Copula Modeling for Extremes
Christian Genest, Johanna Nešlehová,
Johanna Nešlehová
Search for more papers by this authorChristian Genest, Johanna Nešlehová,
Johanna Nešlehová
Search for more papers by this authorAbstract
This article introduces extreme-value copulas, reviews models from this class, and describes their main properties. The associated rank-based estimation procedures and model validation techniques are also presented.
References
- 1 Gumbel, E.J. (1961). Bivariate logistic distributions, Journal of the American Statistical Association 56, 335–349.
- 2
Beirlant, J.,
Goegebeur, Y.,
Teugels, J.,
Segers, J.
(2004).
Statistics of Extremes,
John Wiley & Sons, Ltd,
Chichester.
10.1002/0470012382 Google Scholar
- 3 Sibuya, M. (1960). Bivariate extreme statistics, Annals of the Institute of Statistical Mathematics 11, 195–210.
- 4 Galambos, J. (1987). The Asymptotic Theory of Extreme Order Statistics, 2nd Edition, Krieger, Melbourne.
- 5 Feidt, A., Genest, C., Nešlehová, J. (2010). Asymptotics of joint maxima for discontinuous random variables, Extremes 13, 35–53.
- 6 McNeil, A.J., Frey, R., Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques and Tools, Princeton University Press, Princeton.
- 7 Demarta, S. McNeil, A.J. (2005). The t copula and related copulas, International Statistical Review 73, 111–129.
- 8 Capéraà, P., Fougères, A.-L., Genest, C. (2000). Bivariate distributions with given extreme value attractor, Journal of Multivariate Analysis 72, 30–49.
- 9
Frees, E.W.
Valdez, E.A.
(1998).
Understanding relationships using copulas,
North American Actuarial Journal
2,
1–25.
10.1080/10920277.1998.10595667 Google Scholar
- 10 Pickands, J., III, (1981). Multivariate extreme value distributions, Proceedings of the 43rd session of the International Statistical Institute, Vol. 2 (Buenos Aires, 1981) 49, 859–878, 894–902.
- 11 Falk, M. Reiß, R.D. (2005). On Pickands coordinates in arbitrary dimensions, Journal of Multivariate Analysis 92, 426–453.
- 12
Joe, H.
(1997).
Multivariate Models and Dependence Concepts,
Chapman & Hall,
London.
10.1201/b13150 Google Scholar
- 13 Fougères, A.-L. (2004). Multivariate extremes, in Extreme Values in Finance, Telecommunications, and the Environment, B. Finkenstädt H. Rootzén, Chapman & Hall, London.
- 14 Reiß, R.D. Thomas, M. (2007). Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields, 3rd Edition, Birkhäuser Verlag, Basel.
- 15
Genest, C.,
Ghoudi, K.,
Rivest, L.-P.
(1998).
Comment on the paper by E.W. Frees and E.A. Valdez entitled “Understanding relationships using copulas”,
North American Actuarial Journal
2,
143–149.
10.1080/10920277.1998.10595749 Google Scholar
- 16 Liebscher, E. (2008). Construction of asymmetric multivariate copulas, Journal of Multivariate Analysis 99, 2234–2250.
- 17 Tawn, J.A. (1988). Bivariate extreme value theory: models and estimation, Biometrika 75, 397–415.
- 18
Kotz, S.
Nadarajah, S.
(2000).
Extreme Value Distributions,
Imperial College Press,
London.
10.1142/p191 Google Scholar
- 19 Tawn, J.A. (1990). Modelling multivariate extreme value distributions, Biometrika 77, 245–253.
- 20 Fougères, A.-L., Nolan, J.P., Rootzén, H. (2009). Models for dependent extremes using stable mixtures, Scandinavian Journal of Statistics 36, 42–59.
- 21 Mai, J.F. Scherer, M. (2009). Lévy-frailty copulas, Journal of Multivariate Analysis 100, 1567–1585.
- 22 Garralda-Guillem, A.I. (2000). Structure de dépendance des lois de valeurs extrêmes bivariées, Comptes rendus de l'Académie des sciences de Paris Série I Mathématiques 330, 593–596.
- 23 Marshall, A.W. Olkin, I. (1983). Domains of attraction of multivariate extreme value distributions, The Annals of Probability 11, 168–177.
