Rapid ventricular assessment using real-time interactive multislice MRI
Corresponding Author
Krishna S. Nayak
Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
Packard 211, 350 Serra Mall, Stanford University, Stanford, CA 94305-9510===Search for more papers by this authorJohn M. Pauly
Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
Search for more papers by this authorDwight G. Nishimura
Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
Search for more papers by this authorBob S. Hu
Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California
Search for more papers by this authorCorresponding Author
Krishna S. Nayak
Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
Packard 211, 350 Serra Mall, Stanford University, Stanford, CA 94305-9510===Search for more papers by this authorJohn M. Pauly
Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
Search for more papers by this authorDwight G. Nishimura
Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
Search for more papers by this authorBob S. Hu
Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California
Search for more papers by this authorAbstract
A multislice real-time imaging technique is described which can provide continuous visualization of the entire left ventricle under resting and stress conditions. Three dynamically adjustable slices containing apical, mid, and base short axis views are imaged 16 times/sec (48 images/sec), with each image providing 3.12 mm resolution over a 20 cm field of view. Initial studies indicate that this technique is useful for the assessment of LV function by providing simultaneous real-time visualization of all 16 wall segments. This technique may also be used for stress LV function and, when used in conjunction with contrast agents, myocardial perfusion imaging. Magn Reson Med 45:371–375, 2001. © 2001 Wiley-Liss, Inc.
REFERENCES
- 1 Heart and stroke 1998 statistical update. American Heart Association, 1998.
- 2 Nagel E, Lehmkuhl H, Klein C, Schneider U, Frantz E, Ellmer A, Bocksch W, Dreysse S, Fleck E. Influence of image quality on the diagnostic accuracy of dobutamine stress magnetic resonance imaging in comparison with dobutamine stress echocardiography for the noninvasive detection of myocardial ischemia. Z Kardiol 1999; 88: 622–630.
- 3 Hundley W, Hamilton C, Thomas M, Herrington D, Salido T, Kitzman D, Little W, Link K. Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echo cardiography. Circulation 1999; 100: 1697–1702.
- 4
Epstein F,
Wolff S,
Arai A.
Segmented k-space fast cardiac imaging using an echo-train readout.
Magn Reson Med
1999;
41:
609–613.
10.1002/(SICI)1522-2594(199903)41:3<609::AID-MRM25>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 5 Mertes H, Sawada S, Ryan T, Segar D, Kovacs R, Foltz J, Feigenbaum H. Symptoms, adverse effects and complications associated with dobutamine stress echocardiography: experience in 1118 patients. Circulation 1993; 88: 15–19.
- 6 van Rugge F, Boreel J, van der Wall E, van Dijkman P, van der Laarse A, Doornbos J, de Roos A, de Boer J, Bruschke A, van Voorthuisen A. Cardiac first pass and myocardial perfusion in normal subjects assessed by sub-second Gd-DTPA enhanced MR imaging. J Comput Assist Tomog 1991; 15: 959–965.
- 7 Manning W, Atkinson D, Grossman W, Paulin S, Edelman R. First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 1991; 18: 959–965.
- 8 Wilke N, Kroll K, Merkle H, Wang Y, Ishibashi Y, Xu Y, Zhang J, Jerosch-Herold M, Muhler A, et al. Regional myocardial blood volume and flow: firstpass MR imaging with polylysine-Gd-DTPA. J Magn Reson Imag 1995; 5: 227–237.
- 9 Schwitter J, Leung D, Debatin J, von Schulthess G, McKinnon G. Evaluation of myocardial perfusion: T1-weighted multislice multiphase spin-echo EPI. Eur J Radiol 1995; 5: s37–42.
- 10 Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen B, Stillman A, Ugurbil K, McDonald K, Wilson R. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 1997; 204: 373–384.
- 11 Yang PC, Ken AB, Liu AC, Liang DH, Hardy CJ, Meyer CH, Macovski A, Pauly JM, Hu BS. New real-time interactive magnetic resonance imaging complements echocardiography. J Am Coll Cardiol 1998; 32: 2049–2056.
- 12 Nagel E, Schneider U, Schalla S, Ibrahim T, Schnackenburg B, Bornstedt A, Klein C, Lehmkuhl H, Fleck E. Magnetic resonance real-time imaging for the evaluation of left ventricular function. J Cardiovasc Magn Reson 2000; 2: 7–14.
- 13
Weiger M,
Pruessmann KP,
Boesiger P.
Cardiac real-time imaging using SENSE.
Magn Reson Med
2000;
43:
177–184.
10.1002/(SICI)1522-2594(200002)43:2<177::AID-MRM3>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 14 Stuber M, Kissinger K, Chen M, Danias P, Manning W. Non-ECG triggered multi-slice real-time cardiac dobutamine stress imaging. In: Proc 8th Annual Meeting ISMRM, Denver, 2000. p 194.
- 15 Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echo 1989; 2: 358–367. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms.
- 16 Hoffman R, Lethen H, Marwick T, Arnese M, Fioretti P, Pingitore A, Picano E, Buck T, Erbel R, Flachskampf FA, Hanrath P. Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. J Am Coll Cardiol 1996; 27: 330–336.
- 17 Kerr AB, Pauly JM, Hu BS, Li KC, Hardy CJ, Meyer CH, Macovski A, Nishimura DG. Real-time interactive MRI on a conventional scanner. Magn Reson Med 1997; 38: 355–367.
- 18 Pauly JM, Roux PL, Nishimura DG, Macovski A. Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm. IEEE Trans Med Imag 1991; 10: 53–65.
- 19 Pauly JM, Nishimura DG, Macovski A. A k-space analysis of small tip excitation. J Magn Reson 1989; 81: 43–56.
- 20 Kerr AB, Pauly JM, Nishimura DG. Partial k-space acquisition for real-time MR imaging. In: Proc 6th Annual Meeting ISMRM, Sydney, 1998. p 1945.
- 21 NolI DC, Nishimura DG, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imag 1991; 10: 154–163.
- 22 McGibney G, Smith MR, Nichols ST, Crawley A. Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI. Magn Reson Med 1993; 30: 51–59.
- 23 Nishimura DG, Irarrazabal P, Meyer CH. A velocity k-space analysis of flow effects in echo-planar and spiral imaging. Magn Reson Med 1995; 33: 549–556.
- 24 Luk Pat GT, Meyer CH, Pauly JM, Nishimura DG. Reducing flow artifacts in echo-planar imaging. Magn Reson Med 1997; 37: 436–447.
- 25 Riederer SJ, Tasciyan T, Farzaneh F, Lee JN, Wright RC, Herfkens RJ. MR fluoroscopy: technical feasibility. Magn Reson Med 1988; 8: 1–15.
- 26 Bjornstad K, Aakhus S, Torp H. How does computer-assisted digital wall motion analysis influence observer agreement and diagnostic accuracy during stress echocardiography? Int J Cardiac Imag 1997; 13: 105–114.
- 27 Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38: 591–603.
- 28
Pruessmann KP,
Weiger M,
Scheidegger MB,
Boesiger P.
SENSE: sensitivity encoding for fast MRI.
Magn Reson Med
1999;
42:
952–962.
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar