Inductive Power Transmission Systems
Mehdi Kiani
Pennsylvania State University, University Park, PA, USA
Search for more papers by this authorMaysam Ghovanloo
Georgia Institute of Technology, Atlanta, GA, USA
Search for more papers by this authorMehdi Kiani
Pennsylvania State University, University Park, PA, USA
Search for more papers by this authorMaysam Ghovanloo
Georgia Institute of Technology, Atlanta, GA, USA
Search for more papers by this authorAbstract
Powering up and recharging a variety of mobile devices, such as implantable medical devices (IMD), smartphones, and electric vehicles, are governed by the same fundamental principles of near-field inductive coupling, which guide the design constraints and practical considerations of inductive power transmission described in this article. The coupling coefficient and power transmission efficiency (PTE) of an inductive link, which are affected by important geometrical and circuit design parameters on both transmitter (Tx) and receiver (Rx) sides, are discussed. The inductive link PTE has been modeled based on the reflected load theory, indicating that the mutual coupling between the coils has the most significant effect on the PTE, followed by the primary and secondary coils' quality factors. To these factors, one should add the load resistance, source resistance, carrier frequency, and the surrounding environment. Three and four-coil inductive links have been utilized as a way to achieve optimal loading condition and to reduce the negative effect of load/source resistances on the PTE. This article also includes an optimization method for the wireless links that are made of printed spiral coils (PSC), which are suitable for IMDs and radio-frequency identification (RFID) applications.
Bibliography
- 1
K. Finkenzeller,
RFID Handbook: Fundamentals and Applications in Contactless SmartCards, Radio Frequency Identification and near-Field Communication,
3rd ed.
Hoboken, NJ:
Wiley,
2010.
10.1002/9780470665121 Google Scholar
- 2
D. Zhou and
E. Greenbaum.
Implantable Neural Prostheses 1.
Springer:
New York,
2009.
10.1007/978-0-387-77261-5_1 Google Scholar
- 3 Near Field Communication (NFC) Forum. Available at http://www.nfc-forum.org (accessed Feb. 2, 2014).
- 4 S. Hui and W. Ho. IEEE Trans. Power Electron. 2005, 20, pp 620–627.
- 5 C. Wang, O. Stielau, and G. Covic. IEEE Trans. Ind. Electron. 2005, 52, pp 1308–1314.
- 6 C. A. Balanis. Antenna Theory: Analysis and Design, 3rd ed.; Wiley: Hoboken, NJ, 1997.
- 7 P.V. Nikitin, K.V.S. Rao, and S. Lazar. An Overview of Near Field UHF RFID. IEEE International Conference on RFID, 2007.
- 8 R. Allan, Electron. Des. 2003, 51, pp 52–56.
- 9 M. Morrel. Neurology 2011, 77, pp 1295–1304.
- 10 R. Fisher. Neurology 2011, 77, pp 1220–1221.
- 11 F. Zeng, S. Rebscher, W. Harrison, X. Sun, and H. Feng. IEEE Rev. Biomed. Eng. 2008, 1, pp 115–142.
- 12 J. Weiland and M. Humayun. Proc. IEEE 2008, 96, pp 1076–1084.
- 13 K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu. IEEE J. Solid State Circuits 2010, 45, pp 1946–1956.
- 14 D. Shire, S. Kelly, C. Jinghua, P. Doyle, M. Gingerich, S. Cogan, W. Drohan, O. Mendoza, L. Theogarajan, J. Wyatt, and J. Rizzo. IEEE Trans. Biomed. Eng. 2009, 56, pp 2502–2511.
- 15 A. Schwartz, T. Cui, D. Weber, and D. Moran. Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 2006, 52, pp 205–220.
- 16 T. Kuiken, L. Miller, R. Lipschutz, B. Lock, K. Stubblefield, P. Marasco, P. Zhou, and G. Dumanian. Lancet 2007, 369, pp 371–380.
- 17 R. Fernandes, B. Diniz, R. Ribeiro, and M Humayun. Neurosci. Lett. 2012, 519, pp 122–128.
- 18 L. Theogarajan. Neurosci. Lett. 2012, 519, pp 129–133.
- 19 C. Lee, H. Choi, G. Go, S. Jeong, S. Ko, J. Park, and S. Park. IEEE Trans. Mechatron. 2015, 20, pp 2067–2074.
- 20 M. Ghovanloo and K. Najafi. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, pp 449–457.
- 21 A. Karalis, J. Joannopoulos, and M. Soljacic. Ann. Phys. 2007, 323, pp 34–48.
- 22 M. Baker and R. Sarpeshkar. IEEE Trans. Biomed. Circuits Syst. 2007, 1, pp 28–38.
- 23 G. Kendir, W. Liu, G. Wang, M. Sivaprakasam, R. Bashirullah, M. Humayun, and J. Weiland. IEEE Trans. Circuits Syst. I 2005, 52, pp 857–866.
