Synthesis and Tribological Behavior of Silicon Oiycarbonitride Thin Films Derived from Poly(Urea)Methyl Vinyl Silazane
Tsali J. Cross
University of Colorado at Boulder, Department of Mechanical Engineering, Boulder, Colorado 80309
Search for more papers by this authorTsali J. Cross
Sandia National Laboratories, * Materials and Process Sciences Center, Albuquerque, New Mexico 87185
Search for more papers by this authorSomuri V. Prasad
Search for more papers by this authorDavid R. Tallant
Search for more papers by this authorTsali J. Cross
University of Colorado at Boulder, Department of Mechanical Engineering, Boulder, Colorado 80309
Search for more papers by this authorTsali J. Cross
Sandia National Laboratories, * Materials and Process Sciences Center, Albuquerque, New Mexico 87185
Search for more papers by this authorSomuri V. Prasad
Search for more papers by this authorDavid R. Tallant
Search for more papers by this authorThe American Ceramic Society
Search for more papers by this authorThe American Ceramic Society
Search for more papers by this authorSummary
A process for deposition of silicon oxycarbonitride films from poly (urea) methyl vinyl silazane (PUMVS) by spin coating precursor solutions onto a substrate, followed by polymerization, cross-linking and pyrolysis is developed. Silicon oxycarbonitride (SiCNO) ceramics are promising materials for microelectronics and optoelectronics, owing to high-temperature oxidation resistance, tunable band gap characteristics, adjustable transparency in the visible and IR regions, and high-temperature thermal stability. This chapter synthesizes SiCNO PDCs into thin films, characterize their micro-structure and chemistry, and evaluate their tribological behavior in various environments. It developed a process for deposition of SiCNO films from PUMVS. Films pyrolyzed in ammonia showed an initial coefficient of friction of 0.2, which decreased progressively with sliding distance. The mechanism of low friction is because of the formation of wear debris roll-ups. All films wore through in humid environments without forming friction-reducing roll-ups.
References
- R. Riedel, H.-J. Kleebe, H. Schonfelder, and F. Aldinger, “A Covalent Micro/Nano-Composite Resistant to High-Temperature Oxidation,” Nature, 374 526–528 (1995).
- A. Badzian, T. Badzian, R. Roy, and W. Drawl, “Silicon Carbonitride, a New Hard Material and Its Relation to the Confusion About ‘Harder Than Diamond’︁ C3N4,” Thin Sol. Films, 354 148–153 (1999).
- D. H. Zhang, Y. Gao, J. Wei, and Z. Q. Mo, “Influence of Silane Partial Pressure on the Properties of Amorphous SiCN Films Prepared by ECR-CVD,” Thin Sol. Films, 377–378 607–610 (2001).
- F. J. Gomez, P. Prieto, E. Elizalde, and J. Piquerasa, “SiCN Alloys Deposited by Electron Cyclotron Resonance Plasma Chemical Vapor Deposition,” Appl. Phys. Lett., 69 773 (1996).
- G. Soto, E. C. Samano, R. Machorro, and L. Cota, “Growth of SiC and SiCxNy, Films by Pulsed Laser Ablation of SiC in Ar and N2 Environments,” J. Vac. Sci. Techno I., A, Vac. Surf. Films, 16 1311–1315 (1998).
- H. J. Seifert, J. Peng, H. L. Lukas, and F. Aldinger, “Phase Equilibria and Thermal Analysis of Si–C–N Ceramics,” J Alloys Comp., 320 251–261 (2001).
- H.-J. Krauss and G. Motz, “Laser Pyrolysis of Polysilazane A New Technique for the Generation of Ceramic-like Coatings and Structures,” Key Eng. Mater., 206–213 467–470 (2002).
- P. Jedrzejowski, J. Cizek, A. Amassian, J. E. Klemberg-Saphieha, J. Vlcek, and L. Martinu, “Mechanical and Optical Properties of Hard SiCN Coatings Prepared by PECVD,” Thin Solid Films, 447–448 201–207 (2004).
