Pharmacotherapy for Traumatic Brain Injury
Neurodegenerative and Seizure Disorders
First published: 02 March 2007
Abstract
Currently there are no clinically approved, safe and effective treatments for traumatic brain injury (TBI) that can rescue damaged nerve cells and enhance functional recovery. This chapter shows that TBI is a complex cascade of events that unfolds over time and no single pharmacological agent has been found to block all the processes that comprise the injury. Here we review the categories of candidate agents and approaches that have been examined for their potential benefits in the treatment of TBI.
References
- 1 Langlois, J. A., Rutland-Brown, W., and Thomas, K. E. (2004). Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta, GA.
- 2
Bullock, R. M.,
Merchant, R. E.,
Choi, S. C.,
Gilman, C. B.,
Kreutzer, J. S.,
Marmarou, A., and
Teasdale, G. M.
(2002).
GM, Outcome measures for clinical trials in neurotrauma.
Neurosurg. Focus
13,
1–11.
10.3171/foc.2002.13.1.6 Google Scholar
- 3 Farin, A., and Marshall, L. F. (2004). Lessons from epidemiologic studies in clinical trials of traumatic brain injury. Acta Neurochir. Suppl. 89, 101–107.
- 4 Kim, E. (2002). Agitation, aggression, and disinhibition syndromes after traumatic brain injury. NeuroRehabilitation 17, 297–310.
- 5 Cristofori, L., Tavazzi, B., Gambin, R., Vagnozzi, R., Vivenza, C., Amorini, A. M., Di Pierro, D., Fazzina, G., and Lazzarino, G. (2001). Early onset of lipid peroxidation after human traumatic brain injury: A fatal limitation for the free radical scavenger pharmacological therapy? J. Investig. Med. 49, 450–458.
- 6 Durmaz, R., Kanbak, G., Akyuz, F., Isiksoy, S., Yucel, F., Inal, M., and Tel, E. (2003). Lazaroid attenuates edema by stabilizing ATPase in the traumatized rat brain. Can. J. Neurol. Sci. 30, 143–149.
- 7 Ikeda, T., Xia, Y. X., Kaneko, M., Sameshima, H., and Ikenoue, T. (2002). Effect of the free radical scavenger, 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), on hypoxia-ischemia-induced brain injury in neonatal rats. Neurosci. Lett. 329, 33–36.
- 8 Marklund, N., Lewander, T., Clausen, F., and Hillered, L. (2001). Effects of the nitrone radical scavengers PBN and S-PBN on in vivo trapping of reactive oxygen species after traumatic brain injury in rats. J. Cereb. Blood Flow Metab. 21, 1259–1267.
- 9 Nito, C., Kamiya, T., Amemiya, S., Katoh, K., and Katayama, Y. (2003). The neuroprotective effect of a free radical scavenger and mild hypothermia following transient focal ischemia in rats. Acta Neurochir. Suppl. 86, 199–203.
- 10 Zhou, Z., Chen, H., Zhang, K., Yang, H., Liu, J., and Huang, Q. (2003). Protective effect of nerve growth factor on neurons after traumatic brain injury. J. Basic Clin. Physiol. Pharmacol. 14, 217–224.
- 11 Cherian, L., Hlatky, R., and Robertson, C. S. (2004). Comparison of tetrahydrobiopterin and l-arginine on cerebral blood flow after controlled cortical impact injury in rats. J. Neurotrauma 21, 1196–1203.
- 12 Ahn, M. J., Sherwood, E. R., Prough, D. S., Lin, C. Y., and DeWitt, D. S. (2004). The effects of traumatic brain injury on cerebral blood flow and brain tissue nitric oxide levels and cytokine expression. J. Neurotrauma 21, 1431–1442.
- 13 Calabrese, V., Boyd-Kimball, D., Scapagnini, G., and Butterfield, D. A. (2004). Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: The role of vitagenes. In Vivo 18, 245–267.
- 14 Romay, C., Gonzalez, R., Ledon, N., Remirez, D., and Rimbau, V. (2003). C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr. Protein Pept. Sci. 4, 207–216.
