the Adaptive Autoregressive Model: Theory and Applications. Aachen: Shaker Verlag, 2000.
- 53D. M. Simpson, A. F. C. Infantosi, J. F. C. Junior, A. J. Peixoto, and L. M. D. Abrantes, On the selection of autoregressive order for electroencephalographic (EEG) signals. Proc. 38th Midwest Symposium on Circuits and Systems, 1995: 1353–1356.
- 54R. Palaniappan, R. Paramesran, S. Nishida, and N. Saiwaki, A new brain-computer interface design using fuzzy ARTMAP. IEEE Trans. Neural Syst. Rehabil. Eng. 2002; 10(3): 140–148.
- 55E. Yom-Tov and G. F. Inbar, Detection of movement-related potentials from the electro-encephalogram for possible use in a brain-computer interface. Med. Biol. Eng. Comput. 2003; 41(1): 85–93.
- 56S. S. Haykin, Adaptive Filter Theory, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 1996.
- 57G. Pfurtscheller, C. Neuper, A. Schlogl, and K. Lugger, Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans. Rehabil. Eng. 1998; 6(3): 316–325.
- 58C. Guger, A. Schlogl, C. Neuper, D. Walterspacher, T. Strein, and G. Pfurtscheller, Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Trans. Neural Syst. Rehabil. Eng. 2001; 9(1): 49–58.
- 59L. Cohen, Time-Frequency Analysis. Englewood Cliffs, NJ: PTR Prentice-Hall, 1995.
- 60W. Sweldens, The lifting scheme: construction of second generation wavelets. SIAM J. Math. Anal. 1997; 29(2): 511–546.
- 61A. Jensen and A. Cour-Harbo, Ripples in Mathematics: The Discrete Wavelet Transform. Berlin: Springer, 2001.
10.1007/978-3-642-56702-5 Google Scholar
- 62T. Hinterberger, A. Kubler, J. Kaiser, N. Neumann, and N. Birbaumer, A brain-computer interface (BCI) for the locked-in: comparison of different EEG classifications for the thought translation device. Clin. Neurophysiol. 2003; 114(3): 416–425.
- 63B. Blankertz, G. Curio, and K.-R. Müller, Classifying single trial EEG: towards brain computer interfacing. In: Advances in Neural Inf. Proc. Systems (NIPS 01), 2002: 157–164.
- 64B. O. Peters, G. Pfurtscheller, and H. Flyvbjerg, Automatic differentiation of multichannel EEG signals. IEEE Trans. Biomed. Eng. 2001; 48(1): 111–116.
- 65W. D. Penny and S. J. Roberts, Bayesian neural networks for classification: how useful is the evidence framework? Neural Networks 1999; 12(6): 877–892.
- 66J. Millan, J. Mourino, M. Franze, F. Cincotti, M. Varsta, J. Heikkonen, and F. Babiloni, A local neural classifier for the recognition of EEG patterns associated to mental tasks. IEEE Trans. Neural Networks 2002; 13: 678–686.
- 67E. Haselsteiner and G. Pfurtscheller, Using time-dependent neural networks for EEG classification. IEEE Trans. Rehabil. Eng. 2000; 8(4): 457–463.
- 68D. Flotzinger, J. Kalcher, and G. Pfurtscheller, EEG classification by learning vector quantization, Biomed. Tech. (Berl) 1992; 37(12): 303–309.
- 69D. Flotzinger, G. Pfurtscheller, C. Neuper, J. Berger, and W. Mohl, Classification of non-averaged EEG data by learning vector quantisation and the influence of signal preprocessing. Med. Biol. Eng. Comput. 1994; 32(5): 571–576.
- 70R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New York: Wiley, 1973.
- 71F. Babiloni, F. Cincotti, L. Lazzarini, J. Millan, J. Mourino, M. Varsta, J. Heikkonen, L. Bianchi, and M. G. Marciani, Linear classification of low-resolution EEG patterns produced by imagined hand movements. IEEE Trans. Rehabil. Eng. 2000; 8(2): 186–188.
- 72V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
- 73B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2002.
- 74G. Pfurtscheller, C. Neuper, H. Ramoser, and J. Muller-Gerking, Visually guided motor imagery activates sensorimotor areas in humans. Neurosci. Lett. 1999; 269(3): 153–156.
- 75C. Neuper, G. R. Muller, A. Kubler, N. Birbaumer, and G. Pfurtscheller, Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Clin. Neurophysiol. 2003; 114(3): 399–409.
- 76J. Kalcher, D. Flotzinger, C. Neuper, S. Golly, and G. Pfurtscheller, Graz brain-computer interface II: towards communication between humans and computers based on online classification of three different EEG patterns. Med. Biol. Eng. Comput. 1996; 34(5): 382–388.
- 77G. R. Müller, C. Neuper, and G. Pfurtscheller, Implementation of a telemonitoring system for the Control of an EEG-Based Brain Computer Interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2003; 11(1): 54–59.
- 78G. R. Müller-Putz, R. Scherer, G. Pfurtscheller, and R. Rupp, EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci. Lett. 2005; 382: 169–174.
- 79G. Krausz, R. Scherer, G. Korisek, and G. Pfurtscheller, Critical decision-speed and information transfer in the “Graz Brain-Computer Interface.” Appl. Psychophysiol. Biofeedback 2003; 28(3): 233–240.
- 80C. Brunner, B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller, Phase relationships between different subdural electrode recordings in man. Neurosci. Lett. 2005; 375: 69–74.
- 81G. Rizzolatti, L. Fogassi, and V. Gallese, Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2001; 2(9): 661–670.
- 82P. R. Kennedy, R. A. Bakay, M. M. Moore, K. Adams, and J. Goldwaithe, Direct control of a computer from the human central nervous system. IEEE Trans. Rehabil. Eng. 2000; 8(2): 198–202.
- 83M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, Instant neural control of a movement signal. Nature 2002; 416(6877): 141–142.
- 84J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K. Chapin, J. Kim, S. J. Biggs, M. A. Srinivasan, and M. A. Nicolesis, Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 2000; 408(6810): 361–365.
- 85M. A. Nicolelis, Brain-machine interfaces to restore motor function and probe neural circuits. Nat. Rev. Neurosci. 2003; 4(5): 417–422.
- 86M. A. Nicolelis and J. K. Chapin, Controlling robots with the mind. Sci. Am. 2002; 287(4): 46–53.