Nucleoglycoconjugates: Design and Synthesis of a New Class of DNA–Carbohydrate Conjugates
Terry L. Sheppard Dr.
Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, CA 92037 (USA) Fax: (+858)-784-2943
Search for more papers by this authorChi-Huey Wong Prof.
Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, CA 92037 (USA) Fax: (+858)-784-2943
Search for more papers by this authorGerald F. Joyce Prof.
Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, CA 92037 (USA) Fax: (+858)-784-2943
Search for more papers by this authorTerry L. Sheppard Dr.
Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, CA 92037 (USA) Fax: (+858)-784-2943
Search for more papers by this authorChi-Huey Wong Prof.
Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, CA 92037 (USA) Fax: (+858)-784-2943
Search for more papers by this authorGerald F. Joyce Prof.
Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, CA 92037 (USA) Fax: (+858)-784-2943
Search for more papers by this authorThis work was supported by NASA and The Skaggs Institute for Chemical Biology at The Scripps Research Institute. T.L.S. was supported by a postdoctoral fellowship from the NASA Specialized Center for Research and Training in Exobiology.
Abstract
A solid-phase strategy for the synthesis of a new class of DNA–carbohydrate conjugates, termed nucleoglycoconjugates (see example shown), is presented. This phosphoramidite-based approach provides a general method to link carbohydrates within or at the termini of DNA oligonucleotides through stable phosphodiester bonds. The resulting glycoconjugates serve as substrates for enzymes used in the manipulation of DNA, and are effective as primers in extension reactions mediated by DNA polymerases, including the polymerase chain reaction.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2000/z14779_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a R. L. Letsinger, J. L. Finan, G. A. Heavner, W. B. Lunsford, J. Am. Chem. Soc. 1975, 97, 3278–3279;
- 1b S. L. Beaucage, R. P. Iyer, Tetrahedron 1992, 48, 2223–2311.
- 2 S. L. Beaucage, R. P. Iyer, Tetrahedron 1993, 49, 6123–6194.
- 3a K. M. Guckian, T. R. Krugh, E. T. Kool, Nat. Struct. Biol. 1998, 5, 954–959;
- 3b S. A. Wolfe, A. E. Ferentz, V. Grantcharova, M. Churchill, G. L. Verdine, Chem. Biol. 1995, 2, 213–222.
- 4 For example, in DNA damage and repair: J. Butenandt, L. T. Burgdorf, T. Carell, Synthesis 1999, 1085–1105.
- 5 E. Uhlmann, A. Peyman, Chem. Rev. 1990, 90, 544–584.
- 6 M. Beier, F. Reck, T. Wagner, R. Krishnamurthy, A. Eschenmoser, Science 1999, 283, 699–703.
- 7a S. L. Beaucage, R. P. Iyer, Tetrahedron 1993, 49, 1925–1963;
- 7b S. L. Beaucage, R. P. Iyer, Tetrahedron 1993, 49, 10 441–10 488.
- 8a H. Kondo, Y. Ichikawa, C.-H. Wong, J. Am. Chem. Soc. 1992, 114, 8748–8750;
- 8b A. H. Haines, D. J. R. Massy, Synthesis 1996, 1422–1424;
- 8c P. Westerduin, P. Veeneman, G. A. van der Marel, J. H. van Boom, Tetrahedron Lett. 1986, 27, 6271–6274.
- 9a G. J. P. H. Boons, P. Hoogerhout, J. T. Poolman, van der Marel, J. H. van Boom, Bioorg. Med. Chem. Lett. 1991, 1, 303–308;
- 9b R. Verduyn, J. J. A. Belién, C. M. Dreef-Tromp, G. A. van der Marel, J. H. van Boom, Tetrahedron Lett. 1991, 32, 6637–6640.
- 10a C. Le Bec, T. Huynh-Dinh, Tetrahedron Lett. 1991, 32, 6553–6556;
- 10b T.-W. Cai, J.-M. Min, L.-H. Zhang, Carbohydr. Res. 1997, 303, 113–117.
- 11 K. C. Nicolaou, H. Flörke, M. G. Egan, T. Barth, V. A. Estevez, Tetrahedron Lett. 1995, 36, 1775–1778.
- 12a J. H. Gommers-Ampt, F. Van Leeuwen, A. L. de Beer, J. F. Vliegenthart, M. Dizdaroglu, J. A. Kowalak, P. F. Crain, P. Borst, Cell 1993, 75, 1129–1136;
- 12b I. R. Lehman, E. A. Pratt, J. Biol. Chem. 1960, 235, 3254–3259.
- 13 M. de Kort, E. Ebrahimi, E. R. Wijsman, G. A. van der Marel, J. H. van Boom, Eur. J. Org. Chem. 1999, 2337–2343.
- 14 M. Adinolfi, G. Barone, L. De Napoli, L. Guariniello, A. Iadonisi, G. Piccialli, Tetrahedron Lett. 1999, 40, 2607–6610.
- 15 S. Akhtar, A. Routledge, R. Patel, J. M. Gardiner, Tetrahedron Lett. 1995, 36, 7333–7336.
- 16 R. S. Bhatt, L. Hough, A. C. Richardson, Carbohydr. Res. 1975, 43, 57–67.
- 17 A. Rivera-Sagredo, J. Jiménez-Barbero, M. Martín-Lomas, D. Solís, T. Díaz-Mauriño, Carbohydr. Res. 1992, 232, 207–226.
- 18 The standard dimethoxytrityl (DMT) protecting group used in DNA synthesis proved too labile at the 6-position of the disaccharide. Thus, the more stable MMT group was employed.
- 19 The reaction must be buffered to pH 7 with acetic acid to prevent ester migration to the revealed primary 6-hydroxy group.
- 20 M. H. Caruthers, A. D. Barone, S. L. Beaucage, D. R. Dodds, E. F. Fisher, L. J. McBride, M. D. Matteucci, Z. Stabinsky, J.-Y. Tang, Methods Enzymol. 1987, 154, 287–313.
- 21 E. M. Nashed, C. P. J. Glaudemans, J. Org. Chem. 1987, 52, 5255–5260.
- 22 T. M. Slaghek, Y. Nakahara, T. Ogawa, J. P. Kamerling, J. F. G. Vliegenthart, Carbohydr. Res. 1994, 255, 61–85.
- 23 Product 12 was obtained as a 4:1 mixture of α:β-anomers.
- 24 Compound 1 coupled to DNA in >95 % yield. Extension of DNA after removal of the MMT group proceeded with a coupling yield of >70 %. Phosphoramidites 2 and 3 coupled to the termini of DNA in >90 % yield to provide 14 and 15, respectively.
- 25 Reverse syntheses using commercially available nucleoside 5′-phosphoramidite derivatives proceeded with stepwise coupling yields of >90 %.
- 26 R. Wolfenden, X. Lu, G. Young, J. Am. Chem. Soc. 1998, 120, 6814–6815.
- 27 Polymerases that were tested included three reverse transcriptases (AMV, MMLV, and SuperScript II) and three thermostable DNA polymerases (Taq, Pfu, and Tth).