- 15 Sheng, W. S., Hu, S., Min, X., Cabral, G. A., Lokensgard, J. R., and Peterson, P. K. (2005). Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1beta-stimulated human astrocytes. Glia 49, 211–219.
- 16 Zhao, Y., Gao, Z., Li, H., and Xu, H. (2004). Hemin/nitrite/H2O2 induces brain homogenate oxidation and nitration: Effects of some flavonoids. Biochim. Biophys. Acta 1675, 105–112.
- 17 Cherian, L., and Robertson, C. S. (2003). l-Arginine and free radical scavengers increase cerebral blood flow and brain tissue nitric oxide concentrations after controlled cortical impact injury in rats. J. Neurotrauma 20, 77–85.
- 18 Yunoki, M., Kawauchi, M., Ukita, N., Sugiura, T., and Ohmoto, T. (2003). Effects of lecithinized superoxide dismutase on neuronal cell loss in CA3 hippocampus after traumatic brain injury in rats. Surg. Neurol. 59, 156–160; discussion 160–161.
- 19 Aoyama, N., Katayama, Y., Kawamata, T., Maeda, T., Mori, T., Yamamoto, T., Kikuchi, T., and Uwahodo, Y. (2002). Effects of antioxidant, OPC-14117, on secondary cellular damage and behavioral deficits following cortical contusion in the rat. Brain Res. 934, 117–124.
- 20 Beni, S. M., Kohen, R., Reiter, R. J., Tan, D. X., and Shohami, E. (2004). Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF-kappaB and AP-1. FASEB J. 18, 149–151.
- 21 Clapp-Lilly, K. L., Smith, M. A., Perry, G., Harris, P. L., Zhu, X., Drew, K. L., and Duffy, L. K. (2002). Melatonin exhibits antioxidant properties in a mouse brain slice model of excitotoxicity. Int. J. Circumpolar Health 61, 32–40.
- 22 Li, P. A., He, Q. P., Nakamura, L., and Csiszar, K. (2001). Free radical spin trap alpha-phenyl-N-tert-butyl-nitron inhibits caspase-3 activation and reduces brain damage following a severe forebrain ischemic injury. Free Radic. Biol. Med. 31, 1191–1197.
- 23 Hoffman, S. W., Rzigalinski, B. A., Willoughby, K. A., and Ellis, E. F. (2000). Astrocytes generate isoprostanes in response to trauma or oxygen radicals. J. Neurotrauma 17, 415–420.
- 24 Morrow, J. D., Awad, J. A., Boss, H. J., Blair, I. A., and Roberts, L. J., 2nd (1992). Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc. Natl. Acad. Sci. USA 89, 10721–10725.
- 25 Hsiang, J. N., Wang, J. Y., Ip, S. M., Ng, H. K., Stadlin, A., Yu, A. L., and Poon, W. S. (1997). The time course and regional variations of lipid peroxidation after diffuse brain injury in rats. Acta Neurochir. (Wien) 139, 464–468.
- 26 Smith, S. L., Andrus, P. K., Zhang, J. R., and Hall, E. D. (1994). Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat. J. Neurotrauma 11, 393–404.
- 27 Morganti-Kossmann, M. C., Rancan, M., Stahel, P. F., and Kossmann, T. (2002). Inflammatory response in acute traumatic brain injury: A double-edged sword. Curr. Opin. Crit. Care 8, 101–105.
- 28 Schmidt, O. I., Morganti-Kossmann, M. C., Heyde, C. E., Perez, D., Yatsiv, I., Shohami, E., Ertel, W., and Stahel, P. F. (2004). Tumor necrosis factor-mediated inhibition of interleukin-18 in the brain: A clinical and experimental study in head-injured patients and in a murine model of closed head injury. J. Neuroinflammation 1, 13.
- 29 Marklund, N., Keck, C., Hoover, R., Soltesz, K., Millard, M., LeBold, D., Spangler, Z., Banning, A., Benson, J., and McIntosh, T. K. (2005). Administration of monoclonal antibodies neutralizing the inflammatory mediators tumor necrosis factor alpha and interleukin-6 does not attenuate acute behavioral deficits following experimental traumatic brain injury in the rat. Restor. Neurol. Neurosci. 23, 31–42.
- 30 Sanderson, K. L., Raghupathi, R., Saatman, K. E., Martin, D., Miller, G., and McIntosh, T. K. (1999). Interleukin-1 receptor antagonist attenuates regional neuronal cell death and cognitive dysfunction after experimental brain injury. J. Cereb. Blood Flow Metab. 19, 1118–1125.
- 31 Stoll, G., Jander, S., and Schroeter, M. (2002). Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv. Exp. Med. Biol. 513, 87–113.
- 32 Ellis, E. F., Wright, K. F., Wei, E. P., and Kontos, H. A. (1981). Cyclooxygenase products of arachidonic acid metabolism in cat cerebral cortex after experimental concussive brain injury. J. Neurochem. 37, 892–896.
- 33 Wahl, M., Schilling, L., Unterberg, A., and Baethmann, A. (1993). Mediators of vascular and parenchymal mechanisms in secondary brain damage. Acta Neurochir. Suppl. (Wien) 57, 64–72.
- 34 Gopez, J. J., Yue, H., Vasudevan, R., Malik, A. S., Fogelsanger, L. N., Lewis, S., Panikashvili, D., Shohami, E., Jansen, S. A., Narayan, R. K., and Strauss, K. I. (2005). Cyclooxygenase-2-specific inhibitor improves functional outcomes, provides neuroprotection, and reduces inflammation in a rat model of traumatic brain injury. Neurosurgery 56, 590–604.
- 35 Strauss, K. I., Barbe, M. F., Marshall, R. M., Raghupathi, R., Mehta, S., and Narayan, R. K. (2000). Prolonged cyclooxygenase-2 induction in neurons and glia following traumatic brain injury in the rat. J. Neurotrauma 17, 695–711.
- 36 Phillis, J. W., and O'Regan, M. H. (2003). The role of phospholipases, cyclooxygenases, and lipoxygenases in cerebral ischemic/traumatic injuries. Crit. Rev. Neurobiol. 15, 61–90.
- 37 Cernak, I., O'Connor, C., and Vink, R. (2002). Inhibition of cyclooxygenase 2 by nimesulide improves cognitive outcome more than motor outcome following diffuse traumatic brain injury in rats. Exp. Brain Res. 147, 193–199.
- 38 Bentzer, P., Venturoli, D., Carlsson, O., and Grande, P. O. (2003). Low-dose prostacyclin improves cortical perfusion following experimental brain injury in the rat. J. Neurotrauma 20, 447–461.
- 39 Warner, T. D., Vojnovic, I., Giuliano, F., Jimenez, R., Bishop-Bailey, D., and Mitchell, J. A. (2004). Cyclooxygenases 1, 2, and 3 and the production of prostaglandin I2: Investigating the activities of acetaminophen and cyclooxygenase-2-selective inhibitors in rat tissues. J. Pharmacol. Exp. Ther. 310, 642–647.
- 40 Ghajar, J., Hariri, R. J., Narayan, R. K., Iacono, L. A., Firlik, K., and Patterson, R. H. (1995). Survey of critical care management of comatose, head-injured patients in the United States. Crit. Care Med. 23, 560–567.
- 41 Jeevaratnam, D. R., and Menon, D. K. (1996). Survey of intensive care of severely head injured patients in the United Kingdom. BMJ 312, 944–947.
- 42 Wang, Z., and Jiang, J., (1999). Current status of trauma care in China. Trauma Quart. 14, 233–240.
- 43 Alderson, P., and Roberts, I. (1997). Corticosteroids in acute traumatic brain injury: Systematic review of randomised controlled trials. BMJ 314, 1855–1859.
