Genomic Implications of Anticholinesterase Sensitivities
Jonathan E. Cohen
Department of Physiology and Neurosurgery, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Search for more papers by this authorAlon Friedman
Department of Physiology and Neurosurgery, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Department of Physiology, Faculty for Health Sciences, Ben-Gurion University, Beer-Sheva, ISRAEL
Search for more papers by this authorGabrial Zimmermann
Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Israel 91904, Israel
Search for more papers by this authorHermona Soreq
Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Israel 91904, Israel
Search for more papers by this authorJonathan E. Cohen
Department of Physiology and Neurosurgery, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Search for more papers by this authorAlon Friedman
Department of Physiology and Neurosurgery, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Department of Physiology, Faculty for Health Sciences, Ben-Gurion University, Beer-Sheva, ISRAEL
Search for more papers by this authorGabrial Zimmermann
Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Israel 91904, Israel
Search for more papers by this authorHermona Soreq
Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Israel 91904, Israel
Search for more papers by this authorTetsuo Satoh
Department of Pharmacology and Toxicology, Japan
Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
HAB Research Institute, Ichikawa, Chiba, Japan
Search for more papers by this authorRamesh C. Gupta
Toxicology Department, Breathitt Veterinary Center, Murray State University, Hopkinsville, KY, USA
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Genetic Polymorphisms Contributing to Anti-ChE Sensitivity
-
Conclusion
-
References
REFERENCES
- Ashani, Y., and Pistinner, S. (2004). Estimation of the upper limit of human butyrylcholinesterase dose required for protection against organophosphates toxicity: a mathematically based toxicokinetic model. Toxicol Sci 77, 358–367.
- Benmoyal-Segal, L., and Soreq, H. (2006). Gene-environment interactions in sporadic Parkinson's disease. J Neurochem 97, 1740–1755.
- Benmoyal-Segal, L., Vander, T., Shifman, S., Bryk, B., Ebstein, R.P., Marcus, E.L., Stessman, J., Darvasi, A., Herishanu, Y., Friedman, A., et al. (2005). Acetylcholinesterase/paraoxonase interactions increase the risk of insecticide-induced Parkinson's disease. FASEB J 19, 452–454.
- Brophy, V.H., Jampsa, R.L., Clendenning, J.B., McKinstry, L.A., Jarvik, G.P., and Furlong, C.E. (2001). Effects of 5′ regulatory-region polymorphisms on paraoxonase-gene (PON1) expression. Am J Hum Genet 68, 1428–1436.
- Browne, R.O., Moyal-Segal, L.B., Zumsteg, D., David, Y., Kofman, O., Berger, A., Soreq, H., and Friedman, A. (2006). Coding region paraoxonase polymorphisms dictate accentuated neuronal reactions in chronic, sub-threshold pesticide exposure. FASEB J 20, 1733–1735.
- Bryk, B., BenMoyal-Segal, L., Podoly, E., Livnah, O., Eisenkraft, A., Luria, S., Cohen, A., Yehezkelli, Y., Hourvitz, A., and Soreq, H. (2005). Inherited and acquired interactions between ACHE and PON1 polymorphisms modulate plasma acetylcholinesterase and paraoxonase activities. J Neurochem 92, 1216–1227.
- Cacabelos, R. (2008). Pharmacogenomics and therapeutic prospects in dementia. Eur Arch Psychiatry Clin Neurosci 258 (Suppl 1), 28–47.
- Cerasoli, D.M., Griffiths, E.M., Doctor, B.P., Saxena, A., Fedorko, J.M., Greig, N.H., Yu, Q.S., Huang, Y., Wilgus, H., Karatzas, C.N., et al. (2005). In vitro and in vivo characterization of recombinant human butyrylcholinesterase (Protexia) as a potential nerve agent bioscavenger. Chem Biol Interact 157–158, 363–365.
- Cherry, N., Mackness, M., Durrington, P., Povey, A., Dippnall, M., Smith, T., and Mackness, B. (2002). Paraoxonase (PON1) polymorphisms in farmers attributing ill health to sheep dip. Lancet 359, 763–764.