- 24 Esary, J.D., Proschan, F., Walkup, D.W. (1967). Association of random variables, with applications, The Annals of Mathematical Statistics 38, 1466–1474.
- 25 Nelsen, R.B. (2006). An Introduction to Copulas, Springer, New York.
- 26 Ghoudi, K., Khoudraji, A., Rivest, L.-P. (1998). Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles, Canadian Journal of Statistics 26, 187–197.
- 27 Hürlimann, W. (2003). Hutchinson–Lai's conjecture for bivariate extreme value copulas, Statistics & Probability Letters 61, 191–198.
- 28 Genest, C., Kojadinovic, I., Nešlehová, J., Yan, J. (2011). A goodness-of-fit test for extreme-value copulas, Bernoulli 17, 253–275.
- 29 Genest, C., Ghoudi, K., Rivest, L.-P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika 82, 543–552.
- 30 Capéraà, P., Fougères, A.-L., Genest, C. (1997). A nonparametric estimation procedure for bivariate extreme value copulas, Biometrika 84, 567–577.
- 31 Zhang, D., Wells, M.T., Peng, L. (2008). Nonparametric estimation of the dependence function for a multivariate extreme value distribution, Journal of Multivariate Analysis 99, 577–588.
- 32 Deheuvels, P. (1991). On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions, Statistics & Probability Letters 12, 429–439.
- 33 Gudendorf, G. Segers, J. (2011). Nonparametric estimation of an extreme-value copula in arbitrary dimensions, Journal of Multivariate Analysis 102, 37–47.
- 34 Hall, P. Tajvidi, N. (2000). Distribution and dependence-function estimation for bivariate extreme-value distributions, Bernoulli 6, 835–844.
- 35 Jiménez, J.R., Villa-Diharce, E., Flores, M. (2001). Nonparametric estimation of the dependence function in bivariate extreme value distributions, Journal of Multivariate Analysis 76, 159–191.
- 36 Fils-Villetard, A., Guillou, A., Segers, J. (2008). Projection estimators of Pickands dependence functions, The Canadian Journal of Statistics 36, 369–382.
- 37 Guillotte, S. Perron, F. (2008). A Bayesian estimator for the dependence function of a bivariate extreme-value distribution, The Canadian Journal of Statistics 36, 383–396.
- 38 Genest, C. Segers, J. (2009). Rank-based inference for bivariate extreme-value copulas, The Annals of Statistics 37, 2990–3022.
- 39 Segers, J. (2011). Asymptotics of empirical copula processes under nonrestrictive smoothness assumptions, Bernoulli, in press.
- 40 Bücher, A., Dette, H., Volgushev, S. (2011). New estimators of the Pickands dependence function and a test for extreme-value dependence, The Annals of Statistics 39, 1963–2006.
- 41 Ben Ghorbal, N., Genest, C., Nešlehová, J. (2009). On the Ghoudi, Khoudraji, and Rivest test for extreme-value dependence, Canadian Journal of Statistics 37, 534–552.
- 42 Quessy, J.-F. (2011). Testing for bivariate extreme dependence using Kendall's process, Scandinavian Journal of Statistics, in press.
- 43 Barbe, P., Genest, C., Ghoudi, K., Rémillard, B. (1996). On Kendall's process, Journal of Multivariate Analysis 58, 197–229.
- 44 Rémillard, B. Scaillet, O. (2009). Testing for equality between two copulas, Journal of Multivariate Analysis 100, 377–386.
- 45 Kojadinovic, I. Yan, J. (2010). Nonparametric rank-based tests of bivariate extreme-value dependence, Journal of Multivariate Analysis 101, 2234–2249.
- 46 Kojadinovic, I., Segers, J., Yan, J. (2011). Large-sample tests of extreme-value dependence for multivariate copulas, The Canadian Journal of Statistics 39, 703–720.
- 47 Genest, C. Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models, Annales de l'Institut Henri Poincaré: Probabilités et Statistiques 44, 1096–1127.
- 48 Genest, C., Rémillard, B., Beaudoin, D. (2009). Omnibus goodness-of-fit tests for copulas: A review and a power study, Insurance: Mathematics & Economics 44, 199–213.
- 49 Berg, D. (2009). Copula goodness-of-fit testing: an overview and power comparison, The European Journal of Finance 15, 675–701.