Chemical Precipitation Synthesis and Optical Properties of ZnO/SiO2 Nanocomposites
Huaming Yang
Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083, China
Search for more papers by this authorQiming Feng
Search for more papers by this authorHuaming Yang
Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083, China
Search for more papers by this authorQiming Feng
Search for more papers by this authorThe American Ceramic Society
Search for more papers by this authorThe American Ceramic Society
Search for more papers by this authorSummary
In this chapter, SiO2 nanowires, made from natural chrysotile, are used to synthesize zinc oxide (ZnO)/SiO2 composites by chemical precipitation. The as-prepared samples are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, and Fourier transform infrared. Their optical properties are studied by a ultraviolet-vis spectrophotometer and a fluorescence spectrophotometer. TEM analysis shows that the size of ZnO particles in SZ8 was mainly in the range from 15 to 20 nm and dispersed uniformly on the surface of SiO2 nanowires. The photoluminescence spectra also show that ZnO/SiO2 composites have stronger emitting intensity at the blue-green band than pure ZnO synthesized under the same reaction conditions. Therefore, the composites will be of great interest in the application of luminescence material. The as-prepared ZnO/SiO2 composites can be used as photocatalysts for waste water treatment because they separate much more easily away from solution.
References
- D. Banerjee, S. H. Jo, and Z. F. Ren, “Enhanced Field Emission of ZnO Nanowires,” Adv. Mater., 16, 2028–32 (2004).
- E. C. Greyson, Y. Babayan, and T. W. Odom, “Directed Growth of Ordered Arrays of Small-Diameter ZnO Nanowires,” Adv. Mater., 16, 1348–52 (2004).
- W. Z. Wang, B. Q. Zeng, J. Yang, B. Poudel, J. Y. Huang, M. J. Naughton, and Z. F. Ren, “Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission,” Adv. Mater., 18, 3275–8 (2006).
- A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. G. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funet. Mater., 14, 856–64 (2004).
- X. M. Sui, Y. C. Liu, C. L. Shao, Y. X. Liu, and C. S. Xu, “Structural and Photoluminescent Properties of ZnO Hexagonal Nanoprisms Synthesized by Microemulsion with Polyvinyl Pyrrolidone Served as Surfactant and Passivant,” Chem. Phys. Lett., 424, 340–44 (2006).
- Y. Sun, G. M. Fuge, N. A. Fox, D. J. Riley, and M. N. R. Ashfold, “Synthesis of Aligned Arrays of Ultrathin ZnO Nanotubes on a Si Wafer Coated with a Thin ZnO Film,” Adv. Mater., 17, 2477–81 (2005).
- A. Eftekhari, F. Molaei, and H. Arami, “Flower-Like Bundles of ZnO Nano-sheets as an Intermediate between Hollow Nanosphere and Nanoparticles,” Mater. Sci. Eng. A, 437, 446–50 (2006).
- A. B. Djurišić and Y. H. Leung, “Optical Properties of ZnO Nanostructures,” Small, 2, 944–61 (2006).
- C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., 7, 1003–9(2007).
- S. J. Chen, Y. C. Liu, C. L. Shao, R. Mu, Y. M. Lu, J. Y. Zhang, D. Z. Shen, and X. W. Fan, “Structural and Optical Properties of Uniform ZnO Nanosheets,” Adv. Mater., 17, 586–90 (2005).
- L. F. Xu, Y. Guo, Q. Liao, J. P. Zhang, and D. S. Xu, “Morphological Control of ZnO Nanostructures by Electrodeposition,” J. Phys. Chem. B, 109, 13519–22 (2005).
- S. Kar, A. Dev, and S. Chaudhuri, “Simple Solvothermal Route to Synthesize ZnO Nanosheets, Nanonails, and Well-Aligned Nanorod Arrays,” J. Phys. Chem. B, 110, 17848–53 (2006).
- D. Scarano, S. Bertarione, F. Cesano, J. G. Vitillo, and A. Zecchina, “Plate-Like Zinc Oxide Microcrystals: Synthesis and Characterization of a Material Active Toward Hydrogen Adsorption,” Catal. Today, 116, 433–8 (2006).
- V. Pachauri, C. Subramaniam, and T. Pradeep, “Novel ZnO Nanostructures Over Gold and Silver Nanoparticle Assemblies,” Chem. Phys. Lett., 423, 240–6 (2006).