- E. Bertran, E. Martinez, G. Viera, J. Farjas, and P. Roura, “Mechanical Properties of Nanometric Structures of Si/SiC, C/SiC and C/SiN Produced by PECVD,” Dia. Rel. Mater., 10 1115–1120 (2001).
- A. Bendeddouche, R. Berjoan, E. Beche, T. Merle-Mejean, S. Schamm, V. Serin, G. Taillades, A. Pradel, and R. Hillel, “Structural Characterization of Amorphous SiCxNy Chemical Vapor Deposited Coatings,” J. App. Phys., 81 [9] 6147–6154 (1997).
- Z. Gong, E. G. Wang, G. C. Xu, and Y. Chen, “Influence of Deposition Condition and Hydrogen on Amorphous-to-Polycrystalline SiCN Films,” Thin Solid Films, 348 [1–2] 114–121 (1999).
- H. Sachdev and P. Scheid, “Formation of Silicon Carbide and Silicon Carbonitride by RF Plasma-CVD,” Dia. Rel. Mater., 10 1160–1164 (2001).
- D. H. Zhang, Y. Gao, J. Wei, and Z. Q. Mo, “Influence of Silane Partial Pressure on the Properties of Amorphous SiCN Films Prepared by ECR-CVD,” Thin Solid Films, 377–378 607–610 (2000).
- T. Tharigen, G. Lippold, V. Riede, M. Lorenz, K. J. Koivusaari, D. Lorenz, S. Mosch, P. Grau, R. Hesse, P. Streubel, and R. Szargan, “Hard Amorphous CSiˆNj, Thin Films Deposited by RF Nitrogen Plasma Assisted Pulsed Laser Ablation of Mixed Graphite/Si3N4-Targets,” Thin Solid Films, 348 103–113 (1999).
- Z. He, G. Carter, and J. S. Colligon, “Ion-Assisted Deposition of C–N and Si–C–N Films,” Thin Solid Films, 283 90–96 (1996).
- K. B. Sundaram and J. Alizadeh, “Deposition and Optical Studies of Silicon Carbide Nitride Thin Films,” Thin Solid Films, 370 151–154 (2000).
- J. Wilden, A. Wank, M. Asmann, J. V. R. Heberlein, M. I. Boulos, and F. Gitzhover, “Synthesis of Si–C–N Coatings by Thermal Plasmajet Chemical Vapour Deposition Applying Liquid Precursors,” Appl. Organomet. Chem., 15 841–857 (2001).
- T. Berlind, N. Hellgren, M. P. Johansson, and L. Hultman, “Microstructure, Mechanical Properties, and Wetting Behavior of Si–C–N Thin Films Grown by Reactive Magnetron Sputtering,” Surf. Coat. Technol., 141 145–155 (2001).
- Y. W. Bae, H. Du, B. Gallois, K. E. Gonsalves, and B. J. Wilkens, “Structure and Chemistry of Silicon Nitride and Silicon Carbonitride Thin Films Deposited from Ethylsilazane in Ammonia or Hydrogen,” Chem. Mater., 4 478–483 (1992).
- J. Bill and D. Heimann, “Polymer-Derived Ceramic Coatings on C/C–SiC Composites,” J Eur. Ceram. Soc., 16 1115–1120 (1996).
- M. R. Mucalo, N. B. Milestone, I. C. Vickridge, and M. V. Swain, “Preparation of Ceramic Coatings from Pre-Ceramic Precursors: Part 1 SiC and “Si3N4/Si2N2O” Coatings on Alumina Substrates,” J. Mater. Sci., 29 4487–4499 (1994).
- G. Motz and G. Ziegler, “Simple Processibility of Precursor-derived SiCN Coatings by Optimised Precursors,” Key Eng. Mater., 206–213 475–478 (2002).
