Hippocampus
First published: 14 April 2006
Abstract
The hippocampus (HC), a discrete anatomical landmark of the mesial temporal lobe of the brain, is part of the limbic system of the brain and subserves both learning and memory. Several clinical pathological entities are affected by the HC so that its clinical investigation has been a focus of intense work. Its intrinsic connectivity with its feedforward and feedback circuitry underlies a complex organization that, when disturbed, can give rise to debilitating conditions such as epilepsy. The application of electroencephalographic and imaging methodologies to the study of this structure has provided a means of not only lateralizing the site of pathology but determining the nature of the condition.
Bibliography
- 1P. Broca, Anatomie comparée des circonvolutions cerebrales. Le grand lobe limbique et la scissure limbique dans le serie des mammiferes. Rev. Anthropol. Ser 2, 1878; 1: 385–498.
- 2J. W. Papez, A proposed mechanism of emotion. Arch. Neurol. Psychiat. 1937; 38: 725–743.
- 3P. D. Maclean, Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). EEG Clin. Neurophysiol. 1957; 4: 407–418.
- 4N. Ishizuka, J. Weber, and D. G. Amaral, Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol. 1990; 295: 580–623.
- 5H. E. Scharfman, Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J. Neurophysiol. 1994; 72: 2167–2180.
- 6C. E. Ribak and L. Seress, Five types of basket cell in the hippocampal dentate gyrus: A combined Golgi and electron microscopic study. J. Neurocytol. 1983; 12: 577–597.
- 7L. Seress and C. E. Ribak, GABAergic cells in the dentate gyrus appear to be local circuit and projection neurons. Exp. Brain Res. 1983; 50: 173–182.
- 8A. Hjorth-Simonsen and B. Jeune, Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J. Comp. Neurol. 1972; 144: 215–232.
- 9O. Steward, Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J. Comp. Neurol. 1976; 167: 285–314.
- 10C. W. Xie, R. A. Morrisett, and D. V. Lewis, Mu opioid-receptor mediated modulation of synaptic currents in the dentate granule cells of rat hippocampus. J. Neurophysiol. 1992; 68: 1113–1120.
- 11R. S. G. Jones, Entorhinal-hippocampal connections: A speculative view of their function. Trends Neurosci. 1993; 16: 58–64.
- 12D. G. Amaral and J. Kurz, An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J. Comp. Neurol. 1985; 240: 37–59.
- 13P. R. Lewis and C. C. D. Shute, The cholinergic limbic system: Projections to the hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system and the subfornical organ and supra-optic crest. Brain 1967; 90: 521–542.
- 14J. M. Wyss, L.W. Swanson, and W. M. Cowan, A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience 1979; 4: 463–476.
- 15L. J. Reece and P. A. Schwartzkroin, Effects of cholinergic agonists on two non-pyramidal cell types in rat hippocampal slices. Brain Res. 1991; 566: 115–126.
- 16M. G. Lee, J. J. Chrobak, A. Sik, R. G. Wiley, and G. Buzsáki, Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience 1994; 62: 1033–1047.
- 17M. Stewart, and S. E. Fox, Do septal neurons pace the hippocampal theta rhythm?. Trends Neurosci. 1990; 13: 163–168.
- 18O. Lindvall and A. Björklund, The organization of the ascending actecholamine neuron system in the rat brain as revealed by the glycoxylic acid fluorescence method. Acta. Physiol. Scand. 1974; 412: 1–48.
- 19R.Y. Moore and A.E. Holaris, Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J. Comp. Neurol. 1975; 164: 171–184.
- 20D. V. Madison and R. A. Nicoll, Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neuronse in vitro. J. Physiol. (Lond.) 1986; 372: 221–244.
- 21R. Andrade and R. A. Nicoll, Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J. Physiol. 1987; 394: 99–124.
- 22L. S. Bernardo and D. A. Prince, Dopamine action on hippocampal pyramidal cells. J. Neurosci. 1982; 2: 415–423.
- 23K. Halasy, R. Miettinen, E. Szabat, and T. F. Freund, GABAergic interneurons are the major postsynaptic targets of median raphe afferents in the rat dentate gyrus. Eur. J. Neurosci. 1992; 4: 144–153.
- 24M. P. Witter, H. J. Groenewegen, F. H. Lopes da Silva, and A. H. M. Lohman, Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog. Neurobiol. 1989; 33: 161–253.
- 25T. W. Deacon, H. Eichenbaum, P. Rosenberg, and K. W. Eckmann, Afferent connections of the perirhinal cortex I the rat. J. Comp. Neurol. 1983; 220: 168–190.
- 26W. A. Suzuki and D. G. Amaral, Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. J. Comp. Neurol. 1994; 350: 497–533.
- 27D. C. McIntyre, M. E. Kelly, and J .N. Armstrong, Kindling in the perirhinal cortex. Brain Res. 1993; 615: 1–6.
- 28T. M. Jay and M. P. Witter, Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol. 1991; 313: 574–586.
- 29P. A. Schwartzkroin and D. C. McIntyre, Limbic anatomy and physiology. J. Engel, and T. A. Pedley (eds.), Epilepsy: A Comprehensive Textbook. Philadelphia, PA: Lippincott-Raven Publishers, 1997.
- 30M. P. Witter and H. J. Groenewegen, The subiculum: Cytoarchitectonically a simple structure, but hodologically complex. Prog. Brain Res. 1990; 83: 47–58.
- 31L. R. Shao and F. E. Dudek, Electrophysiological evidence using focal flash photolysis of caged glutamate that CA1 pyramidal cells receive excitatory synaptic input from the subiculum. J. Neuro. physiol. 2004; 93: 3007–3011.
- 32E. Gould, C. S. Woolley, and B. S. McEwen, The hippocampal formation: Morphological changes induced by thyroid, gonadal, and adrenal hormones. Psychoneuroendocrinology 1991; 16: 67–84.
- 33U. Uni, R. Tarara, J. G. Else, M. A. Suleman, and R. M. Sapolsky, Hippocampal damage associated with prolonged and fatal stress in primates. J. Neurosci. 1989; 9: 1705–1711.
- 34D. G. Amaral, A Golgi study of cell types in the hilar region of the hippocampus in the rat. J. Comp. Neurol. 1978; 182: 851–914.
- 35U. Heineman, H. Beck, J. P. Dreier, E. Ficker, J. Stabel, and C. L. Zhang, The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res. 7(Suppl): 1992; 273–280.
- 36J. L. Stringer, J. M. Williamson, and E. W. Lothman, Maximal dentate activation is produced is produced by amygdala stimulation in unanesthetized rats. Brain Res. 1991; 542: 336–342.
- 37J. L. Stringer and E. W. Lothman, Bilateral maximal dentate activation is critical for the appearance of an afterdischarge in the dentate gyrus. Neuroscience 1992; 46: 309–314.
- 38H. E. Scharfman and P. A. Schwartzkroin, Responses of cells of the rat fascia dentata to prolonged stimulation of the perforant path: sensitivity of hilar cells and changes in granule cell excitability. Neuroscience 1990; 35: 491–504.
- 39D. A. Turner and P. A. Schwartzkroin, Electrical characteristics of dendrites and dendritic spines in intracellularly stained CA3 and dentate hippocampal neurons. J. Neurosci. 1983; 3: 2381–2394.
- 40E. Gould, H. A. Cameron, D. C. Daniels, C. S. Woolley, and B. S. McEwen, Adrenal hormones suppress cell division in the adult rat dentate gyrus. J. Neurosci. 1992; 12: 3642–3650.
- 41E. W. Lothman, Seizure circuits in the hippocampus and associated structures. Hippocampus 1994; 4: 286–290.
- 42H. E. Scharfman, Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J. Neurosci. 1991; 11: 1660–1673.
- 43J. E. Cavazos, G. Golarai, and T. P. Sutula, Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and, permanence. J. Neurosci. 1991; 11: 2795–2803.
- 44R. S. Sloviter, Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 1987; 235: 73–76.
- 45N. C. deLanerolle, J. H. Kim, R. J. Robbins, and D. D. Spencer, Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res. 1989; 495: 387–395.
- 46R. K. S. Wong and R .D. Traub, Synchronized burst discharge in disinhibited hippocampal slice. I. Initiation in CA2-CA3 region. J. Neurophysiol. 1983; 49: 442–458.
- 47R. E. Fisher, R. Gray, and D. Johnston, Properties and distribution of single voltage-gated calcium channels in adult hippocampal neurons. J. Neurophysiol. 1990; 64: 91–104.
- 48J. R. Hotson and D. A. Prince, A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. J. Neurophysiol. 1980; 43: 409–419.
- 49S. M. O’Mara, S. Commins, M. Anderson, and J. Gigg, The subiculum: A review of form, physiology, and function. Prog. Neurobiol. 2001; 64: 129–155.
- 50L. W. Swanson and W. M. Cowan, An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J. Comp. Neurol. 1977; 172: 49–84.
- 51Y. Miyashita, Cognitive memory: Cellular and network machineries and their top-down control. Science 2004; 306: 435–440.
- 52S. A. Deadwyler and R. E. Hampson, Differential but complementary mnemonic functions of the hippocampus and subiculum. Neuron 2004; 42: 465–476.
- 53J. D. E. Gabrieli, J. B. Brewer, J. E. Desmond, and G. H. Glover, Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science 1997; 276: 264–266.
- 54J. S. Taube, Place cells recorded in the parasubiculum of freely moving rats. Hippocampus 1995; 5: 569–583.
- 55R. E. Hampson, T. Hedberg, and S. A. Deadwyler, Differential information processing by hippocampal and subicular neurons. Ann. N Y Acad. Sci. 2000; 911: 151–165.
- 56A. Naber, M. P. Witter, and F. F. Lopes da Silva, Networks of the hippocampal memory system of the rat. Ann. N Y Acad. Sci. 2000; 911: 392–403.