-
Costa, L.G., Cole, T.B., Vitalone, A., and Furlong, C.E. (2006). Paraoxonase polymorphisms and toxicity of organophosphates. In: Toxicology of Organophosphates and Carbamates. R.C. Gupta (Editor), Academic Press/Elsevier, Amsterdam. pp. 247–256.
10.1016/B978-012088523-7/50019-3 Google Scholar
- Davies, H.G., Richter, R.J., Keifer, M., Broomfield, C.A., Sowalla, J., and Furlong, C.E. (1996). The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 14, 334–336.
- Ehrlich, G., Ginzberg, D., Loewenstein, Y., Glick, D., Kerem, B., Ben-Ari, S., Zakut, H., and Soreq, H. (1994). Population diversity and distinct haplotype frequencies associated with AChE and BChE genes of Israeli Jews from trans-Caucasian Georgia and from Europe. Genomics 22, 288–295.
- Evron, T., Geyer, B.C., Cherni, I., Muralidharan, M., Kilbourne, J., Fletcher, S.P., Soreq, H., and Mor, T.S. (2007). Plant-derived human acetylcholinesterase-R provides protection from lethal organophosphate poisoning and its chronic aftermath. FASEB J 21, 2961–2969.
- Fontoura-da-Silva, S.E., and Chautard-Freire-Maia, E.A. (1996). Butyrylcholinesterase variants (BChE and ChE2 Loci) associated with erythrocyte acetylcholinesterase inhibition in farmers exposed to pesticides. Hum Hered 46, 142–147.
- Friedman, A., Kaufer, D., Shemer, J., Hendler, I., Soreq, H., and Tur-Kaspa, I. (1996). Pyridostigmine brain penetration under stress enhances neuronal excitability and induces early immediate transcriptional response. Nat Med 2, 1382–1385.
- Furlong, C.E., Cole, T.B., Jarvik, G.P., Pettan-Brewer, C., Geiss, G.K., Richter, R.J., Shih, D.M., Tward, A.D., Lusis, A.J., and Costa, L.G. (2005). Role of paraoxonase (PON1) status in pesticide sensitivity: genetic and temporal determinants. Neurotoxicology 26, 651–659.
- Hasin, Y., Avidan, N., Bercovich, D., Korczyn, A.D., Silman, I., Beckmann, J.S., and Sussman, J.L. (2005). Analysis of genetic polymorphisms in acetylcholinesterase as reflected in different populations. Curr Alzheimer Res 2, 207–218.
- Huang, Y.J., Huang, Y., Baldassarre, H., Wang, B., Lazaris, A., Leduc, M., Bilodeau, A.S., Bellemare, A., Cote, M., Herskovits, P., et al. (2007). Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proc Natl Acad Sci USA 104, 13603–13608.
- Jarvik, G.P., Jampsa, R., Richter, R.J., Carlson, C.S., Rieder, M.J., Nickerson, D.A., and Furlong, C.E. (2003). Novel paraoxonase (PON1) nonsense and missense mutations predicted by functional genomic assay of PON1 status. Pharmacogenetics 13, 291–295.
- Kamel, F., and Hoppin, J.A. (2004). Association of pesticide exposure with neurologic dysfunction and disease. Environ Health Perspect 112, 950–958.
- Krasowski, M.D., McGehee, D.S., and Moss, J. (1997). Natural inhibitors of cholinesterases: implications for adverse drug reactions. Can J Anaesth 44, 525–534.
- Li, W.F., Costa, L.G., Richter, R.J., Hagen, T., Shih, D.M., Tward, A., Lusis, A.J., and Furlong, C.E. (2000). Catalytic efficiency determines the in-vivo efficacy of PON1 for detoxifying organo-phosphorus compounds. Pharmacogenetics 10, 767–779.
- Lockridge, O., and Masson, P. (2000). Pesticides and susceptible populations: people with butyrylcholinesterase genetic variants may be at risk. Neurotoxicology 21, 113–126.