- 24 U. M. Jow and M. Ghovanloo. IEEE Trans. Biomed. Circuits Syst. 2007, 1, pp 193–202.
- 25 A. Kurs, A. Karalis, R. Moffatt, J. Joannopoulos, P. Fisher, and M. Soljacic. Sci. Express 2007, 317, pp 83–86.
- 26 B. Cannon, J. Hoburg, D. Stancil, and S. Goldstein. IEEE Trans. Power Electron. 2009, 24, pp 1819–1825.
- 27 A. RamRakhyani, S. Mirabbasi, and M. Chiao. IEEE Trans. Biomed. Circuits Syst. 2011, 5, pp 48–63.
- 28 A. Sample, D. Meyer, and J. Smith. IEEE Trans. Ind. Electron. 2011, 58 (2), pp 544–554.
- 29 R. Hamam, A. Karalis, J. Joannopoulos, and M. Soljacic. Ann. Phys. 2009, 324, pp 1783–1795.
- 30 H. Haus and W. Huang. Proc. IEEE 1991, 79, pp 1505–1518.
- 31 W. Brown. IEEE Trans. Microw. Theory Tech. 1984, 32, pp 1230–1242.
- 32 A. Poon, S. O'Driscoll, and T. Meng. IEEE Trans. Antennas Propag. 2010, 58, pp 1739–1750.
- 33 G. Lazzi. IEEE Eng. Med. Biol. Mag. 2005, 24, pp 75–81.
- 34 S. Ozeria, D. Shmilovitza, S. Singera, and C. Wang. Ultrasonics 2010, 50, pp 666–674.
- 35 Y. Zhu, S. Moheimani, and M. Yuce. IEEE Electron. Device Lett. 2010, 31, pp 374–376.
- 36 D. Seo, J. Carmena, J. Rabaey, E. Alon, M. Maharbiz. arXiv 1307.2196, 2013.
- 37 A. Sahai and D. Graham. IEEE Int. Conf. Space Opt. Syst. App. 2011, pp 164–170.
- 38 M. Sadiku. Elements of Electromagnetics, 4th ed.; Oxford University Press, 2007.
- 39 Z. Yang, W. Liu, and E. Basham. IEEE Trans. Magn. 2007, 43, pp 3851–3860.
- 40
H. Wheeler.
Proc. IRE
1942,
30 (9),
pp 412–424.
10.1109/JRPROC.1942.232015 Google Scholar
- 41 W. Kuhn and N. Ibrahim. IEEE Trans. Microw. Theory Tech. 2001, 49, pp 31–38.
- 42 F. Grover. Inductance Calculations Working Formulas and Tables. D. Van Nostrand Company: New York, 1946.
- 43 F. Terman. Radio Engineers Handbook. McGraw-Hill: New York, 1943.
- 44 M. Soma, D. Galbraith, and R. White. IEEE Trans. Biomed. Eng. 1987, 34, pp 276–282.
- 45 U. Jow and M. Ghovanloo. IEEE Trans. Biomed. Circuits Syst. 2009, 3 (5), pp 339–347.
- 46 T. Lee. The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed.; Cambridge University Press: New York, NY, 2004.
- 47 R. Harrison. IEEE Int. Symp. Circuits Syst. 2007, pp 2080–2083.
- 48 M. Kiani, U. Jow, and M. Ghovanloo. IEEE Trans. Biomed. Circuits Syst. 2011, 5, pp 579–591.
- 49 M. Kiani and M. Ghovanloo. IEEE Trans. Circuits Syst. I 2012, 59.
- 50 M. Kiani and M. Ghovanloo. IEEE Trans. Ind. Elect. 2013, 60, pp 5292–5305.
- 51 R. Xue, K. Cheng, and M. Je. IEEE Trans. Biomed. Circuits Syst. 2013, 60, pp 867–874.
- 52 K. Silay, D. Dondi, L. Larcher, M. Declercq, L. Benini, Y. Leblebici, and C. Dehollain. Load Optimization of an Inductive Power Link for Remote Powering of Biomedical Implants, in Proc. of the IEEE International Symposium on Circuits and Systems; pp 533–536, May 2005.
- 53 M. Zargham and P. Gulak. IEEE Trans. Biomed. Circuits Syst. 2012, 6, pp 228–245.
- 54 J. Lin. In CRC Handbook of Biological Effects of Electromagnetic Fields; C. Polk; and E. Postow, Eds.; CRC Press: Boca Raton, FL, Chapter 2, 1986, pp 273–313.
- 55 IEEE Standard for the Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz, IEEE Standard C95.1, 2006.
- 56 L. Lucke and V. Bluvshtein. IEEE Eng. Med. Biol. Conf. 2014, pp 286–289.
- 57 Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Office of Eng. Tech., FCC, Washington DC, FCC OET Bull. 65, Supp. C.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: