Defibrillation
Amy de Jongh Curry
The University of Memphis, Department of Biomedical Engineering, Memphis, Tennessee
Search for more papers by this authorRobert A. Malkin
Duke University, Department of Biomedical Engineering, Durham, North Carolina
Search for more papers by this authorAmy de Jongh Curry
The University of Memphis, Department of Biomedical Engineering, Memphis, Tennessee
Search for more papers by this authorRobert A. Malkin
Duke University, Department of Biomedical Engineering, Durham, North Carolina
Search for more papers by this authorAbstract
One leading cause of death in the United States is sudden cardiac death, often called cardiac arrest or a massive heart attack. Death results when the normally carefully choreographed electrical impulses of the heart become uncoordinated, a condition called ventricular fibrillation. Reversion of fibrillation to any other, more organized, electrical pattern is called defibrillation. Although electrical defibrillation is now widely practiced, the mechanism by which a strong electrical shock can stop fibrillation is still not understood. Defibrillation may fail because it does not extinguish fibrillation or because it creates a new fibrillation. It is not even clear how an electrical stimulus can affect tissue several centimeters away. Another mystery is why there is such a strong dependence on the temporal pattern, or waveform, of energy delivery for defibrillation. For example, it is more effective to withhold some available energy from certain defibrillators. The most recent data on these unknown aspects of defibrillation are discussed.
Bibliography
- 1G. M. D. Ferrari, E. Vanoli, D. Cerati, and P. J. Schwartz, Baroreceptor reflexes and sudden cardiac death: Experimental findings and background. GIC 1992; 22: 629–637.
- 2P. J. Schwartz, M. Motolese, G. Pollavini, A. Lotto, U. Ruberti, R. Trazzi, C. Bartorelli, A. Zanchetti, and T. I. S. D. P. Group, Prevention of sudden cardiac death after a first myocardial infarction by pharmacologic or surgical antiadrenergic interventions. J. Cardiovasc. Electrophysiol. 1992; 3: 2–16.
- 3C. D. Swerdlow, W. H. Olson, M. E. O’Connor, D. M. Gallik, R. A. Malkin, and M. Laks, Cardiovascular collapse caused by electrocardiographically silent 60-Hz intracardiac leakage current. Implications for electrical safety. Circulation 1999; 99: 2559–2664.
- 4R. A. Malkin, S. F. Idriss, R. G. Walker, and R. E. Ideker, Effect of rapid pacing and T-wave scanning on the relation between the defibrillation and upper-limit-of-vulnerability dose-response curves. Circulation 1995; 92: 1291–1299.
- 5M. Allessie, J. Ausma, and U. Schotten, Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc. Res. 2002; 54: 230–246.
- 6F. Morady, Treatment of paroxysmal atrial fibrillation by pulmonary vein isolation. Circ. J. 2003; 67: 567–571.
10.1253/circj.67.567 Google Scholar
- 7G. Sanna and R. Arcidiacono, Chemical ventricular defibrillation of the human heart with bretylium tosylate. Am. J. Cardiol. 1973; 32: 982–987.
- 8W. A. Tacker, L. A. Geddes, and J. F. v. Vleet, Electrical Defibrillation. Boca Raton, FL: CRC Press, 1980.
- 9R. K. Ammer, E. Alt, G. Ayers, C. Schmitt, M. Schmidt, and K. Putter, Pain threshold for low energy intracardiac cardioversion of atrial fibrillation with low or no sedation. PACE 1997; 20: 230–236.
- 10D. G. Perkins, G. J. Klein, M. D. Silver, R. Yee, and D. L. Jones, Cardioversion and defibrillation using a catheter electrode: Myocardial damage assessed at autopsy. PACE 1987; 10: 800–804.
- 11P. W. Doherty, P. R. McLaughlin, M. Billingham, R. Kernoff, M. L. Goris, and D. C. Harrison, Cardiac damage produced by direct current countershock applied to the heart. Am. J. Cardiol. 1979; 43: 225–232.
- 12M. Eckert and T. Jones, How does an implantable cardioverter defibrillator (ICD) affect the lives of patients and their families? Int. J. Nurs. Pract. 2002; 8: 152–157.
- 13L. A. Cobb, R. S. Baum, H. Alvarez, and W. A. Schaffer, Resuscitation from out-of-hospital ventricularfibrillation: 4 years follow-up. Circulation 1975; 52: III-223–III-228.
