The First Templated Borogermanate (C2N2H10)2[(BO2.5)2(GeO2)3]: Linkage of Tetrahedra of Significantly Different Sizes
Mike S. Dadachov Dr.
Structural Chemistry, Stockholm University S-106 91 Stockholm (Sweden) Fax: (+46) 8-16-31-18
Search for more papers by this authorKai Sun Dr.
Structural Chemistry, Stockholm University S-106 91 Stockholm (Sweden) Fax: (+46) 8-16-31-18
Search for more papers by this authorTony Conradsson
Structural Chemistry, Stockholm University S-106 91 Stockholm (Sweden) Fax: (+46) 8-16-31-18
Search for more papers by this authorXiaodong Zou Dr.
Structural Chemistry, Stockholm University S-106 91 Stockholm (Sweden) Fax: (+46) 8-16-31-18
Search for more papers by this authorMike S. Dadachov Dr.
Structural Chemistry, Stockholm University S-106 91 Stockholm (Sweden) Fax: (+46) 8-16-31-18
Search for more papers by this authorKai Sun Dr.
Structural Chemistry, Stockholm University S-106 91 Stockholm (Sweden) Fax: (+46) 8-16-31-18
Search for more papers by this authorTony Conradsson
Structural Chemistry, Stockholm University S-106 91 Stockholm (Sweden) Fax: (+46) 8-16-31-18
Search for more papers by this authorXiaodong Zou Dr.
Structural Chemistry, Stockholm University S-106 91 Stockholm (Sweden) Fax: (+46) 8-16-31-18
Search for more papers by this authorThis work was supported by the Swedish Natural Science Research Council (NFR).
Abstract
Incorporation of boron into templated germanate frameworks has been achieved for the first time. Clusters of GeO4 three-rings are connected by pairs of BO4 tetrahedra into a two-dimensional framework structure with nine-ring channels (see picture; GeO4: light gray; BO4: dark gray). The structure topology is very similar to that of (NH4)4[(GeO2)3(GeO1.5F3)2]⋅0.67 H2O, although very different types and sizes of polyhedra are present in the structures.
References
- 1
A. K. Cheetham, G. Férey, T. Loiseau, Angew. Chem. 1999, 111, 3466; Angew. Chem. Int. Ed. 1999, 38, 3268.
10.1002/(SICI)1521-3757(19991115)111:22<3466::AID-ANGE3466>3.0.CO;2-M Google Scholar
- 2a R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, New York, 1989;
- 2b W. M. Meier, D. H. Olson, Atlas of Zeolite Structure Types, Elsevier, London, 1996.
- 3 S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannon, E. M. Flanigen, J. Am. Chem. Soc. 1982, 1146.
- 4a J. B. Parise, Inorg. Chem. 1985, 24, 4312;
- 4b J. B. Parise, Acta Crystallogr. Sect. C 1984, 40, 1641;
- 4c G. Yang, S. Feng, R. Xu, J. Chem. Soc. Chem. Commun. 1987, 1254;
- 4d G. Ferey, J. Fluorine Chem. 1995, 72, 187;
- 4e G. Ferey, C. R. Acad. Sci. Ser. C 1988, 1, 1.
- 5 D. M. Chapman, A. L. Rol, Zeolites 1990, 10, 730.
- 6a
G. Harvey, W. M. Meier, Stud. Surf. Sci. Catal. A 1989, 49, 411;
10.1016/S0167-2991(08)61738-3 Google Scholar
- 6b T. E. Gier, G. D. Stucky, Nature 1991, 349, 508.
- 7a T. E. Gier, G. D. Stucky, Nature 1991, 349, 508;
- 7b G. Y. Yang, S. C. Sevov, J. Am. Chem. Soc. 1999, 121, 8389.
- 8 P. Feng, X. Bu, G. D. Stucky, Nature 1997, 388, 735.
- 9 D. R. Corbin, J. F. Whitney, W. C. Fulz, G. D. Stucky, M. M. Eddy, A. K. Cheetham, Inorg. Chem. 1986, 25, 2280;
- 9b M. Cavellec, D. Riou, C. Ninclaus, J. M. Greneche, G. Ferey, Zeolites 1996, 17, 260;
- 9c K.-H. Li, Y.-F. Huang, V. Zima, C.-Y. Huang, H.-M. Lin, Y.-C. Jiang, F.-L. Liao, S.-L. Wang, Chem. Mater. 1998, 10, 2599, and references therein.
- 10a V. Soghomonian, Q. Chen, R. C. Haushalter, J. Zubieta, Angew. Chem. 1995, 107, 229; Angew. Chem. Int. Ed. Engl. 1995, 34, 223;
- 10b V. Soghomonian, Q. Chen, R. C. Haushalter, J. Zubieta, J. O'Connor, Science 1993, 259, 1596.
- 11 N. Guillou, Q. Gao, M. Nogues, R. E. Morris, M. Hervieu, G. Ferey, A. K. Cheetham, C. R. Acad. Sci. Paris Ser. 2 1999, 387.