- 44 Bracken, M. B., Shepard, M. J., Holford, T. R., Leo-Summers, L., Aldrich, E. F., Fazl, M., Fehlings, M., Herr, D. L., Hitchon, P. W., Marshall, L. F., Nockels, R. P., Pascale, V., Perot, P. L., Jr., Piepmeier, J., Sonntag, V. K., Wagner, F., Wilberger, J. E., Winn, H. R., and Young, W. (1997). Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277, 1597–1604.
- 45 Sauerland, S., and Maegele, M. (2004). A CRASH landing in severe head injury. Lancet 364, 1291–1292.
- 46 Alderson, P., and Roberts, I. (2005). Corticosteroids for acute traumatic brain injury. Cochrane Database Syst. Rev., CD000196.
- 47 Pound, P., Ebrahim, S., Sandercock, P., Bracken, M. B., and Roberts, I. (1997). Where is the evidence that animal research benefits humans? BMJ 328, 514–517.
- 48 Maas, A. I., Marmarou, A., Murray, G. D., and Steyerberg, E. W. (2004). Clinical trials in traumatic brain injury: Current problems and future solutions. Acta Neurochir. Suppl. 89, 113–118.
- 49 Unterberg, A. W., Stover, J., Kress, B., and Kiening, K. L. (2004). Edema and brain trauma. Neuroscience 129, 1021–1029.
- 50 Roesler, R., Quevedo, J., and Schroder, N. (2003). Is it time to conclude that NMDA antagonists have failed? Lancet Neurol. 2, 13; discussion 13.
- 51 Willis, C., Lybrand, S., and Bellamy, N. (2004). Excitatory amino acid inhibitors for traumatic brain injury. Cochrane Database Syst. Rev. CD003986.
- 52 Ikonomidou, C., and Turski, L. (2002). Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 1, 383–386.
- 53 Hernandez, T. D. (1997). Preventing post-traumatic epilepsy after brain injury: Weighing the costs and benefits of anticonvulsant prophylaxis. Trends Pharmacol. Sci. 18, 59–62.
- 54 Hernandez, T. D., and Naritoku, D. K. (1997). Seizures, epilepsy, and functional recovery after traumatic brain injury: A reappraisal. Neurology 48, 803–806.
- 55 Royo, N. C., Shimizu, S., Schouten, J. W., Stover, J. F., and McIntosh, T. K. (2003). Pharmacology of traumatic brain injury. Curr. Opin. Pharmacol. 3, 27–32.
- 56 Roof, R. L., Duvdevani, R., and Stein, D. G. (1992). Progesterone treatment attenuates brain edema following contusion injury in male and female rats. Restor. Neurol. Neurosci. 4, 425–427.
- 57 Roof, R. L., and Stein, D. G. (1994). Progesterone reduces BBB damage following bilateral, medial frontal contusion. Soc. Neurosci. 20, 191.
- 58 Hoffman, S. W., Moore, S., and Ellis, E. F. (1997). Isoprostanes: Free radical-generated prostaglandins with constrictor effects on cerebral arterioles. Stroke 28, 844–849.
- 59 Hoffman, S. W., Roof, R. L., and Stein, D. G. (1996). A reliable and sensitive enzyme immunoassay method for measuring 8-isoprostaglandin F2 alpha: A marker for lipid peroxidation after experimental brain injury. J. Neurosci. Methods 68, 133–136.
- 60 Roof, R. L., and Fritts, M. E. (1997). Progesterone metabolites may mediate its neuroprotective effects after traumatic brain injury. Neurotrauma 14, 760.
- 61 Yang, S. H., Liu, R., Wu, S. S., and Simpkins, J. W. (2003). The use of estrogens and related compounds in the treatment of damage from cerebral ischemia. Ann NY Acad. Sci. 1007, 101–107.
- 62 Roof, R. L., Duvdevani, R., and Stein, D. G. (1993). Gender influences outcome of brain injury: Progesterone plays a protective role. Brain Res. 607, 333–336.
- 63 Baulieu, E. E., and Robel, P. (1990). Neurosteroids: A new brain function? J. Steroid Biochem. Mol. Biol. 37, 395–403.