- 14J. T. Niemann, C. B. Cairns, J. Sharma, and R. J. Lewis, Treatment of prolonged ventricular fibrillation: Immediate countershock versus high-dose epinephrine and CPR preceding countershock. Circulation 1992; 85: 281–287.
- 15T. Eftestol, K. Sunde, and P. A. Steen, Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Circulation 2002; 105: 2270–2273.
- 16P. J. Kudenchuk, L. A. Cobb, H. L. Green, C. E. Fahrenbruch, and F. H. Sheehan, Late outcome of survivors of out-of-hospital cardiac arrest with left ventricular ejection fractions >50% and without significant coronary arterial narrowing. Am. J. Cardiol. 1991; 67: 704–708.
- 17L. R. Caplan, I. D’Cruz, D. B. Hier, H. Reddy, and S. Shah, Atrial size, atrial fibrillation, and stroke. ANNEUR 1986; 19: 158–161.
- 18G. L. Botto, A. Politi, W. Bonini, T. Broffoni, and R. Bonatti, External cardioversion of atrial fibrillation: Role of paddle position on technical efficacy and energy requirements. Heart 1999; 82: 726–730.
- 19A. A. Mehdirad, K. L. Clem, C. J. Love, S. D. Nelson, and S. F. Schaal, Improved clinical efficacy of external cardioversion by fluoroscopic electrode positioning and comparison to internal cardioversion in patients with atrial fibrillation. Pacing Clin. Electrophysiol. 1999; 22: 233–237.
- 20W. Saliba, N. Juratli, M. K. Chung, M. J. Niebauer, O. Erdogan, R. Trohman, B. L. Wilkoff, R. Augostini, K. A. Mowrey, G. R. Nadzam, and P. J. Tchou, Higher energy synchronized external direct current cardioversion for refractory atrial fibrillation. J. Am. Coll. Cardiol.1999; 34: 2031–2034.
- 21P. Bjerregaard, A. El-Shafei, D. L. Janosik, L. Schiller, and A. Quattromani, Double external direct-current shocks for refractory atrial fibrillation. Am. J. Cardiol. 1999; 83: 972–974.
- 22S. Levy, P. Lauribe, E. Dolla, W. Kou, A. Kadish, H. Calkins, F. Pagannelli, C. Moyal, M. Bremondy, A. Schork et al., A randomized comparison of external and internal cardioversion of chronic atrial fibrillation. Circulation 1992; 86: 1415–1420.
- 23E. Alt, R. Ammer, C. Schmitt, F. Evans, G. Lehmann, J. Pasquantonio, and A. Schomig, A comparison of treatment of atrial fibrillation with low-energy intracardiac cardioversion and conventional external cardioversion. Eur. Heart J. 1997; 18: 1796–1804.
- 24C. Schmitt, E. Alt, A. Plewan, R. Ammer, M. Leibig, M. Karch, and A. Schomig, Low energy intracardiac cardioversion after failed conventional external cardioversion of atrial fibrillation. J. Am. Coll. Cardiol. 1996; 28: 994–999.
- 25P. Spurrell, A. Mitchell, K. Kamalvand, and N. Sulke, Quality of life after use of the patient activated atrial defibrillator. Int. J. Clin. Pract. 2003; 57: 30–34.
- 26D. M. Steinhaus, D. S. Cardinal, L. Mongeon, S. K. Musley, L. Foley, and S. Corrigan, Internal defibrillation: Pain perception of low energy shocks. Pacing Clin. Electrophysiol. 2002; 25: 1090–1093.
- 27A. L. Aronson and B. Haggar, The automatic external defibrillator—pacemaker: Clinical rationale and engineering design. Med. Instrum. 1986; 20: 27–35.
- 28M. S. Eisenberg, J. Moore, R. O. Cummins, E. Andresen, P. E. Litwin, A. P. Hallstrom, and T. Hearne, Use of the automatic external defibrillator in homes of survivors of out-of-hospital ventricular fibrillation. Am. J. Cardiol. 1989; 63: 443–446.
- 29R. W. Koster, Automatic external defibrillator: Key link in the chain of survival. J. Cardiovasc. Electrophysiol. 2002; 13: S92–S95.
- 30C. S. Forrer, R. A. Swor, R. E. Jackson, R. G. Pascual, S. Compton, and C. McEachin, Estimated cost effectiveness of a police automated external defibrillator program in a suburban community: 7 years experience. Resuscitation 2002; 52: 23–29.
- 31B. Hernandez and J. Christensen, Automatic external defibrillator intervention in the workplace. A comprehensive approach to program development. Aaohn J. 2001; 49: 96–106, quiz 107–108.
- 32M. J. Silka, J. Kron, A. Dunnigan, and M. D. II, Sudden cardiac death and the use of implantablecardioverter-defibrillators in pediatric patients. Circulation 1993; 87: 800–807.
- 33N. A. Estes, 3rd, J. Weinstock, P. J. Wang, M. K. Homoud, and M. S. Link, Use of antiarrhythmics and implantable cardioverter-defibrillators in congestive heart failure. Am. J. Cardiol. 2003; 91: 45D–52D.
- 34S. H. Hohnloser and B. J. Gersh, Changing late prognosis of acute myocardial infarction: Impact on management of ventricular arrhythmias in the era of reperfusion and the implantable cardioverter-defibrillator. Circulation 2003; 107: 941–946.
- 35E. N. Prystowsky, Primary and secondary prevention of sudden cardiac death: The role of the implantable cardioverter defibrillator. Rev. Cardiovasc. Med. 2001; 2: 197–205.
- 36R. Plonsey and R. C. Barr, Bioelectricity: A Quantitative Approach. New York: Kluwer–Plenum Publications, 1988.
10.1007/978-1-4757-9456-4 Google Scholar
- 37D. P. Zipes, J. Fischer, R. M. King, d. e. B. Nicoll_A, and W. W. Jolly, Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am. J. Cardiol. 1975; 36: 37–44.
- 38R. J. Damiano, T. Asano, P. K. Smith, R. E. Ideker, and J. L. Cox, Critical mass and the surgical treatment of ventricular fibrillation: The effect of right ventricular isolation on ventricular fibrillation thresholds. J. Am. Coll. Cardiol. 1984; 3: 587–1984.
- 39X. Zhou, J. P. Daubert, P. D. Wolf, W. M. Smith, and R. E. Ideker, Size of the critical mass for defibrillation. Circulation 1989; 80: II-531.
- 40R. E. Ideker, X. Zhou, and S. B. Knisley, Correlation among fibrillation, defibrillation, and cardiac pacing. PACE 1995; 18II: 512–525.
- 41S. F. Idriss, S. B. Melnick, P. D. Wolf, W. M. Smith, and R. E. Ideker, Predicting the potential gradient field in ventricular fibrillation from shocks delivered in paced rhythm. Am. J. Physiol. 1995; 268: H2336–H2344.
- 42M. A. Camacho, J. L. Lehr, and S. R. Eisenberg, A three-dimensional finite element model of human transthoracic defibrillation: Paddle placement and size. IEEE Trans. Biomed. Eng. 1995; 42: 572–578.
- 43J. Replogle, D. Russomanno, A. Dejongh, and F. Claydon, Extracting isovolumes from three dimensional torso geometry using prolog. IEEE Trans. Information Technol. Biomed. 1998; 2: 10–19.
- 44D. Vaidya, G. Morley, F. Samie, and J. Jalife, Reentry and fibrillation in the mouse heart: A challenge to the critical mass hypothesis. Circ. Res. 1999; 85: 174–181.
- 45A. T. Winfree, Electrical turbulence in three dimensional heart tissue. Science 1994; 266: 1003–1006.
- 46R. J. Sweeney, R. M. Gill, and P. R. Reid, Characterization of refractory period extension by transcardiac shock. Circulation 1991; 83: 2057–2066.
- 47Y. Goldman and M. Morad, Regenerative repolarization of the frog ventricular action potential: A time and voltage-dependent phenomenon. J. Physiol. 1977; 268: 575–611.
- 48Y. Cheng, K. A. Mowrey, D. R. Van Wagoner, P. J. Tchou, and I. R. Efimov, Virtual electrode-induced reexcitation: A mechanism of defibrillation. Circ. Res. 1999; 85: 1056–1066.
- 49R. A. Malkin, S. R. Smith, and B. K. Hoffmeister, Defibrillation and the geometry of the heart: A novel measurement with implications for defibrillation mechanisms. Physiol. Meas. 2001; 22: 309–321.
- 50E. Sylvester, B. Hoffmeister, E. Johnson, P. Hess and R. A. Malkin, Defibrillation causes immediate cardiac dilatation in humans. J. Cardiovasc. Electrophys. 2003; 14(8): 832–836.
