Optoelectronics in VLSI Technology
Abstract
The sections in this article are
- 1 Technology Overview
- 2 Circuit Considerations For OE-VLSI
- 3 Large Switch Experiment
- 4 Toward a Commodity OE-VLSI Technology
- 5 Conclusions
- 6 Acknowledgments
Bibliography
- 1 S. Yu et al. A monolithically integrated 1×4 switchable photodiode array with preampifier for programmable frequency filters and optical interconnects, IEEE Phot. Tech. Lett., 9: 675–677, 1997.
- 2 S. Chandrasekhar et al. Investigation of crosstalk performance of eight-channel p–i–n/HBT OEIC photoreceiver array modules, IEEE Phot. Tech. Lett., 8: 682–684, 1996.
- 3 http://www.vitesse.com.
- 4 J.-S. Rieh et al. Monolithically integrated SiGe-Si PIN-HBT front-end photoreceivers, IEEE Phot. Tech. Lett., 10: 415–417, 1998.
- 5 J. W. Goodman et al. Optical interconnections for VLSI systems, Proc. IEEE, 72: 850–866, 1984.
- 6 1993–1994 The National Technology Roadmap for Semiconductors, Semiconductor Industry Assoc., p. B2.
- 7 J. D. Dow D. Redfield Electroabsorption in semiconductors: The excitonic absorption edge, Phys. Rev. B, 1: 3358–3371, 1970.
- 8 D. A. B. Miller D. S. Chemla S. Schmitt-Rink in H. Haug (ed.), Optical Nonlinearities and Instabilities in Semiconductors, San Diego, CA: Academic Press, 1988, p. 325; U. Efron and G. Livescu, in U. Efron (ed.), Spatial Light Modulator Technology, New York: Marcel Dekker, 1995, pp. 217–286.
- 9 K. Sayyah U. Efron Optically addressed spatial light modulator with a high photosensitivity and intensity adaptation range, Opt. Lett., 21: 1384–1386, 1996.
- 10 G. D. Boyd et al. Multiple quantum well reflection modulator, Appl. Phys. Lett., 50: 1119–1121, 1987.
- 11 M. Whitehead et al. Low voltage multiple quantum well reflection modulator with on:off ratio greater than 100:1, Electron. Lett., 25: 984–985, 1989.
- 12 R. H. Yan R. J. Simes L. A. Coldren Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors, IEEE Phot. Tech. Lett., 1: 273–275, 1989.
- 13 T. L. Worchesky et al. Large arrays of spatial light modulators hybridized to silicon integrated circuits, Appl. Opt., 35 (8): 1180–1186, 1996.
- 14 D. A. B. Miller Quantum well self-electro-optic effect devices, Opt. Quantum Elec., 22: 561–598, 1990.
- 15 A. Lentine et al. A 2 kbit array of symmetric self-electrooptic effect devices, IEEE Phot. Tech. Lett., 2: 51–53, 1990.
- 16
D. A. B. Miller et al.
Field-effect transistor self-electrooptic effect device: integrated photodiode, quantum well modulator, and transistor,
IEEE Phot. Tech. Lett.,
1:
62–64,
1989.
10.1109/68.87897 Google Scholar
- 17 L. A. D'Asaro et al. Batch fabrication and operation of GaAs-AlGaAs field-effect transistor self-electro-optic effect device (FET-SEED) smart pixel arrays, IEEE J. Quantum Electron., 29: 670–675, 1993.
- 18 K. W. Goossen et al. Monolithic integration of GaAs/AlGaAs multiple quantum well modulators and silicon metal-oxide semiconductor transistor, Proc. OSA Topical Meeting Photonics Switching, Optical Soc. Amer., vol. 16, 1993, pp. 94–98.
- 19 Research Devices, Piscataway, NJ.
- 20 K. W. Goossen et al. Independence of absorption-linewidth product to material system for multiple quantum wells with excitons from 850 nm to 1064 nm, IEEE Phot. Tech. Lett., 5: 1392–1394, 1993.
- 21 K. W. Goossen J. E. Cunningham W. Y. Jan GaAs 850 nm modulators solder-bonded to silicon, IEEE Phot.Tech. Lett., 5: 776–778, 1993.
- 22 A. C. Walker et al. Development of an optoelectronic parallel data sorter based on CMOS/InGaAs smart pixel arays, in Optics in Computing, vol. 8, 1997 OSA Tech. Dig. Series, Washington, DC: Optical Soc. Amer., 1997, pp. 149–151.
- 23 K. W. Goossen et al. GaAs MQW modulators integrated with silicon CMOS, IEEE Phot. Tech. Lett., 7: 360–362, 1995.
- 24 A. L. Lentine et al. High-speed optoelectronic VLSI switching chip with > 4000 optical I/O based on flip-chip bonding of MQW modulators and detectors to silicon CMOS, IEEE J. Selected Topics in Quantum Electron., 2: 77–84, 1996.
