Excited State Dynamics in the Light-Driven Enzyme Protochlorophyllide Oxidoreductase (POR)
Marie Louise Groot
Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
Search for more papers by this authorDerren James Heyes
Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
Search for more papers by this authorMarie Louise Groot
Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
Search for more papers by this authorDerren James Heyes
Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
Search for more papers by this authorKe-Li Han
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
Search for more papers by this authorGuang-Jiu Zhao
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Protochlorophyllide Oxidoreductase (POR)
-
Catalytic Mechanism of POR
-
Ultrafast Catalytic Processes of the Isolated Pchlide Species
-
Ultrafast Catalytic Processes of the Enzyme-Bound Pchlide Species
-
Conclusions
-
References
References
- S. J. Benkovic and S. Hammes-Schiffer, A perspective on enzyme catalysis, Science, 301, 1196–1202 (2003).
- J. Villa and A. Warshel, Energetics and dynamics of enzymatic reactions, J. Phys. Chem. B, 105, 7887–7907 (2001).
- E. Z. Eisenmesser, O. Millet, W. Labeikovsky, et al., Intrinsic dynamics of an enzyme underlies catalysis, Nature, 438, 117–121 (2005).
- M. Y. Okamura, M. L. Paddock, M. S. Graige and G. Feher, Proton and electron transfer in bacterial reaction centers, Biochim. Biophys. Acta-Bioenerg., 1458, 148–163 (2000).
- M. L. Paddock, G. Feher and M. Y. Okamura, Proton transfer pathways and mechanism in bacterial reaction centers, FEBS Lett., 555, 45–50 (2003).
- C. A. Wraight, Proton and electron transfer in the acceptor quinone complex of photosynthetic reaction centers from Rhodobacter sphaeroides, Frontiers Biosci., 9, 309–337 (2004).
- C. Aubert, M. H. Vos, P. Mathis et al., Intraprotein radical transfer during photoactivation of DNA photolyase, Nature, 405, 586–590 (2000).
- A. Mees, T. Klar, P. Gnau et al., Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair, Science, 306, 1789–1793 (2004).
- N. Lebedev and M. P. Timko, Protochlorophyllide photoreduction, Photosynth. Res., 58, 5–23 (1998).
- T. Masuda and K. Takamiya, Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms, Photosynth. Res., 81, 1–29 (2004).
- D. J. Heyes and C. N. Hunter, Making light work of enzyme catalysis: protochlorophyllide oxidoreductase, Trends Biochem. Sci., 30, 642–649 (2005).
- C. Sundqvist and C. Dahlin, With chlorophyll pigments from prolamellar bodies to light-harvesting complexes, Physiol. Plantarum, 100, 748–759 (1997).
- F. Franck, U. Sperling, G. Frick et al., Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B Plant Physiol., 124, 1678–1696 (2000).
- L.B. Zhong, B. Wiktorsson, M. Ryberg and C. Sundqvist, The Shibata shift: effects of in vitro conditions on the spectral blue-shift of chlorophyllide in irradiated isolated prolamellar bodies, J. Photochem. Photobiol. B-Biol., 36, 263–270 (1996).
- Y. Fujita and C. E. Bauer, Reconstitution of light-independent protochlorophyllide reductase from purified BchL and BchN-BchB subunits - in vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme, J. Biol. Chem., 275, 23583–23588 (2000).
- M. J. Bröcker, S. Virus, S. Ganskow et al., ATP-driven reduction by dark-operative protochlorophyllide oxidoreductase from Chlorobium tepidum mechanistically resembles nitrogenase catalysis, J. Biol. Chem., 283, 10559–10567 (2008).
- W. T. Griffiths, Reconstitution of chlorophyllide formation by isolated etioplast membranes, Biochem. J., 174, 681–692 (1978).
- D. J. Heyes, B. R. K. Menon, M. Sakuma and N. S. Scrutton, Conformational events during ternary enzyme-substrate complex formation are rate limiting in the catalytic cycle of the light-driven enzyme protochlorophyllide oxidoreductase, Biochemistry, 47, 10991–10998 (2008).