- 51S. Knisley, X. Zhou, P. A. Guse, P. D. Wolf, D. L. Rollins, W. M. Smith, and R. E. Ideker, Shocks first prolong, then shorten action potentials in ventricular muscle. PACE 1990; 13: 517.
- 52S. B. Knisley, S. B. Melnick, W. M. Smith, and R. E. Ideker, Efficacy of monophasic and biphasic shocks for excitation and repolarization prolongation. Circulation 1991; 84: II-497.
- 53I. R. Efimov, R. A. Gray, and B. J. Roth, Virtual electrodes and deexcitation: New insights into fibrillation induction and defibrillation. J. Cardiovasc. Electrophysiol. 2000; 11: 339–353.
10.1111/j.1540-8167.2000.tb01805.x Google Scholar
- 54D. W. Frazier, P. D. Wolf, J. M. Wharton, A. S. L. Tang, W. M. Smith, and R. E. Ideker, Stimulus-induced critical point: Mechanism for electrical initiation of reentry in normal canine myocardium. J. Clin. Invest. 1989; 83: 1039–1052.
- 55I. R. Efimov, Y. Cheng, D. R. Van Wagoner, T. Mazgalev, and P. J. Tchou, Virtual electrode-induced phase singularity: A basic mechanism of defibrillation failure. Circ. Res. 1998; 82: 918–925.
- 56P.-S. Chen, P. D. Wolf, E. G. Dixon, N. D. Danieley, D. W. Frazier, W. M. Smith, and R. E. Ideker, Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs. Circ. Res. 1988; 62: 1191–1209.
- 57J. J. Souza, R. A. Malkin, and R. E. Ideker, Comparison of upper limit of vulnerability and defibrillation probability of success curves using a nonthoracotomy lead system. Circulation 1995; 91: 1247–1252.
- 58P.-S. Chen, G. k. Feld, J. M. Kriett, M. M. Mower, R. T. Tarazi, R. P. Fleck, C. D. Swerdlow, E. S. Gang, and R. M. Kass, Relation between upper limit of vulnerability and defibrillation threshold in humans. Circulation 1993; 88: 186–192.
- 59R. A. Malkin, T. C. Pilkington, and R. E. Ideker, Estimating defibrillation efficacy using combined upper limit of vulnerability and defibrillation testing. IEEE Trans. Biomed. Eng. 1996; 43: 69–78.
- 60C. D. Swerdlow, T. Ahern, R. M. Kass, S. Davie, W. J. Mandel, and P. S. Chen, Upper limit of vulnerability is a good estimator of shock strength associated with 90% probability of successful defibrillation in humans with transvenous implantable cardioverter-defibrillators. J. Am. Coll. Cardiol. 1996; 27: 1112–1118.
- 61N. Trayanova and K. Skouibine, Modeling defibrillation: Effects of fiber curvature. J. Electrocardiol. 1998; 31(Suppl.): 23–29.
- 62S. B. Knisley, N. Trayanova, and F. Aguel, Roles of electric field and fiber structure in cardiac electric stimulation. Biophys. J. 1999; 77: 1404–1417.
- 63E. Entcheva, Influence of the electric axis of stimulation on the induced transmembrane potentials in ellipsoidal bidomain heart. Ann. Biomed. Eng. 2000; 28: 244–252.
- 64N. A. Trayanova, B. J. Roth, and L. J. Malden, The response of a spherical heart to a uniform electric field: A bidomain analysis of cardiac stimulation. IEEE Trans. Biomed. Eng. 1993; 40: 899–908.
- 65E. Entcheva, N. A. Trayanova, and F. J. Claydon, Patterns of and mechanisms for shock-induced polarization in the heart: A bidomain analysis. IEEE Trans. Biomed. Eng. 1999; 46: 260–270.
- 66M. G. Fishler, Syncytial heterogeneity as a mechanism underlying cardiac far-field stimulation during defibrillation-level shocks. J. Cardiovasc. Electrophysiol. 1998; 9: 384–394.
- 67V. Sharma and L. Tung, Theoretical and experimental study of sawtooth effect in isolated cardiac cell-pairs. J. Cardiovasc. Electrophysiol. 2001; 12: 1164–1173.
- 68V. G. Fast, S. Rohr, A. M. Gillis, and A. G. Kleber, Activation of cardiac tissue by extracellular electrical shocks: Formation of ‘secondary sources’ at intercellular clefts in monolayers of cultured myocytes. Circ. Res. 1998; 82: 375–385.