- J. Sun, L. Gao, and M. Iwasa, “Noncovalent Attachment of Oxide Nanoparticles onto Carbon Nanotubes using Water-in-Oil Microemulsions,” Chem. Commun., 832–3 (2004).
- Y. W. Zhu, H. I. Elim, Y. L. Foo, T. Yu, Y. J. Liu, W. Ji, J. Y. Lee, Z. X. Shen, A. T. S. Wee, J. T. L. Thong, and C. H. Sow, “Multiwalled Carbon Nanotubes Beaded with ZnO Nanoparticles for Ultrafast Nonlinear Optical Switching,” Adv. Mater., 18, 587–92 (2006).
- S. F. Si, C. H. Li, X. Wang, Q. Peng, and Y. D. Li, “Fe2O3/ZnO Core–Shell Nanorods for Gas Sensors,” Sens. Actuators B, 119, 52–6 (2006).
- K. Liu, Q. M. Feng, Y. X. Yang, G. F. Zhang, L. M. Ou, and Y. P. Lu, “Preparation and Characterization of Amorphous Silica Nanowires from Natural Chrysotile,” J. Non-Cryst. Solids, 353, 1534–9 (2007).
- Zs. Csögör, M. Nacken, M. Sameti, C.-M. Lehr, and H. Schmidt, “Modified Silica Particles for Gene Delivery,” Mater. Sci. Eng. C, 23, 93–7 (2003).
- W. Janusz, J. Patkowski, and S. Chibowski, “Competitive Adsorption of Ca2+ and Zn(II) Ions at Monodispersed SiO2/Electrolyte Solution Interface,” J. Col. Int. Sci, 266, 259–68 (2003).
- T. M. H. Costa, M. R. Gallas, E. V. Benvenutti, and J. A. H. da Jornada, “Infrared and Thermogra vi metric Study of High Pressure Consolidation in Alkoxide Silica Gel Powders,” J. Non-Cryst. Solids, 220, 195–201 (1997).
- M. G. Fonseca, A. S. Oliveira, and C. Airoldi, “Silylating Agents Grafted onto Silica Derived from Leached Chrysotile,” J. Colloid Interface. Sci., 240, 533–8 (2001).
- M. Cozzolino, M. Di Serio, R. Tesser, and E. Santacesaria, “Grafting of Titanium Alkoxides on High-Surface SiO2 Support: An Advanced Technique for the Preparation of Nanostructured TiO2/SiO2 Catalysts,” Appl. Catal. A, 325, 256–62 (2007).
- G. Díaz, R. Pérez-Hernández, A. Gómez-Cortés, M. Benaissa, R. Mariscal, and J. L. G. Fierro, “CuO–SiO2 Sol–Gel Catalysts: Characterization and Catalytic Properties for NO Reduction,” J. Catal., 187, 1–14 (1999).
- S. Monticone, R. Tufeu, and A. V. Kanaev, “Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles,” J. Phys. Chem. B, 102, 2854–62 (1998).
- F. H. Zhao, W. J. Lin, M. M. Wu, N. S. Xu, X. F. Yang, Z. R. Tian, and Q. Su, “Hexagonal and Prismatic Nanowalled ZnO Microboxes,” Inorg. Chem., 45, 3256–60 (2006).
- J. P. Cheng, X. B. Zhang, X. Y. Tao, H. M. Lu, Z. Q. Luo, and F. Liu, “Fine-Tuning the Synthesis of ZnO Nanostructures by an Alcohol Thermal Process,” J. Phys. Chem. B, 110, 10348–53 (2006).
- Z. G. Chen, A. Z. Ni, F. Li, H. T. Cong, H. M. Cheng, and G. Q. Lu, “Synthesis and Photoluminescence of Tetrapod ZnO Nanostructures,” Chem. Phys. Lett., 434, 301–5 (2007).
- H. M. Xiong, D. P. Liu, Y. Y. Xia, and J. S. Chen, “Polyether-Grafted ZnO Nanoparticles with Tunable and Stable Photoluminescence at Room Temperature,” Chem. Mater., 17, 3062–4 (2005).
- F. Xu, K. Yu, Q. Li, and Z. Q. Zhu, “Two-Dimensional Growth and Field Emission Properties of ZnO Microtowers,” J. Phys. Chem. C, 111, 4099–104 (2007).