- 64 Wright, D. W., Ritchie, J. C., Mullins, R. E., Kellermann, A. L., and Denson, D. D. (2005). Steady-state serum concentrations of progesterone following continuous intravenous infusion in patients with acute moderate to severe traumatic brain injury. J. Clin. Pharmacol. 45, 640–648.
- 64a Wright, D. W., Kellermann, A. L., Hertzberg, V. S., Clark, P. L., Frankel, M., Goldstein, F. C., Salomone, J. P., Dent, L. L., Harris, O. A., Ander, D. S., Lowery, D. W., Patel, M. M., Denson, D. D., Gordon, A. B., Wald, M. M., Gupta, S., Hoffman, S. W., Stein, D. G. ProTECT: A Randomized Clinical Trial of Progesterone for Acute Traumatic Brain Injury, Annals of Emergency Medicine, corrected proofs, published online September 29, 2006.
- 66 Bragin, A., Wilson, C. L., and Engel, J., Jr. (2000). Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: A hypothesis. Epilepsia 41(Suppl. 6), S144–S152.
- 67 Krenz, N. R., and Weaver, L. C. (1998). Sprouting of primary afferent fibers after spinal cord transection in the rat. Neuroscience 85, 443–458.
- 68 Fraher, J. P. (1999). The transitional zone and CNS regeneration. J. Anat. 194(Pt. 2), 161–182.
- 69 Seri, B., Garcia-Verdugo, J. M., McEwen, B. S., and Alvarez-Buylla, A. (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160.
- 70 Doering, L. C., and Snyder, E. Y. (2000). Cholinergic expression by a neural stem cell line grafted to the adult medial septum/diagonal band complex. J. Neurosci. Res. 61, 597–604.
- 71 Lu, D., Li, Y., Wang, L., Chen, J., Mahmood, A., and Chopp, M. (2001). Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J. Neurotrauma 18, 813–819.
- 72 Lu, D., Mahmood, A., Wang, L., Li, Y., Lu, M., and Chopp, M. (2001). Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 12, 559–563.
- 73 Mahmood, A., Lu, D., Yi, L., Chen, J. L., and Chopp, M. (2001). Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J. Neurosurg. 94, 589–595.
- 74 Shear, D. A., Tate, M. C., Archer, D. R., Hoffman, S. W., Hulce, V. D., Laplaca, M. C., and Stein, D. G. (2004). Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res. 1026, 11–22.
- 73a Clarke, M. F., and Becker, M. W., “Stem cells: The real culprits in cancer?” Scientific American 295(1), 52–59.
- 76 Shear, D., Caltagirone, C., Tate, M., Archer, D., Hoffman, S., Hulce, V., LaPlaca, M., Dunbar, G., and Stein, D. (2005). Neural stem cell transplants promote recovery of function from traumatic brain injury without forming new neurons. Society For Neuroscience, Washington, DC.
- 77 Queen, S. A., Chen, M. J., and Feeney, D. M. (1997). d-Amphetamine attenuates decreased cerebral glucose utilization after unilateral sensorimotor cortex contusion in rats. Brain Res. 777, 42–50.
- 78 Feeney, D. M., Weisend, M. P., and Kline, A. E. (1993). Noradrenergic pharmacotherapy, intracerebral infusion and adrenal transplantation promote functional recovery after cortical damage. J. Neural Transplant. Plast. 4, 199–213.
- 79 Walker-Batson, D., Smith, P., Curtis, S., Unwin, H., and Greenlee, R. (1995). Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke 26, 2254–2259.
- 80 Friel, K. M., Heddings, A. A., and Nudo, R. J. (2000). Effects of postlesion experience on behavioral recovery and neurophysiologic reorganization after cortical injury in primates. Neurorehabil. Neural Repair 14, 187–198.
- 81 Kunkel, A., Kopp, B., Muller, G., Villringer, K., Villringer, A., Taub, E., and Flor, H. (1999). Constraint-induced movement therapy for motor recovery in chronic stroke patients. Arch. Phys. Med. Rehabil. 80, 624–628.
- 82 Browne, K. D., Leoni, M. J., Iwata, A., Chen, X. H., and Smith, D. H. (2004). Acute treatment with MgSO4 attenuates long-term hippocampal tissue loss after brain trauma in the rat. J. Neurosci. Res. 77, 878–883.
- 83 Djebaili, M., Guo, Q., Pettus, E. H., Hoffman, S. W., and Stein, D. G. (2005). The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J. Neurotrauma 22, 106–118.
- 84 Djebaili, M., Hoffman, S. W., and Stein, D. G. (2004). Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex. Neuroscience 123, 349–359.
- 85 Faden, A. I., Knoblach, S. M., Movsesyan, V. A., and Cernak, I. (2004). Novel small peptides with neuroprotective and nootropic properties. J. Alzheimers Dis. 6, S93–S97.
- 86 Goss, C. W., Hoffman, S. W., and Stein, D. G. (2003). Behavioral effects and anatomic correlates after brain injury: A progesterone dose-response study. Pharmacol. Biochem. Behav. 76, 231–242.
- 87 He, J., Evans, C. O., Hoffman, S. W., Oyesiku, N. M., and Stein, D. G. (2004). Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp. Neurol. 189, 404–412.
- 88 He, J., Hoffman, S. W., and Stein, D. G. (2004). Allopregnanolone, a progesterone metabolite, enhances behavioral recovery and decreases neuronal loss after traumatic brain injury. Restor. Neurol. Neurosci. 22, 19–31.
- 89 Lee, L. L., Galo, E., Lyeth, B. G., Muizelaar, J. P., and Berman, R. F. (2004). Neuroprotection in the rat lateral fluid percussion model of traumatic brain injury by SNX-185, an N-type voltage-gated calcium channel blocker. Exp. Neurol. 190, 70–78.
- 90 Fawcett, J. W., Rosser, A. E., and Dunnett, S. B. (2001). Brain Damage, Brain Repair. Oxford University Press, New York.
- 91 Stein, D. G., Brailowsky, S., and Will, B. (1995). Brain Repair. Oxford University Press, New York.
- 92 Gladstone, D. J., and Black, S. E. (2000). Enhancing recovery after stroke with noradrenergic pharmacotherapy: A new frontier? Can. J. Neurol. Sci. 27, 97–105.
- 93 Goldstein, G., and Beers, S. R. (1998). Rehabilitation. Plenum, New York, New York, p. xvi.
- 94 Stuss, D. T., Winocus, G., and Robertson, I. H. (1999). Cognitive Neurorehabilitation. Cambridge University Press, New York, p. xii.
- 95 Feeney, D. M. (1997). From laboratory to clinic: Noradrenergic enhancement of physical therapy for stroke or trauma patients. Adv. Neurol. 73, 383–394.
- 96 Dixon, C. E., Kraus, M. F., Kline, A. E., Ma, X., Yan, H. Q., Griffith, R. G., Wolfson, B. M., and Marion, D. W. (1999). Amantadine improves water maze performance without affecting motor behavior following traumatic brain injury in rats. Restor. Neurol. Neurosci. 14, 285–294.
- 97 Walker, W., Seel, R., Gibellato, M., Lew, H., Cornis-Pop, M., Jena, T., and Silver, T. (2004). The effects of Donepezil on traumatic brain injury acute rehabilitation outcomes. Brain Inj. 18, 739–750.
- 98 Whyte, J., Katz, D., Long, D., DiPasquale, M. C., Polansky, M., Kalmar, K., Giacino, J., Childs, N., Mercer, W., Novak, P., Maurer, P., and Eifert, B. (2005). Predictors of outcome in prolonged posttraumatic disorders of consciousness and assessment of medication effects: A multicenter study. Arch. Phys. Med. Rehabil. 86, 453–462.
- 99 DeKeyser, J., Sulter, G., and Luiten, P. G. (1999). Clinical trials with neuroprotective drugs in acute ischaemic stroke: Are we doing the right thing? TINS 22, 535–540.