- 25 A. V. Krishnamoorthy et al. 3-D integration of MQW modulators over active sub-micron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit, IEEE Phot. Tech. Lett., 7: 1288–1290, 1995.
- 26 A. V. Krishnamoorthy et al. Photonic page buffer based on GaAs MQW modulators bonded directly over active silicon CMOS circuits, Appl. Opt., 35: 2439–2448, 1996.
- 27 H. Wang et al. Monolithic integration of SEED's and VLSI GaAs circuits by epitaxy on electronics, IEEE Phot.Tech. Lett., 9: 607–609, 1997.
- 28 D. L. Mathine R. Droopad G. N. Maracas A vertical-cavity surface-emitting laser appliquéed to a 0.8-micron NMOS driver, IEEE Phot. Tech. Lett., 9: 869–871, 1997.
- 29 H.-C. Lee et al. Nonlinear absorption properties of AlGaAs/GaAs multiple quantum wells grown by metalorganic chemical vapor deposition, IEEE J. Quantum Electron., 24: 1581–1590, 1988.
- 30 K. W. Goossen et al. On the operational and manufacturing tolerances of GaAs-AlAs MQW modulators, IEEE J. Quantum Electron., 34: 431–438, 1998.
- 31 K. W. Goossen J. E. Cunningham W. Y. Jan Excitonic electroabsorption in extremely shallow quantum wells, Appl. Phys. Lett., 57: 2583–2585, 1990.
- 32 K. W. Goossen et al. Interleaved contact electroabsorption modulator using doping-selective electrodes with 25°C to 95°C operating range, IEEE Phot. Tech. Lett., 5: 181–183, 1993.
- 33 G. D. Boyd L. M. F. Chirovsky R. A. Morgan 33 ps optical switching of symmetric self-electro-optic effect devices, Appl. Phys. Lett., 57: 1843–1845, 1990.
- 34 G. D. Boyd et al. Wavelength dependence of saturation and thermal effects in multiple-quantum well modulators, Appl. Phys. Lett., 63: 1715–1717, 1993.
- 35 H. S. Hinton et al. Free-space digital optical systems, Proc. IEEE, 82: 1632–1649, 1994.
- 36 A. L. Lentine D. A. B. Miller Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels, IEEE J. Quantum Electron., 29: 655–669, 1993.
- 37 T. K. Woodward et al. Operation of a fully integrated GaAs-AlxGaAs1−x FET-SEED: A basic optically addressed integrated circuit, IEEE Phot. Tech. Lett., 7: 763–765, 1995.
- 38 G. D. Boyd et al. Mode-locked pulse operation of GaAs/AlGaAs field effect transistor self-electro-effect device smart pixels and saturation considerations, Appl. Phys. Lett., 65: 3108–3110, 1994.
- 39 T. K. Woodward A. L. Lentine L. M. F. Chirovsky Experimental sensitivity studies of diode-clamped FET-SEED smart-pixel optical receivers, IEEE J. Quantum Electron., 30: 2319–2324, 1994.
- 40 T. K. Woodward A. L. Lentine L. M. F. Chirovsky 1 Gbit/s operation and bit-error rate studies of FET-SEED diode-clamped smart-pixel optical receiver, IEEE Phot. Tech. Lett., 7: 763–765, 1995.
- 41 A. L. Lentine et al. Arrays of optoelectronic switching nodes comprised of flip-chip bonded MQW modulators and detectors on silicon CMOS circuitry, IEEE Phot. Tech. Lett., 8: 221–223, 1996.
- 42 A. V. Krishnamoorthy et al. Ring oscillators with optical and electrical readout based on hybrid GaAs MQW modulators bonded to 0.8 micron CMOS, Electron. Lett., 31: 1917–1918, 1995.
- 43 A. V. Krishnamoorthy D. A. B. Miller Scaling optoelectronic-VLSI circuits into the 21st century: A technology roadmap, IEEE J. Selected Topics in Quantum Electronics, 2 (1): 55–76, 1996.
- 44 A. V. Krishnamoorthy et al. Operation of a single-ended 550Mbit/s, 41fJ, Hybrid CMOS/MQW receiver, Electron. Lett., 32: 764–765, 1996.
- 45 T. K. Woodward et al. 1 Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8μm silicon CMOS, IEEE Phot. Tech. Lett., 7: 763–765, 1995.
- 46 T. K. Woodward et al. Optical receivers for optoelectronic VLSI, IEEE J. Selected Topics in Quantum Electronics (JSTQE), 2: 106–115, 1996. [Special Issue on Smart Pixels]
- 47 T. K. Woodward et al. Modulator-driver circuits for optoelectronic VLSI, IEEE Phot. Tech. Lett., 9: 839–841, 1997.
- 48 T. J. Cloonan G. W. Richards Terabit per second packet switching having distributed out-of-band control of circuit and packet switching communications, US Patent number 5,537,403.
Citing Literature
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: