Servomechanisms
Michael Chang, Edward J. Davison,
Edward J. Davison
University of Toronto, Toronto, Ontario, Canada, M5S 3G4
Search for more papers by this authorMichael Chang, Edward J. Davison,
Edward J. Davison
University of Toronto, Toronto, Ontario, Canada, M5S 3G4
Search for more papers by this authorFirst published: 27 December 1999
Abstract
The sections in this article are
- 1 Notation
- 2 State-Space Models
- 3 Dynamic Inversion of LTI Mimo Systems
- 4 Robust Control
- 5 The Servomechanism Problem
- 6 Adaptive Switching Control
Bibliography
- 1 B. C. Kuo Automatic Control Systems, 7th ed., Englewood Cliffs, NJ: Prentice Hall, 1995.
- 2 C. L. Phillips R. D. Harbor Feedback Control Systems, 3rd ed., Englewood Cliffs, NJ: Prentice Hall, 1996.
- 3 M. K. Sain J. L. Massey Invertibility of linear time-invariant dynamical systems, IEEE Trans. Autom. Control, 14 (2): 141–149, 1969.
- 4 S. H. Wang E. J. Davison A new invertibility criterion for linear multivariable systems, IEEE Trans. Autom. Control, 18 (5): 538–539, 1973.
- 5 L. Qui et al. A formula for computation of the real stability radius, Automatica, 31 (6): 879–890, 1995.
- 6 E. J. Davison A. Goldenberg Robust control of a general servomechanism problem: The servo compensator, Automatica, 11 (5): 461–471, 1975.
- 7 E. J. Davison The robust control of a servomechanism problem for linear time-invariant multivariable systems, IEEE Trans. Autom. Control, 21 (1): 25–34, 1976.
- 8 E. J. Davison The robust decentralized control of a general servomechanism problem, IEEE Trans. Autom. Control, 21 (1): 14–24, 1976.
- 9 E. J. Davison B. M. Scherzinger Perfect control of the robust servomechanism problem, IEEE Trans. Autom. Control, 32 (8): 689–702, 1987.
- 10 E. J. Davison S. H. Wang Properties and calculation of transmission zeros of linear multivariable systems, Automatica, 10 (6): 643–658, 1974.
- 11 E. J. Davison S. H. Wang Properties of linear time-invariant multivariable systems subject to arbitrary output and state feedback, IEEE Trans. Autom. Control, 18 (1): 24–32, 1973.
- 12 B. Mårtensson The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization, Syst. Cont. Lett., 6 (2): 87–91, 1985.
- 13 M. Fu B. R. Barmish Adaptive stabilization of linear systems via switching control, IEEE Trans. Autom. Control, 31 (12): 1097–1103, 1986.
- 14 D. E. Miller E. J. Davison The self-tuning robust servomechanism problem, IEEE Trans. Autom. Control, 34 (5): 511–523, 1989.
- 15 D. E. Miller E. J. Davison Adaptive control of a family of plants, in D. Hinrichsen and B. Mårtensson (eds.), Control of Uncertain Systems: Proc. Int. Workshop, Bremen, West Germany, June 1989, Boston: Birkhäuser Press, 1990, pp. 197–219.
- 16 M. Chang E. J. Davison Control of unknown systems using switching controllers: An experimental study, Proc. 1994 Amer. Control Conf., 1994, pp. 2984–2989.
- 17 M. Chang E. J. Davison Control of unknown MIMO systems using self-tuning PID controllers, Proc. 1995 Amer. Control Conf., 1995, pp. 564–568.
- 18 M. Chang E. J. Davison Switching control of a family of plants, Proc. 1995 Amer. Control Conf., 1995, pp. 1015–1020.
- 19 A. S. Morse Supervisory control of families of linear set-point controllers—Part 1: Exact matching, IEEE Trans. Autom. Control, 41 (10): 1413–1431, 1996.
- 20 D. E. Miller M. Chang E. J. Davison An approach to switching control: Theory and application, in A. S. Morse (ed.), Control Using Logic-Based Switching, London: Springer-Verlag, 1997, pp. 234–247.
- 21 K. S. Narendra J. Balakrishnan Adaptive control using multiple models, IEEE Trans. Autom. Control, 42 (2): 171–187, 1997.
- 22 G. H. Golub C. F. Van Loan Matrix Computations, Baltimore: Johns Hopkins University Press, 1989.
- 23 A. S. Morse Global stability of parameter-adaptive control systems, IEEE Trans. Autom. Control, 25 (3): 433–439, 1980.
- 24 K. S. Narendra Y. H. Lin L. S. Valavani Stable adaptive controller design, part II: Proof of stability, IEEE Trans. Autom. Control, 25 (3): 440–448, 1980.
- 25 K. J. Åström Adaptive Control, 2nd ed., Reading, MA: Addison-Wesley, 1995.
- 26 A. S. Morse An adaptive control for globally stabilizing linear systems with unknown high-frequency gains, in A. Bensoussan and J. L. Lions (eds.), Analysis and Optimization of Systems: Proc. 6th Int. Conf. on Analysis and Optimization of Systems, Berlin: Springer-Verlag, 1984, pp. 58–68.
- 27 D. R. Mudgett A. S. Morse Adaptive stabilization of linear systems with unknown high-frequency gains, IEEE Trans. Autom. Control, 30 (6): 549–554, 1985.
- 28 A. S. Morse A three-dimensional universal controller for the adaptive stabilization of any strictly proper minimum-phase system with relative degree not exceeding two, IEEE Trans. Autom. Control, 30 (12): 1188–1191, 1985.
- 29 A. S. Morse A 4(n + 1)-dimensional model reference adaptive stabilizer for any relative degree one or two, minimum phase system of dimension n or less, Automatica, 23 (1): 123–125, 1987.
- 30 G. Tao P. A. Ioannou Model reference adaptive control for plants with unknown relative degree, Proc. 1989 Amer. Control Conf., 1989, pp. 2297–2302.
- 31 D. E. Miller E. J. Davison On asymptotic model matching, Math. Control, Signals Syst., 6 (4): 322–340, 1993.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: