Process Mining and Description
Phillip C.-y. Sheu
University of California, Irvine, California, USA
Search for more papers by this authorPhillip C.-y. Sheu
University of California, Irvine, California, USA
Search for more papers by this authorPhillip C.-Y. Sheu
University of California, Irvine, California, USA
Search for more papers by this authorHeather Yu
Search for more papers by this authorC. V. Ramamoorthy
Search for more papers by this authorArvind K. Joshi
Search for more papers by this authorLotfi A. Zadeh
Search for more papers by this authorSummary
This chapter introduces several process - mining methods for modeling, analysis, and extension of processes in business, medical, biological, and other fields. It also introduces some languages for describing machine - executable processes, including XML Process Definition Language (XPDL), Java Process Definition Language (JPDL), Business Process Execution Language (BPEL), Process Specification Language (PSL), PRO forma, Bio, and DPDL. The chapter proposes an object - oriented process annotation language. Different from the process description language discussed, a process annotation language is aimed at describing the spatial - temporal relationships among the events in a process so that they can be queried by an SQL - like database query language.
Controlled Vocabulary Terms
aspect-oriented programming; object-oriented databases; semantic web; specification languages
REFERENCES
-
B. F. van Dongen, EMiT: A process mining tool, in International Conference on Applications and Theory of Petri Nets (ATPN 2004), Vol. 3099 of Lecture Notes in Computer Science, Reisig Cortadella (Eds.) Springer-Verlag, Bologna, 2004, pp. 454–463.
10.1007/978-3-540-27793-4_26 Google Scholar
- G. Schimm, Process miner — A tool for mining process schemes from event-based data, in Proceedings of the 8th European Conference on Artificial Intelligence, S. Flesca, S. Greco, N. Leone, and G. Ianni, (Eds.), Lecture Notes In Computer Science, vol. 2424. Springer-Verlag, London, pp. 525–528, 2002.
-
J. Mendling, M. Moser, G. Neumann, H. M. W. Verbeek, B. F. van Dongen, and W. M. P. van der Aalst, Faulty epcs in the sap reference model, in Business Process Management, S. Dustdar, J. L. Fiadeiro, A. Sheth (Eds.), LNCS, vol. 4102, Springer, Heidelberg, 2006, pp. 451–457.
10.1007/11841760_38 Google Scholar
- D. Grigori, F. Casati, U. Dayal, and M. C. Shan, Improving business process quality through exception understanding, prediction, and prevention, in Proceedings of 27th International Conference on Very Large Data Bases (VLDB'01), P. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snodgrass (Eds.), Morgan Kaufmann, 2001, San Francisco, pp. 159–168.
-
J. Eder, G. E. Olivotto, and W. Gruber, A data warehouse for workflow logs, in International Conference on Engineering and Deployment of Cooperative Information Systems (EDCIS 2002), Vol. 2480 of Lecture Notes in Computer Science, Y. Han, S. Tai, and D. Wikarski (Eds.), Springer-Verlag, Berlin, 2002, pp. 1–15.
10.1007/3-540-45785-2_1 Google Scholar
- M. zur Muhlen, Process-driven management information systems combining data warehouses and workflow technology, in Proceedings of the International Conference on Electronic Commerce Research (ICECR-4), B. Gavish (Ed.), IEEE Computer Society Press, Los Alamitos, CA, 2001, pp. 550–566.
- M. zur Muhlen, Workflow-based process controlling-or: what you can measure you can control, in Workflow Handbook 2001, Workflow Management Coalition, L. Fischer (Ed.), Future Strategies, Lighthouse Point, FL, 2001, pp. 61–77.
- M. zur Muhlen and M. Rosemann, Workflow-based process monitoring and controlling — technical and organizational issues, in Proceedings of the 33rd Hawaii International Conference on System Science (HICSS-33), R. Sprague (Ed.), IEEE Computer Society Press, Los Alamitos, CA, 2000, pp. 1–10.
- IDS Scheer, ARIS process performance manager (ARIS PPM), available: http://www.ids-scheer.com.
- WFMC, Workflow Management Coalition workflow standard: Workflow process definition interface — XML process definition language (XPDL) (WFMCTC-1025), Technical Report, Workflow Management Coalition, Lighthouse Point, FL, 2002.
- JBoss, jBPM 2.0 jPdl Reference Manual, available: http://www.jboss.com/products/jbpm/docs/jpdl, 2007.