- 12 R. C. Haushalter, L. A. Mundi, Chem. Mater. 1992, 4, 31, and references therein.
- 13a
R. L. Bedard, S. T. Wilson, L. D. Vail, J. M. Bennet, E. M. Flanigen, Stud. Surf. Sci. Catal. A 1989, 49, 375;
10.1016/S0167-2991(08)61735-8 Google Scholar
- 13b J. B. Parise, J. Chem. Soc. Chem. Commun. 1990, 1553;
- 13c C. L. Chahill, Y. Ko, J. B. Parsie, Chem. Mater. 1998, 10, 19.
- 14 W. Schnick, J. Lucke, Angew. Chem. 1992, 104, 208; Angew. Chem. Int. Ed. Engl. 1992, 31, 213.
- 15a E. Unnerberg, S. Kolboe, Appl. Catal. A 1995, 124, 345, and references therein;
- 15b F. DiRenzo, M. Derewinski, G. Chiari, Microporous. Mater. 1996, 6, 151;
- 15c M. Shibata, Z. Gabelica, Appl. Catal. A 1997, 162, 93.
- 16a
R. P. Bontchev, J. Do, A. J. Jacobson, Angew. Chem. 1999, 111, 2063; Angew. Chem. Int. Ed. 1999, 38, 1937, and references therein;
10.1002/(SICI)1521-3757(19990712)111:13/14<2063::AID-ANGE2063>3.0.CO;2-8 Google Scholar
- 16b
R. Kniep, G. Schäfer, H. Engelhardt, I. Boy, Angew. Chem. 1999, 111, 3858; Angew. Chem. Int. Ed. 1999, 38, 3642;
10.1002/(SICI)1521-3757(19991216)111:24<3857::AID-ANGE3857>3.0.CO;2-N Google Scholar
- 16c
S. C. Sevov, Angew. Chem. 1996, 108, 2814; Angew. Chem. Int. Ed. Engl. 1996, 35, 2630;
10.1002/ange.19961082218 Google Scholar
- 16d C. J. Warren, R. C. Haushalter, D. J. Rose, J. Zubieta, Chem. Mater. 1997, 9, 2694.
- 17a H. Li, O. M. Yaghi, J. Am. Chem. Soc. 1998, 120, 10 569;
- 17b M. O'Keefe, O. M. Yaghi, Chem. Eur. J. 1999, 5, 2796, and references therein.
- 18a J. Cheng, R. Xu, G. Yang, J. Chem. Soc. Dalton Trans. 1991, 1537;
- 18b R. H. Jones, J. Chen, J. M. Thomas, A. George, M. B. Hursthouse, R. Xu, S. Li, Y. Li, G. Yang, Chem. Mater. 1992, 4, 808.
- 19 X-ray structure analysis: STOE IPDS system with image plate; graphite monochromator; λ(MoKα)=0.71073 Å; T=293 K; the structure was solved by using the direct-method routine of SIR-97[22] and refined by full-matrix least-squares methods using SHELXL-97;[23] numerical absorption correction by X-RED[24], Tmin=0.4281, Tmax=0.8850. Crystal data for (C2N2H10)2[(BO2.5)2(GeO2)3]: crystal dimensions 0.10×0.10×0.02 mm, monoclinic, space group P21/n, a=6.9765(9), b=14.4103(12), c=11.6943(14) Å, β=91.093(15)°, V=1175.46(23) Å3, Z=4, ρcalcd=2.69 g cm−3, μ(MoKα)=76.833 cm−1, 2θmin=6.4°, 2θmax=47°, R1=0.034 for 1525 reflections with Fo>4σ(Fo) and 0.039 for all 1729 reflections, wR2(F 2)=0.095, GOF=1.136, 194 parameters were refined, max./min. residual electron density −0.79/0.86 e Å−3. One of the (H3NCH2CH2NH3)2+ ions was found to have two different conformations (Figure 1). This was refined as the N-population parameters of the N2 atom at two sites as 0.73 and 0.27. All other parameters are unexceptional. Most of the hydrogen atom positions could be located on the final difference Fourier maps, and they were introduced by the rigid-group riding mode, allowing refinement of their isotropic thermal parameters. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-143794. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033; e-mail: [email protected]).
- 20 T. Conradsson, X. D. Zou, M. S. Dadachov, Inorg. Chem. 2000, 39, 1716.
- 21 X. Bu, P. Feng, G. D. Stucky, Chem. Mater. 1999, 11, 3423.
- 22 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, M. C. Burla, G. Polidori, C. Camalli, R. Spagna, SIR97, a package for structure solution by direct methods and refinement, User's Manual, 1997.
- 23 G. M. Sheldrick, SHELXL97, program for refinement of crystal structures, University of Göttingen, Germany, 1997.
- 24 STOE and CIE, X-RED 1.07, program for data reduction for STADI4 and IPDS, Darmstadt, Germany, 1996.