- V. Valera, M. Fung, A. N. Wessler and W. R. Richards, Synthesis of 4R- and 4S-tritium labeled NADPH for the determination of the coenzyme stereospecificity of NADPH: protochlorophyllide oxidoreductase, Biochem. Biophys. Res. Commun., 148, 515–520 (1987).
- T. P. Begley and H. Young, Protochlorophyllide reductase. 1. Determination of the regiochemistry and the stereochemistry of the reduction of protochlorophyllide to chlorophyllide, J. Am. Chem. Soc., 111, 3095–3096 (1989).
- H. M. Wilks and M. P. Timko, A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase. Identification and mutagenesis of two conserved residues that are essential for enzyme activity, Proc. Natl. Acad. Sci. USA, 92, 724–728 (1995).
- D. J. Heyes, A. V. Ruban, H. M. Wilks and C. N. Hunter, Enzymology below 200 K: the kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase, Proc. Natl. Acad. Sci. USA, 99, 11145–11150 (2002).
- D. J. Heyes, A. V. Ruban and C. N. Hunter, Protochlorophyllide oxidoreductase: “dark” reactions of a light-driven enzyme”, Biochemistry, 42, 523–528 (2003).
- D. J. Heyes and C. N. Hunter, Identification and characterization of the product release steps within the catalytic cycle of protochlorophyllide oxidoreductase, Biochemistry, 43, 8265–8271 (2004).
- D. J. Heyes, P. Heathcote, S. E. J. Rigby et al., The first catalytic step of the light-driven enzyme protochlorophyllide oxidoreductase proceeds via a charge transfer complex, J. Biol. Chem., 281, 26847–26853 (2006).
- D. J. Heyes, M. Sakuma, S. De Visser and N. S. Scrutton, Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase, J. Biol. Chem., 284, 3762–3767 (2008).
- G. Durin, A. Delaunay, C. Darnault et al., Simultaneous measurements of solvent dynamics and functional kinetics in a light-activated enzyme, Biophys. J., 96, 1902–1910 (2009).
- D. J. Heyes, M. Sakuma and N. S. Scrutton, Solvent slaved protein motions accompany proton but not hydride tunneling in light-activated protochlorophyllide oxidoreductase, Angew. Chem. Int. Ed., 48, 3850–3853 (2009).
- D. J. Heyes, M. Sakuma and N. S. Scrutton, Laser excitation studies of the product release steps in the catalytic cycle of the light-driven enzyme, protochlorophyllide oxidoreductase, J. Biol. Chem., 282, 32015–32020 (2007).
- B. Dietzek, R. Maksimenka, T. Siebert et al., Excited-state processes in protochlorophyllide a: a femtosecond time-resolved absorption study, Chem. Phys. Lett., 397, 110–115 (2004).
- B. Dietzek, W. Kiefer, J. Popp et al., Solvent effects on the excited-state processes of protochlorophyllide: a femtosecond time-resolved absorption study, J. Phys. Chem. B., 110, 4399–4406 (2006).
- B. Dietzek, S. Tschierlei, G. Hermann et al., The excited-state chemistry of protochlorophyllide a: a time-resolved fluorescence study, ChemPhysChem, 7, 1727–1733 (2006).
- G. J. Zhao and K. L. Han, Site-specific solvation of the photoexcited protochlorophyllide a in methanol: formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening, Biophys. J., 94, 38–46 (2008).
- B. Dietzek, W. Kiefer, A. Yartsev et al., Protochlorophyllide a: a comprehensive photophysical picture, ChemPhysChem, 10, 144–150 (2009).
- D. J. Heyes, C. N. Hunter, I. H. M. van Stokkum et al., Ultrafast enzymatic reaction dynamics in protochlorophyllide oxidoreductase, Nat. Struct. Biol., 10, 491–492 (2003).
- O. A. Sytina, D. J. Heyes, C. N. Hunter et al., Conformational changes in an ultrafast light-driven enzyme determine catalytic activity, Nature, 456, 1001–1004 (2008).
- M. Schmitt, B. Dietzek, G. Hermann and J. Popp, Femtosecond time-resolved spectroscopy on biological photoreceptor chromophores, Laser Photonics Rev., 1, 57–78 (2007).