- T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith, and I. Trickovic, Business Process Execution Language for Web Services Version 1.1, Technical Report, BEA Systems, IBM Corporation, Microsoft Corporation, SAP AG, Siebel Systems, May 2003.
- M. Gruninger and C. Menzel, Process specification language: Principles and applications , AI Mag., 24: 63–74, 2003.
- D. R. Sutton and J. Fox, The syntax and semantics of the PROforma guideline modeling language, JAMIA, 10 (5): 433–443, 2003.
- P. Maziere, C. Granier, and F. Molina, A description scheme of biological processes based on elementary bricks of action, J. Mol. Biol., 339 (1): 77–88, 2004.
- C. P. Kunze, S. Zaplata, and W. Lamersdorf, Mobile process description and execution, in DAIS'06, F. Ellassen, A. Montresor (Eds.), LNCS, vol. 4025, Springer, Heidelberg, pp. 32–47, 2006.
- W. van der Aalst, A. Weijters, and L. Maruster, Workflow mining: Discovering process models from event logs, IEEE Trans. Knowledge Data Eng., 16 (9): 1128–1142, 2004.
- R. Agrawal, D. Gunopulos, and F. Leymann, Mining process models from workflow logs, in Proceedings of the 6th international Conference on Extending Database Technology: Advances in Database Technology, H. Schek, F. Saltor, I. Ramos, and G. Alonso. (Eds.) Extending Database Technology, vol. 1377. Springer-Verlag, London, 1998, pp. 469–483.
-
J. Cook and A. Wolf, Discovering models of software processes from event-based data, ACM Trans. Software Eng. Methodol., 7 (3): 215–249, 1998.
10.1145/287000.287001 Google Scholar
- A. Weijters and W. van der Aalst, Rediscovering workflow models from event - based data using little thumb, Integrated Computer-Aided Eng., 10 (2): 151–162, 2003.
-
W. van der Aalst, H. Reijers, and M. Song, Discovering social networks from event logs, Computer Supported Cooperative Work, 14 (6): 549–593, 2005.
10.1007/s10606-005-9005-9 Google Scholar
- A. Rozinat and W. van der Aalst, Conformance testing: measuring the fit and appropriateness of event logs and process models, in BPM 2005 Workshops (Workshop on Business Process Intelligence), C. Bussler et al., (Eds.), Vol. 3812, Springer-Verlag, Berlin, 2005, pp. 163–176.
- A. Rozinat and W. van der Aalst, Decision mining in ProM, in International Conference on Business Process Management (BPM 2006), S. Dustdar, J.L. Faideiro, and A. Sheth (Eds.), Vol. 4102, Springer-Verlag, Berlin, 2006, pp. 420– 425.
- J. E. Ingvaldsen and J. A. Gulla, Model based business process mining, in Information Systems Management, C. V. Brown (Ed.), Vol. 23, Auerbach Publications, Boca Raton, FL, 2006.
-
B. F. van Dongen, A. K. Alves de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, and W. M. P. van der Aalst, The ProM framework: A new era in process mining tool support, in Application and Theory of Petri Nets, G. Ciardo, and P. Darondeau (Eds.), Vol. 3536 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2005, pp. 444–454.
10.1007/11494744_25 Google Scholar
- M. zur Muehlen and J. Becker, Workflow process definition language — Development and directions of a meta-language for workflow processes, in Proceedings of the 1st KnowTech Forum, L. Bading et al. (Eds.), Potsdam, 1999.
- Y. Shahar, S. Miksch, and P. Johnson, The asgaard project: A task specic framework for the application and critiquing of time-oriented clinical guidelines, Artificial Intell. Med., 14 (1–2): 29.51, 1998.
- P. Terenziani, G. Molino, and M. Torchio, A modular approach for representing and executing clinical guidelines, Artificial Intell. Med., 23 (3): 249.276, 2001.
- M. Peleg and A. A. Boxawala, Glif3: The evolution of a guideline representation format, in Proc. AMIA'00, M. J. Overhage (Ed.), 2000, Los Angeles, pp. 645–649.
- S. Quaglini, M. Stefanelli, A. Cavallini, G. Miceli, C. Fassino, and C. Mossa, Guideline - based care_ow systems, Artificial Intell. Med., 1 (20): 5.22, 2000.