- 57K. H. Stauder, Epilepsie und schlafenlappen. Arch. Psychiatr. Nervenkr1036 104: 181–211.
10.1007/BF01814225 Google Scholar
- 58J. H. Margerison and J. A. N. Corsellis, Epilepsy in the temporal lobes. Brain 1966; 89: 499–530.
- 59E. Bratz, Ammonshornbefunde bei epileptikern. Arch. Psychiatr. Nervenkr1899 32: 820–835.
- 60T. L. Babb, W. J. Brown, J. K. Pretorius, C. Davenport, J. P. Lieb, and P. H. Crandall, Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia 1984; 25: 729–740.
- 61G. W. Mathern, T. L. Babb, J. K. Pretorius, M. Melendez, and M. F. Levesque, The relationship between clinical features, lesion pathology, and hippocampal neuron losses in temporal lobe epilepsy. Epilepsy Res. 1995; 21: 133–147.
- 62A. Mouritzen-Dam, Epilepsy and neuron loss in the hippocampus. Epilepsia 1980; 21: 617–629.
- 63G. W. Mathern, T. L. Babb, and D. L. Armstrong, Hippocampal sclerosis. J. Engel, and T. A. Pedley (eds.), Epilepsy: A Comprehensive Textbook. Philadelphia, PA: Lippincott-Raven Publishers, 1997.
- 64J. P. Lieb, J. Engel, Jr. and T. L. Babb, Interhemispheric propagation time of human hippocampal seizures. I. Relationship to surgical outcome. Epilepsia 1986; 27: 286–293.
- 65R.S. Sloviter, On the relationship between neuropathology and pathophysiology in the epileptic hippocampus of humans and experimental animals. Hippocampus 1994; 4: 250–253.
- 66D. Mattia, G. G. C. Hwa, and M. Avoli, Membrane properties of rat subicular neurons in vitro. J. Neurophysiol. 1993; 70: 1244–1248.
- 67M. Stewart and R. K. S. Wong, Intrinsic properties and evoked responses of guinea pig subicular neurons in vitro. J. Neurophysiol. 1993; 70: 232–245.
- 68J. S. Taube, Electrophysiological properties of neurons in the rat subiculum in vitro. Exp. Brain Res. 1993; 96: 304–318.
- 69L. Menendez de la Prida and B. Gal, Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro. J. Neurosci. 2004; 24: 5525–5536.
- 70H. Braak and E. Braak. Entorhinal-hippocampal interaction in amnestic disorders. Hippocampus 1993; 3: 239–246.
10.1002/hipo.1993.4500030727 Google Scholar
- 71T. L. Babb, W. R. Kupfer, and J. K. Pretorius, Recurrent excitatory circuits by “sprouted” mossy fibers into the fascia dentata of human hippocampal epilepsy. Epilepsia 1988; 29: 674.
- 72G. Cascino, T. Sutula, J. Cavazos, I. Parada, and L. Ramirez, Hippocampal mossy fiber synaptic reorganization in intractable partial epilepsy: A clinicopathologic study. Epilepsia 1988; 29: 684.
- 73C. R. Houser, J. E. Miyashiro, B. E. Swartz, G. O. Walsh, J. R. Rich, and A. V. Delgado-Escueta, Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J. Neurosci. 1990; 10: 267–282.
- 74T. P. Sutula, G. Cascino, J. E. Cavazos, I. Parada, and L. Ramirez, Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann. Neurol. 1989; 26: 321–330.
- 75T. L. Babb, J. K. Pretorius, W. R. Kupfer, G. W., Mathern, P. H. Crandall, and M. F. Levesque, Aberrant synaptic reorganization in human epileptic hippocampus: Evidence for feed forward excitation. Dendron. 1992; 1: 7–25.
- 76T. L. Babb, J. K. Pretorius, W. R. Kupfer, and P. H. Crandall, Glutamate decarboxylase immunoreactive neurons are preserved in human epileptic hippocampus. J. Neurosci. 1989; 9: 2562–2574.
- 77G. W. Mathern, T. L. Babb, J. K. Pretorius, and J. P. Leite, Reactive synaptogenesis and neuron densities for peptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata. J. Neurosci. 1995; 15: 3990–4004.
- 78P. A. Schwartzkroin, Cellular electrophysiology of human epilepsy. Epilepsy Res. 1994; 17: 185–192.
- 79J. E. Franck, J. Pokorny, D. D. Kunkel, and P. A. Schwartzkroin, Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus. Epilepsia 1995; 36: 543–558.
- 80I. Fried, D. D. Spencer, and S. S. Spencer, The anatomy of epileptic auras: Focal pathology and surgical outcome. J. Neurosurg. 1995; 83: 60–66.
- 81L. F. Quesney and P. Gloor, Localization of epileptic foci. J. Gotman, J. R. Ives, and P. Gloor (Eds.), Long Term Monitoring in Epilepsy (EEG Suppl 37). Amsterdam: Elsevier Science, 1985.
- 82M. W. Risinger, Electroencephalographic strategies for determining the epileptogenic zone, H. Lüders (Ed.), Epilepsy Surgery. New York, NY: Raven Press, 1991.
- 83J. S. Ebersole and S. V. Pacia, Localization of temporal lobe foci by ictal EEG patterns. Epilepsia 1996; 37: 386–399.
- 84P. Gloor, Preoperative electroencephalographic investigation in temporal lobe epilepsy: extracranial and intracranial recordings. Can. J. Neurol. Sci. 1991; 18: 554–558.
- 85H. M. Hamer, I. Najm, A. Mohamed, and E. Wylie, Interictal epileptiform discharges in temporal lobe epilepsy due to hippocampal sclerosis versus medial temporal lobe tumors. Epilepsia 1999; 40: 1261–1268.
- 86L. D. Cahan, W. Sutherling, M. A. McCullough, R. Rausch, J. Engel, Jr. and P. H. Crandall, Review of the 20-year UCLA experience with surgery for epilepsy. Clev. Clin. Q 1984; 51: 313–318.
- 87H. G. Wieser, J. Bancaud, and G. Talairach, Comparative value of spontaneous and chemically and electrically induced seizures in establishing the lateralization of temporal lobe seizures. Epilepsia 1979; 20: 47–59.
- 88K. Elisevich and B. J. Smith, Epilepsy Surgery—Case Studies and Commentaries. Philadelphia, PA: Lippincott, Williams & Wilkins, 2002.
- 89C. J. Jack, MRI-based hippocampal volume measurements in epilepsy. Epilepsia 1994; 35 (Suppl 6): 21–29.
- 90N. Lee, R. D. Tien, D. V. Lewis, A. H. Friedman, G. J. Felsberg, B. Crain, C. Hulette, A. K. Osumi, J. S. Smith, K. E. VanLandingham, and R. A. Radtke, Fast spin-echo, magnetic resonance imaging-measured hippocampal volume: Correlation with neuronal density in anterior temporal lobectomy patients. Epilepsia 1995; 36: 899–904.
- 91W. Van Paesschen, S. Sisodiya, A. Connelly, J. S. Duncan, S. L. Free, A. A. Raymond, R. A. Grunewald, T. Revesz, S. D. Shorvon, D .R. Fish, J. M. Stevens, C. L. Johnson, F. Scaravilli, W. F. J. Harkness, and G. D. Jackson, Quantitative hippocampal MRI and intractable temporal lobe epilepsy. Neurology 1995; 45: 2233–2240.
- 92F. Cendes, F. Leproux, D. Melanson, R. Ethier, A. Evans, T. Peters, and F. Andermann, MRI of amygdala and hippocampus in temporal lobe epilepsy. J. Comput. Assist. Tomogr. 1993; 17: 206–210.
- 93C. Watson, F. Cendes, D. Fuerst, F. Dubeau, B. Williamson, A. Evans, and F. Andermann, Specificity of volumetric magnetic resonance imaging in detecting hippocampal sclerosis. Arch. Neurol. 1997; 54: 67–73.
- 94D. Araujo, Jr., I. Najm, P. Ruggiero, H. O. Lüders, and Y. Comair, Lack of hippocampal asymmetry in mesial temporal lobe epilepsy: Correlation with surgical outcome. Epilepsia 1997; 38(Suppl 8): 79.
- 95J. W. Hugg, G. B. Matson, D. B. Twieg, A. A. Maudsley, D. Sappey-Marinier, and M. W. Weiner, Phosphorus-31 MR spectroscopic imaging (MRSI) of normal and pathological human brains. Magn. Reson. Imaging 1992; 10: 227–243.
- 96E. Achten, P. Santens, P. Boon, D. DeCoo, T. Van DeKerckhove, J. DeReuck, J. Caemaert, and M. Kunnen, Single-voxel proton MR spectroscopy and positron emission tomography for lateralization of refractory temporal lobe epilepsy (comments). Am. J. Neuroradiol. 1998; 19: 1–8.
- 97P. A. Garcia, K. D. Laxer, J. van der Grond, J. W. Hugg, G. B. Matson, and M. W. Weiner, Correlation of seizure frequency with N-acetyl-aspartate levels determined by 1 H magnetic resonance spectroscopic imaging. Magn. Reson. Imaging 1997; 15: 475–478.
- 98T. C. Ng., Y. G. Comair, M. Xue, N. So, A. Majors, H. Kolem, H. Lüders, and M. Modic, Temporal lobe epilepsy: Presurgical localization with proton chemical shift imaging. Radiology 1994; 193: 465–472.
- 99F. Cendes, F. Andermann, M. C. Preul, D. L. Arnold, Lateralization of temporal lobe epilepsy based on regional metabolic abnormalities in proton magnetic resonance spectroscopic images. Ann. Neurol. 1994; 35: 211–216.
- 100P. Vainio, J. P. Usenius, M. Vapalahti, K. Partanen, R. Kalviainen, J. Rinne, and R. A. Kauppinen, Reduced N-acetylaspartate concentration in temporal lobe epilepsy by quantitative 1 H MRS in vivo. NeuroReport 1994; 5: 1733–1736.
- 101A. Connelly, G. D. Jackson, J. S. Duncan, M. D. King, and D. G. Gadian, Proton resonance spectroscopy in temporal lobe epilepsy. Neurology 1994; 44: 1411–1417.
- 102J. Hugg, R. Kuzniecky, F. Gilliam, et al., Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1 H magnetic resonance spectroscopic imaging. Ann. Neurol. 1996; 40: 236–239.
- 103I. M. Najm, Y. Wang, D. Shield, H. O. Lüders, T. C. Ng, and Y. G. Comair, MRS metabolic markers of seizures and seizure-induced neuronal damage. Epilepsia 1998; 39: 244–250.
- 104B. J. Smith, K. C. Karvelis, S. Cronan, W. Porter, L. Smith, M. Y. Pantelic, and K. Elisevich, Developing an effective program to complete ictal SPECT in the epilepsy monitoring unit. Epilepsy Res. 1999; 33: 189–197.
- 105M. D. Devous, Sr., R. A. Thisted, G. F. Morgan, R. F. Leroy, and C. C. Rowe, SPECT brain imaging in epilepsy: A meta-analysis. J. Nucl. Med. 1998; 39: 285–293.
- 106J. Engel, Jr., D. E. Kuhl, M. E. Phelps, and J. C. Mazziotta, Interictal cerebral glucose metabolism in partial epilepsy and its relation to EEG changes. Ann. Neurol. 1982; 12: 510–517.
- 107W. Theodore, D. Fishbein, and R. Dubinsky, Patterns of cerebral glucose metabolism in patients with partial seizures. Neurology 1988; 38: 1201–1206.
- 108B. W. Abou-Khalil, G. J. Siegel, J. C. Sackellares, S. Gilman, R. Hichwa, and R. Marshall, Positron emission tomography studies of cerebral glucose metabolism in chronic partial epilepsy. Ann. Neurol. 1987; 22: 480–486.
- 109I. Savic, A. Persson, P. Roland, S. Pauli, G. Sedvall, and L. Widen, In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1988; 2: 863–866.
- 110A. Buck, L. D. Frey, P. Blauenstein, G. Kramer, A. Siegel, B. Weber, P. A. Schubiger, and H. G. Wieser, Monoamine oxidase B single-photon emission tomography with [123I]Ro 43-0463: Imaging in volunteers and patients with temporal lobe epilepsy. Eur. J. Nucl. Med. 1998; 25: 464–470.
- 111D. Cohen, B. N. Cuffin, K. Yunokuchi, R. Maniewski, C. Purcell, G. R. Cosgrove, J. Ives, J. G. Kennedy, and D. L. Schomer, MEG versus EEG localization test using implanted sources in the human brain. Ann. Neurol. 1990; 28: 811–817.
- 112Y. Matsuoka, E Mori, M Inagaki, Y. Kozaki, T. Nakano, M. Wenner, and Y. Uchitomi, Manual tracing guideline for volumetry of hippocampus and amygdala with high-resolution MRI. No To Shinkei 2003; 55(8): 690–697.
- 113L. Bonilha, E. Kobayashi, F. Cendes, and L. Li, Min, Protocol for volumetric segmentation of medial temporal structures using high-resolution 3-D magnetic resonance imaging. Hum. Brain Mapp. 2004; 22(2): 145–154.
- 114E. A. Ashton, M. J. Berg, K. J. Parker, J. Weisberg, C. W. Chen, and L. Ketonen, Segmentation and feature extraction techniques, with applications to MRI head studies. Magn. Reson. Med. 1995; 33(5): 670–677.
- 115J. W. Haller, G. E. Christensen, S. C. Joshi, J. W. Newcomer, M. I. Miller, J. G. Csernansky, and M. W. Vannier, Hippocampal MR imaging morphometry by means of general pattern matching. Radiology 1996; (3): 787–791.
- 116J. Webb, A. Guimond, P. Eldridge, D. Chadwick, J. Meunier, J. P. Thirion, and N. Roberts, Automatic detection of hippocampal atrophy on magnetic resonance images. Magn. Reson. Imaging 1999; 17(8): 1149–1161.
- 117B. M. Dawant, S. L. Hartmann, J. P. Thirion, F. Maes, D. Vandermeulen, and P. Demaerel, Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations: Part I, Methodology and validation on normal subjects. IEEE Trans. Med. Imaging. 1999; 18(10): 909–916.
- 118A. Ghanei, H. Soltanian-Zadeh, and J. P. Windham, Segmentation of the hippocampus from brain MRI using deformable contours. Comput. Med. Imaging Graph 1998; 22(3): 203–216.
- 119A. Ghanei, H. Soltanian-Zadeh, and J. P. Windham, A 3D deformable surface model for segmentation of objects from volumetric data in medical images. Comput. Biol. Med. 1988; 28(3): 239–253.
- 120H. Soltanian-Zadeh and M. R. Siadat, Knowledge-Based Localization of Hippocampus in Human Brain MRI. Proceedings of SPIE Medical Imaging 1999: Image Processing Conference, San Diego, CA, vol. 3661, pp. 1646–1655, Feb. 1999.
- 121A. Kelemen, G. Szekely, and G. Gerig, Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Trans Med. Imaging 1999; 18(10): 828–839.
- 122D. Shen, S. Moffat, S. M. Resnick, and C. Davatzikos, Measuring size and shape of the hippocampus in MR images using a deformable shape model. Neuroimage 2002; 15(2): 422–434.
- 123A. Pitiot, A. W. Toga, and P. M. Thompson, Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming. IEEE Trans. Med. Imaging 2002; 21(8): 910–923.
- 124B. C. Vemuri, J. Ye, Y. Chen, and C. M. Leonard, Image registration via level-set motion: applications to atlas-based segmentation. Med. Image Anal. 2003; 7(1): 1–20.
- 125R. E. Hogan, K. E. Mark, L Wang, S. Joshi, M. I. Miller, and R. D. Bucholz, Mesial temporal sclerosis and temporal lobe epilepsy: MR imaging deformation-based segmentation of the hippocampus in five patients. Radiology 2000; 216(1): 291–297.
- 126R. E. Hogan, K. E. Mark, I. Choudhuri, L Wang, S Joshi, MI Miller, and R. D. Bucholz, Magnetic resonance imaging deformation-based segmentation of the hippocampus in patients with mesial temporal sclerosis and temporal lobe epilepsy. J. Digit. Imaging 2000; 13(2 Suppl 1): 217–218.
- 127W. R. Crum, R. I. Scahill, and N. C. Fox, Automated hippocampal segmentation by regional fluid registration of serial MRI: Validation and application in Alzheimer's disease. Neuroimage 2001; 13(5): 847–855.
- 128B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33(3): 341–355.
- 129R. Perez de Alejo, J. Ruiz-Cabello, M. Cortijo, I. Rodriguez, I. Echave, J. Regadera, J. Arrazola, P. Aviles, P. Barreiro, D. Gargallo, and M. Grana, Computer-assisted enhanced volumetric segmentation magnetic resonance imaging data using a mixture of artificial neural networks. Magn. Reson. Imaging 2003; 21(8): 901–912.
- 130A. A. Ali, A. M. Dale, A. Badea, and G. A. Johnson, Automated segmentation of neuroanatomical structures in multispectral MR microscopy of the mouse brain. Neuroimage 2005; 27(2): 425–435.
- 131A. Pitiot, H. Delingette, P. M. Thompson, and N. Ayache, Expert knowledge-guided segmentation system for brain MRI. Neuroimage 2004; 23 Suppl 1: S85–96.
- 132O. T. Carmichael, H. A. Aizenstein, S. W. Davis, J. T. Becker, P. M. Thompson, C. C. Meltzer, and Y. Liu, Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment. Neuroimage 2005; 27(4): 979–990.
- 133M. Ewers, S. J. Teipel, O. Dietrich, S. O. Schonberg, F. Jessen, R. Heun, P. Scheltens, L. V. Pol, N. R. Freymann, H. J. Moeller, and H. Hampel, Multicenter assessment of reliability of cranial MRI. Neurobiol. Aging Sep 14, 2005.
- 134P. A. Freeborough, N. C. Fox, and R. I. Kitney, Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans. Comput. Methods Programs Biomed. 1997; 53(1): 15–25.
- 135J. Barnes, R. I. Scahill, R. G. Boyes, C. Frost, E. B. Lewis, C. L. Rossor, M. N. Rossor, and N. C. Fox, Differentiating AD from aging using semiautomated measurement of hippocampal atrophy rates. Neuroimage 2004; 23(2): 574–581.
- 136N. A. Honeycutt and C. D. Smith, Hippocampal volume measurements using magnetic resonance imaging in normal young adults. J. Neuroimaging 1995; 5(2): 95–100.
- 137G. Leinsinger, S. Teipel, A. Wismuller, C. Born, T. Meindl, W. Flatz, S. Schonberg, J. Pruessner, H. Hampel, and M. Reiser, Volumetric MRI for evaluation of regional pattern and progressin of neocortical degeneration in Alzheimer's disease. Radiologe. 2003; 43(7): 537–542.
- 138Y. Miyahira, J. Yu. K. Hiramatsu, Y. Shimazaki, and Y. Takeda, Brain volumetric MRI study in healthy elderly persons using statistical parametric mapping. Seishin Shinkeigaku Zasshi 2004; 106(2): 138–151.
- 139S. R. Kesler, A. Garrett, B. Bender, J. Yankowitz, S. M. Zeng, and A. L. Reiss, Amygdala and hippocampal volumes in Turner syndrome: A high-resolution MRI study of X-monosomy. Neuropsychologia. 2004; 42(14): 1971–1978.
- 140K. B. Walhovd, A. M. Fjell, I. Reinvang, A. Lundervold, B. Fischl, B. T. Quinn, and A. M. Dale, Size does matter in the long run: Hippocampal and cortical volume predict recall across weeks. Neurology 2004; 63(7):1193–1197.
- 141J. T. O’Brien, A. Lloyd, I. McKeith, A. Gholkar, and N. Ferrier, A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. Am. J. Psychiatry 2004; 61(11): 2081–2090.
- 142R. I. Kuzniecky, S. Burgard, E. Bilir, R. Morawetz, F. Gilliam, E. Faught, L. Black, and C. Palmer, Qualitative MRI segmentation in mesial temporal sclerosis: Clinical correlations. Epilepsia 1996; 37(5): 433–439.
- 143E. D. Bigler, D. D. Blatter, C. V. Anderson, S. C. Johnson, S. D. Gale, R. O. Hopkins, and B. Burnett, Hippocampal volume in normal aging and traumatic brain injury. AJNR Am. J. Neuroradiol. 1997; 18(1): 11–23.
- 144J. C. Pruessner, L. M. Li, W. Serles, M. Pruessner, D. L. Collins, N. Kabani, S. Lupien, and A. C. Evans, Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: Minimizing the discrepancies between laboratories. Cereb. Cortex 2000; 10(4): 433–442.
- 145E. D. Bigler, C. M. Lowry, C. V. Anderson, S. C. Johnson, J. Terry, and M. Steed, Dementia, quantitative neuroimaging, and apolipoprotein E genotype. AJNR Am. J. Neuroradiol. 2000; 21(10): 1857–1868.
- 146J. C. Pruessner, D. L. Collins, M. Pruessner, and A. C. Evans, Age and gender predict volume decline in the anterior and posterior hippocampus in early adulthood. J. Neurosci. 2001; 21(1): 194–200.
- 147S. Kremer, M. Braun, P. Kahane, E. Teil, B. Pasquier, A. L. Benabid, and J. Le Bas, Morphological abnormalities of limbic lobe structures in partial temporal lobe epilepsy. J. Radiol. 2001; 82(4): 481–487, 2001.
- 148A. Obenaus, C. J. Yong-Hing, K. A. Tong, and G. E. Sarty, A reliable method for measurement and normalization of pediatric hippocampal volumes. Pediatr. Res. 2001; 50(1): 124–132.
- 149T. L. Jernigan, S. L. Archibald, C. Fennema-Notestine, A. C. Gamst, J. C. Stout, J. Bonner, and J. R. Hesselink, Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol. Aging 2001; 22(4): 581–594, 2001.
- 150E. D. Bigler and D. F. Tate, Brain volume, intracranial volume, and dementia. Invest Radiol. 2001; 36(9): 539–546.
- 151A. T. Du, N. Schuff, D. Amend, M. P. Laakso, Y. Y. Hsu, W. J. Jagust, K. Yaffe, J. H. Kramer, B. Reed, D. Norman, H. C. Chui, and M. W. Weiner, Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 2001; 71(4): 441–447.
- 152G. Villarreal, D. A. Hamilton, H. Petropoulos, I. Driscoll, L. M. Rowland, J. A. Griego, P. W. Kodituwakku, B. L. Hart, R. Escalona, and W. M. Brooks, Reduced hippocampal volume and total white matter volume in posttraumatic stress disorder. Biol. Psychiatry 2002; 52(2): 119–125, 2002.
- 153R. C. Gur, F. Gunning-Dixon, W. B. Bilker, and R. E. Gur, Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cereb. Cortex 2002; 12(9): 998–1003.
- 154V. H. Hackert, T. den Heijer, M. Oudkerk, P. J. Koudstaal, A. Hofman, and M. M. Breteler, Hippocampal head size associated with verbal memory performance in nondemented elderly. Neuroimage 2002; 17(3): 1365–1372.
- 155G. B. Frisoni, C. Testa, A. Zorzan, F. Sabattoli, A. Beltramello, H. Soininen, and M. P. Laakso, Detection of grey matter loss in mild Alzheimer's disease with voxel based morphometry. J. Neurol. Neurosurg. Psychiatry 2002; 73(6): 657–664.
- 156S. Dupont, M. Ottaviani, L. Thivard, F. Semah, Y. Samson, and M. Baulac, Temporal pole hypometabolism may be linked to a reduction of grey matter in temporal lobe epilepsy. Neuroreport 2002; 13(18): 2537–2541.
- 157V. A. Cardenas, A. T. Du, D. Hardin, F. Ezekiel, P. Weber, W. J. Jagust, H. C. Chui, N. Schuff, and M. W. Weiner, Comparison of methods for measuring longitudinal brain change in cognitive impairment and dementia. Neurobiol. Aging 2003; 24(4): 537–544.
- 158R. E. Hogan, L. Wang, M. E. Bertrand, L. J. Willmore, R. D. Bucholz, A. S. Nassif, and J. G. Csernansky, MRI-based high-dimensional hippocampal mapping in mesial temporal lobe epilepsy. Brain 2004; 127(Pt 8): 1731–1740.
- 159S. Bouix, J. C. Pruessner, D. Louis Collins, and K. Siddiqi, Hippocampal shape analysis using medial surfaces. Neuroimage 2005; 25(4): 1077–1089.
- 160G. A. Lodygensky, K. Rademaker, S. Zimine, M. Gex-Fabry, A. F. Lieftink, F. Lazeyras, F. Groenendaal, L. S. de Vries, and P. S. Huppi, Structural and functional brain development after hydrocortisone treatment for neonatal chronic lung disease. Pediatrics 2005; 116(1): 1–7.
- 161K. Jafari-Khouzani, M. Siadat, H. Soltanian-Zadeh, and K. Elisevich, Texture Analysis of Hippocampus for Epilepsy. Proceedings of SPIE Medical Imaging 2003: Image Processing Conference, San Diego, CA, vol. 5031, pp. 279–288, Feb. 15–20, 2003.
- 162T. Iidaka, S. Terashima, K. Yamashita, T. Okada, N. Sadato, and Y. Yonekura, Dissociable neural responses in the hippocampus to the retrieval of facial identity and emotion: an event-related fMRI study. Hippocampus 2003; 13(4): 429–436.
- 163K. S. Giovanello, D. M. Schnyer, and M. Verfaellie, A critical role for the anterior hippocampus in relational memory: Evidence from an fMRI study comparing associative and item recognition. Hippocampus 2004; 14(1): 5–8.
- 164R. S. Rosenbaum, M. Ziegler, G. Winocur, C. L. Grady, and M. Moscovitch, I have often walked down this street before: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus 14(7): 826–835.
- 165J. Luo and K. Niki, Does hippocampus associate discontiguous events? Evidence from event-related fMRI. Hippocampus 2005; 15(2): 141–148.
- 166B. C. Wittmann, B. H. Schott, S. Guderian, J. U. Frey, H. J. Heinze, and E. Duzel, Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron 2005; 45(3): 459–467.
- 167S. Kohler, S. Danckert, J. S. Gati, and R. S. Menon, Novelty responses to relational and non-relational information in the hippocampus and the parahippocampal region: A comparison based on event-related fMRI. Hippocampus 2005; 15(6): 763–774.
- 168R. E. Hogan, M. J. Cook, D. W. Binns, P. M. Desmond, C. J. Kilpatrick, V. L. Murrie, and K. F. Morris, Perfusion patterns in postictal 99mTc-HMPAO SPECT after coregistration with MRI in patients with mesial temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 1997; 63(2): 235–239.
- 169P. Heiniger, M. el-Koussy, K. Schindler, K. O. Lovblad, C. Kiefer, H. Oswald, M. Wissmeyer, L. Mariani, F. Donati, G. Schroth, and B. Weder, Diffusion and perfusion MRI for the localisation of epileptogenic foci in drug-resistant epilepsy. Neuroradiology 2002; 44(6): 475–480.
- 170K. Szabo, A. Poepel, B. Pohlmann-Eden, J. Hirsch, T. Back, O. Sedlaczek, M. Hennerici, and A. Gass, Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus. Brain 2005; 128(Pt 6): 1369–1376.
- 171H. W. Muller-Gartner, J. M. Links, J. L. Prince, R. N. Bryan, E. McVeigh, J. P. Leal, C. Davatzikos, and J. J. Frost, Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J. Cereb. Blood Flow Metab. 1992; 12(4): 571–583.
- 172R. C. Knowlton, K. D. Laxer, G. Klein, S. Sawrie, G. Ende, R.A. Hawkins, O. S. Aassar, K. Soohoo, S. Wong, and N. Barbaro, In vivo hippocampal glucose, metabolism in mesial temporal lobe epilepsy. Neurology 2001; 57(7): 1184–1190.
- 173S. G. Mueller, K. Laxer, J. A. Barakos, N. Cashdollar, D. L. Flenniken, P. Vermathen, G. B. Matson, and M. W. Weiner, Identification of the epileptogenic lobe in neocortical epilepsy with proton MR spectroscopic imaging. Epilepsia 2004; 45(12): 1580–1589.
- 174W. Weber-Fahr, G. Ende, D. F. Braus, P. Bachert, B. J. Soher, F. A. Henn, and C. Buchel, A fully automated method for tissue segmentation and CSF-correction of proton MRSI metabolites corroborates abnormal hippocampal NAA in schizophrenia. Neuroimage 2002; 16(1): 49–60.
- 175M. R. Siadat, H. Soltanian-Zadeh, F. Fotouhi, and K. Elisevich, Content-based image database system for epilepsy. Comput. Methods Programs Biomed. 2005; 79(3): 209–226.