- Loewenstein-Lichtenstein, Y., Schwarz, M., Glick, D., NorgaardPedersen, B., Zakut, H., and Soreq, H. (1995). Genetic predisposition to adverse consequences of anti-cholinesterases in ‘atypical’ BCHE carriers. Nat Med 1, 1082–1085.
- Matsuo, K., Taneichi, K., Matsumoto, A., Ohtani, T., Yamasue, H., Sakano, Y., Sasaki, T., Sadamatsu, M., Kasai, K., Iwanami, A., et al. (2003). Hypoactivation of the prefrontal cortex during verbal fluency test in PTSD: a near-infrared spectroscopy study. Psychiatry Res 124, 1–10.
- Mikami, L.R., Wieseler, S., Souza, R.L., Schopfer, L.M., Nachon, F., Lockridge, O., and Chautard-Freire-Maia, E.A. (2008). Five new naturally occurring mutations of the BCHE gene and frequencies of 12 butyrylcholinesterase alleles in a Brazilian population. Pharmacogenet Genomics 18, 213–218.
- Neville, L.F., Gnatt, A., Padan, R., Seidman, S., and Soreq, H. (1990). Anionic site interactions in human butyrylcholinesterase disrupted by two single point mutations. J Biol Chem 265, 20735–20738.
- Perry, C., and Soreq, H. (2004). Organophosphate risk of leukemo-genesis. Leuk Res 28, 905–906.
- Richter, R.J., and Furlong, C.E. (1999). Determination of paraoxonase (PON1) status requires more than genotyping. Pharmacogenetics 9, 745–753.
- Shapira, M., Tur-Kaspa, I., Bosgraaf, L., Livni, N., Grant, A.D., Grisaru, D., Korner, M., Ebstein, R.P., and Soreq, H. (2000). A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum Mol Genet 9, 1273–1281.
- Shih, D.M., Gu, L., Xia, Y.R., Navab, M., Li, W.F., Hama, S., Castellani, L.W., Furlong, C.E., Costa, L.G., Fogelman, A.M., et al. (1998). Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 394, 284–287.
- Sirivarasai, J., Kaojarern, S., Yoovathaworn, K., and Sura, T. (2007). Paraoxonase (PON1) polymorphism and activity as the determinants of sensitivity to organophosphates in human subjects. Chem Biol Interact 168, 184–192.
- Sklan, E.H., Lowenthal, A., Korner, M., Ritov, Y., Landers, D.M., Rankinen, T., Bouchard, C., Leon, A.S., Rice, T., Rao, D.C., et al. (2004). Acetylcholinesterase/paraoxonase genotype and expression predict anxiety scores in Health, Risk Factors, Exercise Training, and Genetics study. Proc Natl Acad Sci USA 101, 5512–5517.
- Steenland, K., Jenkins, B., Ames, R.G., O'Malley, M., Chrislip, D., and Russo, J. (1994). Chronic neurological sequelae to organo-phosphate pesticide poisoning. Am J Public Health 84, 731–736.
- Steenland, K., Dick, R.B., Howell, R.J., Chrislip, D.W., Hines, C.J., Reid, T.M., Lehman, E., Laber, P., Krieg, E.F., Jr., and Knott, C. (2000). Neurologic function among termiticide applicators exposed to chlorpyrifos. Environ Health Perspect 108, 293–300.
- Varsaldi, F., Miglio, G., Scordo, M.G., Dahl, M.L., Villa, L.M., Biolcati, A., and Lombardi, G. (2006). Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer's disease patients. Eur J Clin Pharmacol 62, 721–726.
- World Health Organization and United Nations Environment Programme. (1990). Public health impact of pesticides used in agriculture. World Health Organization, Geneva.
- Yamada, Y., Takatori, T., Nagao, M., Iwase, H., Kuroda, N., Yanagida, J., and Shinozuka, T. (2001). Expression of paraoxonase isoform did not confer protection from acute sarin poisoning in the Tokyo subway terrorist attack. Int J Legal Med 115, 82–84.