- Y. D. Blum, R. M. Platz, and E. J. Crawford, “Glass Strengthening by Polymer-Derived Ceramic Coatings,” J. Am. Ceram. Soc., 73 [1] 170–172 (1990).
- R. Maboudian, W. R. Ashurst, and C. Carraro, “Tribological Challenges in Micromechanical Systems,” Tribol. Lett., 12 95–100 (2002).
- S. A. Henck, “Lubrication of Digital Micromirror Devices,” Tribol. Lett., 3 239–247 (1997).
- T. M. Mayer, J. W. Elam, S. M. George, P. G. Kotula, and R. S. Goeke, “Atomic-Layer Deposition of Wear-Resistant Coatings for Microelectrome- chanical Devices,” Appl. Phys. Lett., 82 2883–2885 (2003).
- L.-A. Liew, W. Zhang, L. An, S. Shah, R. Luo, Y. Liu, T. Cross, M. L. Dunn, V. Bright, J. W. Daily, and R. Raj, “Ceramic MEMS New Materials, Innovative Processing and Future Applications,” Am. Ceram. Soc. Bull., 80 [5] 25–30 (2001).
- R. Riedel, G. Passing, H. Schonfelder, and R. J. Brook, “Synthesis of Dense Silicon-Based Ceramcis at Low Temperatures,” Nature, 355 [20] 714—717 (1992).
- J. Bill, J. Seitz, G. Thurn, J. Durr, J. Canel, B. Z. Janos, A. Jalowiecki, D. Sauter, S. Schempp, H. P. Lamparter, J. Mayer, and F. Aldinger, “Structure Analysis and Properties of Si-C-N Ceramics Derived from Polysilazanes,” Phys. Status Solidi A, [ 166] 269–296 (1998).
- R. Riedel, “ Advanced Ceramics from Inorganic Polymers”; pp. 1–50 in Materials Science and Technology: A Comprehensive Treatment, Vol. 17B, Processing of Ceramics, Part II. Ed., R. J. Brook. VCH, Wurzburg, Germany, 1996.
- J. Bill, J. Schumacher, K. Miller, S. Schempp, J. Seitz, J. Durr, H. P. Lamparter, J. Golczewski, J. Peng, H. J. Seifert, and F. Aldinger, “Investigations into the Structural Evolution of Amorphous SiCN Ceramics from Precursors,” Z Metallkd, 94 [4] 335–351 (2000).
- S. R. Shah and R. Raj, “Mechanical Properties of a Fully Dense Polymer Derived Ceramic made by a Novel Pressure Casting Process,” Acta Mater., 50 [16] 4093–4103 (2002).
- E. Kroke, Y.-L. Li, C. Konetschny, E. Lecomte, and C. Fasel, “Silazane-Derived Ceramics and Related Materials,” Mater. Sci. Eng. R: A Rev. J., 26 97–199 (2000).
- Y. Wang, D. C. Alsmeyer, and R. L. McCreery, “Raman Spectroscopy of Carbon Materials: Structural basis of observed spectra,” Chem. Mater., 2 557–563 (1990).
- A. C. Ferrari and J. Robertson, “Interpretation of Raman Spectra of Disordered and Amorphous Carbon,” Phys. Rev. B, 61 [20] 14095–14107 (2000).
- D. Tallant Polyacrylonitrile, personnel communication.
- M. Hokao, S. Hironaka, Y. Suda, and Y. Yamamoto, “Friction and Wear Properties of Graphite/Glassy Carbon Composites,” Wear, 237 54–62 (2000).
- P. J. Bryant, P. L. Gutshall, and L. H. Taylor, “A Study of Mechanisms of Graphite Friction and Wear,” Wear, 7 118–126 (1964).
10.1016/0043-1648(64)90083-3 Google Scholar
- T. Cross, S. V. Prasad, D. R. Tallant, and R. Raj. MANUSCRIPT IN PROGRESS.