Biomedical Transducers
Tatsuo Togawa
Waseda University, School of Human Sciences, Tokorozawa, Saitama, Japan
Search for more papers by this authorTatsuo Togawa
Waseda University, School of Human Sciences, Tokorozawa, Saitama, Japan
Search for more papers by this authorAbstract
A transducer is a device that converts a measured object quantity into an electrical signal. Biomedical transducers are transducers with specific uses in biomedical applications, such as physiological measurement and patient monitoring, and in health care. The object quantities in biomedical measurements are physical and chemical quantities that reflect the physiological functions in a living body. Although some quantities, such as blood composition, can be determined from a sample extracted from the body, real-time and continuous measurements can be achieved if a transducer is attached to the body, and use of a transducer attached to the body is essential when continuous monitoring of an object quantity is required.
Bibliography
- 1T. Togawa, P. Å. Öberg, and T. Tamura, Biomedical Transducers and Instruments. Boca Raton, FL: CRC Press, 1997.
- 2P. Rolfe, Preface. In: P. Rolfe, ed., Non-invasive Physiological Measurement, vol. 2. London: Academic Press, 1983, pp. i–ix.
- 3T. Togawa, Patient Monitoring. In: J. G. Webster, ed., Wiley Encyclopedia of Electrical and Electronics Engineering, vol. 16, New York: John Wiley and Sons, 1999, pp. 1–10.
- 4N. T. Smith, K. H. Weseling, and B. de Wit, Evaluation of two prototype devices producing noninvasive, pulsatile, calibrated blood pressure measurement from a finger. J. Clin. Monit. 1985; 1: 17–29.
- 5J. S. Eckerle, Arterial tonometry. In: J. G. Webster, ed., Encyclopedia of Medical Devices and Instrumentation. New York: John Wiley and Sons, 1988, pp. 2770–2776.
- 6J. W. Severinghause and P. Astrup, History of blood gas analysis. VI. Oximetry. J. Clin. Monit. 1986; 2: 270–288.
- 7I. Yoshiya, Y. Shimada, and K. Tanaka, Spectrophotometric monitoring of arterial oxygen saturation in the fingertip. Med. Biol. Eng. Comput. 1980; 18: 27–32.
- 8M. Forbes, G. Pico, Jr., and B. Grolman, A non-contact applanation tonometer: description and clinical evaluation. Arch. Ophthalmol. 1975; 91: 134–140.
- 9R. J. Vale, Monitoring of temperature during anesthesia. Int. Anesthesiol. Clin. 1981; 19: 61–83.
- 10J. K. Lilly, J. P. Boland, and S. Zekan, Urinary bladder temperature monitoring: a new index of body core temperature. Crit. Care Med. 1980; 8: 742–744.
- 11W. Ganz, R. Donoso, H. S. Marcus, J. S. Forester, and H. J. C. Swan, A new technique for measurement of cardiac output by thermodilution in man. Am. J. Cardiol. 1971; 27: 392–396.
- 12J. E. Waktare and M. Malik, Holter, loop recorder, and event counter capabilities of implanted devices. Pacing Clin. Electrophysiol. 1997; 20(Pt 2): 2658–2669.
- 13W. J. Tompkins, Ambulatory monitoring. In: J. G. Webster, ed., Encyclopedia of Medical Devices and Instrumentation. New York: John Wiley and Sons, 1988, pp. 20–28.
- 14G. Meaning, S. G. Vijan, and M. W. Millar-Craig, Technical and clinical evaluation of the Medilog ABP non-invasive blood pressure monitor. J. Ambulat. Monitor. 1994; 7: 255–264.
- 15J. D. Sackner, A. J. Nixon, B. Davis, N. Atkins, and M. A. Sackner, Non-invasive measurement of ventilation during exercise using a respiratory inductance plethysmography. Am. Rev. Respirat. Dis. 1980; 122: 867–871.
- 16S. B. Servais and J. G. Webster, Estimating human energy expenditure using an accelerometer device. J. Clin. Eng. 1984; 9(2): 159–171.
10.1097/00004669-198404000-00015 Google Scholar
- 17R. J. Cole, D. F. Kripke, W. Gruen, D. J. Mullaney, and J. C. Gillin, Automatic sleep/wake identification from wrist activity. Sleep 1992; 15: 461–469.
- 18S. Rhee, B. H. Yang, K. Chang, and H. H. Asada, The ring type sensor: a new ambulatory wearable sensor for twenty-four-hour patient monitoring system. Proc. 20th Ann. Int. Conf. IEEE Eng. Med. Biol., 1998: 1906–1909.
- 19J. D. Neuman and A. P. F. Turner, Biosensors for monitoring glucose. In: P. Å. Öberg, T. Togawa, and F. A. Spelman, eds., Sensors in Medicine and Health Care. Weinheim, Germany: Wiley-VCH, 2004, pp. 45–78.
10.1002/3527601414.ch3 Google Scholar
- 20T. Togawa, Home health care and telecare. In: P. Å. Öberg, T. Togawa, and F. A. Spelman, eds., Sensors in Medicine and Health Care. Weinheim, Germany: Wiley-VCH, 2004, pp. 381–405.
10.1002/3527601414.ch12 Google Scholar
- 21T. Shinozaki, R. Dean, and F. M. Perkins, Infrared tympanic thermometer: evaluation of a new clinical thermometer. Crit. Care Med. 1988; 16: 148–150.
- 22M. E. Weiss, A. F. Pue, and J. Smith, III, Laboratory and hospital testing of new infrared tympanic thermometer. J. Clin. Eng. 1991; 16: 137–144.
- 23T. Togawa, Non-invasive deep body temperature measurement. In: P. Rolfe, ed., Non-invasive Physiological Measurement, vol. 1, London: Academic Press, 1979, pp. 261–277.
- 24J. Stevens, J. Cai, E. R. Pamuk, and D. F. Williamson, The effect of age on the association between body-mass index and mortality. New Eng. J. Med. 1998; 338: 1–7.
- 25K. R. Segal, B. Gutin, E. Presta, J. Wang, and T. B. Van Itallie, Estimation of human body composition by electrical impedance methods: a comparative study. J. Appl. Physiol. 1985; 58: 1565–1571.
- 26J. M. Conway, K. H. Norris, and C. E. Bodwell, A new approach for the estimation of body composition: infrared interactance. Am. J. Clin. Nutr. 1984; 40: 1123–1130.
- 27K. B. Arbogast, K. L. Thibault, B. S. Pinheiro, K. I. Winey, and S. S. Margulies, A high-frequency shear device for testing soft biological tissues. J. Biomech. 1997; 30: 757–759.
- 28J. L. Peterson, S. R. Goldstein, and R. V. Fitzgerald, Fiber optic pH probe for physiological use. Ann. Chem. 1980; 52: 864–869.
- 29P. Spanel, P. Rolfe, B. Rajan, and D. Smith, The selected ion flow tube (SIFT): a novel technique for biological monitoring. Ann. Occup. Hyg. 1996; 40: 615–626.
- 30J. C. Jones, The feeding behavior of mosquito. Sci. Amer. 1978; 238: 112–120.
10.1038/scientificamerican0678-138 Google Scholar
Reading List
- T. J. H. Essex and P. O. Byrne, A laser Doppler scanner for imaging blood flow in skin. J. Biomed. Eng. 1991; 13: 189–194.