- 69I. R. Efimov, Y. Cheng, Y. Yamanouchi, and P. J. Tchou, Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation. J. Cardiovasc. Electrophysiol. 2000; 11: 861–868.
- 70J. Eason and N. Trayanova, Phase singularities and termination of spiral wave reentry. J. Cardiovasc. Electrophysiol. 2002; 13: 672–679.
- 71I. R. Efimov, Y. N. Cheng, M. Biermann, D. R. Van Wagoner, T. N. Mazgalev, and P. J. Tchou, Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J. Cardiovasc. Electrophysiol. 1997; 8: 1031–1045.
- 72I. R. Efimov, F. Aguel, Y. Cheng, B. Wollenzier, and N. Trayanova, Virtual electrode polarization in the far field: Implications for external defibrillation. Am. J. Physiol. Heart Circ. Physiol. 2000; 279: H1055–H1070.
- 73E. Entcheva, J. Eason, I. R. Efimov, Y. Cheng, R. Malkin, and F. Claydon, Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: Evidence from bidomain simulations and optical mapping, J. Cardiovasc. Electrophysiol. 1998; 9: 949–961.
- 74Q. Huang, J. C. Eason, and F. J. Claydon, Membrane polarization induced in the myocardium by defibrillation fields: An idealized 3-D finite element bidomain/monodomain torso model. IEEE Trans. Biomed. Eng. 1999; 46: 26–34.
- 75R. Plonsey and R. C. Barr, Inclusion of junction elements in a linear cardiac model through secondary sources: Application to defibrillation. Med. Biol. Eng. Comput. 1986; 24: 137–144.
- 76A. M. Gillis, V. G. Fast, S. Rohr, and A. G. Kleber, Spatial changes in transmembrane potential during extracellular electrical shocks in cultured monolayers of neonatal rat ventricular myocytes. Circ. Res. 1996; 79: 676–690.
10.1161/01.RES.79.4.676 Google Scholar
- 77X. Zhou, S. B. Knisley, W. M. Smith, D. Rollins, A. E. Pollard, and R. E. Ideker, Spatial changes in the transmembrane potential during extracellular electric stimulation. Circ. Res. 1998; 83: 1003–1014.
- 78C. Alferness and R. E. Ideker, The influence of shock waveforms on defibrillation efficacy. Eng. Med. Biol. Mag. 1990; 9: 25–27.
- 79G. Weiss, Sur la possibilite de rendre comparable entre eux les appareils survant a l’excitation electrique. Arch. Ital. Biol. 1901; 35: 413–446.
- 80M. W. Kroll, A minimal model of the monophasic defibrillation pulse. Pacing Clin. Electrophysiol. 1993; 16: 769–777.
- 81L. A. Geddes, M. J. Niebauer, C. F. Babbs, and J. D. Bourland, Fundamental criteria underlying the efficacy and safety of defibrillation current waveforms. Med. Biol. Eng. Comput. 1985; 23: 122–130.
10.1007/BF02456748 Google Scholar
- 82R. A. Malkin, Large sample test of defibrillation waveform sensitivity. J. Cardiovasc. Electrophysiol. 2002; 13: 361–370.
- 83J. D. Bourland, W. A. Tacker, and L. A. Geddes, Strength-duration curves for trapezoidal waveforms of various tilts for transchest defibrillation in animals. Med. Instrum. 1978; 12: 38–41.
- 84J. C. Schuder, H. Stoeckle, and A. M. Dolan, Transthoracic ventricular defibrillation with square-wave stimuli: One-half cycle, one cycle, and multicycle waveforms. Circ. Res. 1964; 15: 258–264.
- 85C. D. Swerdlow, W. Fan, and J. E. Brewer, Charge-burping theory correctly predicts optimal ratios of phase duration for biphasic defibrillation waveforms. Circulation 1996; 94: 2278–2284.
- 86G. P. Walcott, R. G. Walker, A. W. Cates, W. Krassowska, W. M. Smith, and R. E. Ideker, Choosing the optimal monophasic and biphasic waveforms for ventricular defibrillation. J. Cardiovasc. Electrophys. 1995; 6: 737–750.
- 87M. G. Fishler, Theoretical predictions of the optimal monophasic and biphasic defibrillation waveshapes. IEEE Trans. Biomed. Eng. 2000; 47: 59–67.
- 88J. C. Schuder and W. C. McDaniel, Relationship between efficacy of defibrillation shocks and frequency characteristics of shock waveforms. J. Cardiovasc. Electrophysiol. 1998; 9: 1043–1054.