Active Perception
First published: 27 December 1999
Abstract
The sections in this article are
- 1 Where are We Heading?
- 2 The Competences
- 3 Learning and Memory
- 4 Conclusions
- 5 Acknowledgments
Bibliography
- 1 S. Zeki The visual image in mind and brain, Sci. Amer., 267 (3): 69–76, 1992.
- 2
J. Aloimonos
I. Weiss
A. Bandopadhay
Active vision,
Int. J. Comput. Vision,
2:
333–356,
1988.
10.1007/BF00133571 Google Scholar
- 3 R. Bajcsy Active perception, Proc. IEEE, 76: 996–1005, 1988. (a) D. H. Ballard Animate vision, Artif. Intell. 48: 57–86, 1991. (b) M. Swain (ed.) Int. J. Comput. Vision, 11, 1993, Special Issue on Purposive, Qualitative, Active Vision.
- 4 D. Marr Vision, San Francisco: W. H. Freeman, 1982.
- 5 A. Pentland (ed.) From Pixels to Predicates: Recent Advances in Computational and Robot Vision, Norwood, NJ: Ablex, 1986.
- 6 G. W. Ernst A. Newell GPS: A Case Study in Generality and Problem Solving, New York: Academic Press, 1969.
- 7 H. Gelernter Realization of a geometry theorem-proving machine, Information Process.: Proc. Int. Conf. Inf. Process., UNESCO, 1959.
- 8 N. J. Nilsson Principles of Artificial Intelligence, Palo Alto: Tioga, 1980.
- 9 R. S. Michalski A. Rosenfeld Y. Aloimonos Machine vision and learning: Research issues and directions, Technical Report No. CAR-TR-739, Center for Automation Research, University of Maryland, 1994.
- 10 G. Sommer Architektur und Funktion visueller Systems, Künstliche Intelligenz, 12, Frühjahrsschule, March, 1994.
- 11 R. L. Gregory Distortion of visual space as inappropriate constancy scaling, Nature, 119: 678, 1963.
- 12 M. Farah Visual Agnosia: Disorders of Object Recognition and What They Tell Us about Normal Vision, Cambridge, MA: MIT Press, 1990.
- 13 G. W. Humphreys M. J. Riddoch To See But Not To See: A Case Study of Visual Agnosia, Hillsdale, NJ: Lawrence Erlbaum Associates, 1992.
- 14 J. Y. Aloimonos Purposive and qualitative active vision, Proc. DARPA Image Understanding Workshop, 1990, pp. 816–828.
- 15 R. C. Nelson Qualitative detection of motion by a moving observer, Int. J. Comput. Vision, 7: 33–46, 1991.
- 16 W. B. Thompson T.-C. Pong Detecting moving objects, Int. J. Comput. Vision, 4: 39–57, 1990.
- 17 R. C. Nelson J. Aloimonos Finding motion parameters from spherical flow fields or the advantage of having eyes in the back of your head, Biol. Cybern., 58: 261–273, 1988.
- 18 M. Brady et al. (eds.) Robot Motion, Cambridge, MA: MIT Press, 1983.
- 19 J.-Y. Hervé Navigational vision, PhD thesis, Computer Vision Laboratory, Center for Automation Research, University of Maryland, 1993.
- 20 R. A. Brooks A robust layered control system for a mobile robot, IEEE J. Robot. Autom., 2: 14–23, 1986.
- 21 G. A. Horridge The evolution of visual processing and the construction of seeing systems, Proc. Roy. Soc. London B, 230: 279–292, 1987.
- 22 G. A. Horridge Evolution of Visual Processing, in J. R. Cronly-Dillon and R. L. Gregory (eds.), Vision and Visual Dysfunction, New York: Macmillan, 1991.
- 23 G. A. Orban The analysis of motion signals and the nature of processing in the primate visual system, in G. A. Orban and H.-H. Nagel (eds.), Artificial and Biological Vision Systems, ESPRIT Basic Research Series, Berlin: Springer, 1992, pp. 24–57.
- 24 S. Zeki A Vision of the Brain, Oxford, UK: Blackwell, 1993.
- 25 L. G. Ungerleider M. Mishkin Two cortical visual systems, in D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield (eds.), Analysis of Visual Behavior, Cambridge: MIT Press, 1982, pp. 549–586.
- 26 M. A. Goodale et al. A neurological dissociation between perceiving objects and grasping them, Nature, 349: 154–156, 1991.
- 27 D. Boussaud L. G. Ungerleider R. DeSimone Pathways for motion analysis: cortical connections of the medial superior temporal fundus of the superior temporal visual areas in the macaque monkey, J. Compar. Neurol., 296: 462–495, 1990.
- 28
G. Johansson
Visual perception of biological motion and a model for its analysis,
Perception Psychophys.,
14:
201–211,
1973.
10.3758/BF03212378 Google Scholar
- 29
S. Ullman
The Interpretation of Visual Motion,
Cambridge:
MIT Press,
1979.
10.7551/mitpress/3877.001.0001 Google Scholar
- 30 C. Fermüller Navigational preliminaries, in Y. Aloimonos (ed.), Active Perception, Advances in Computer Vision, Hillsdale, NJ: Lawrence Erlbaum Associates, 1993, pp. 103–150.
- 31 C. Fermüller Y. Aloimonos Tracking facilitates 3-D motion estimation, Biol. Cybern., 67: 259–268, 1992.
- 32 J. Aloimonos C. M. Brown Direct processing of curvilinear sensor motion from a sequence of perspective images, Proc. Workshop Comput. Vision: Representation Control, 1984, pp. 72–77.
- 33 B. K. P. Horn E. J. Weldon Computationally efficient methods for recovering translational motion, Proc. Int. Conf. Comput. Vision, 1987, pp. 2–11.
- 34 C. Fermüller Y. Aloimonos Qualitative egomotion, Technical Report CAR-TR-629, Center for Automation Research, University of Maryland, 1992.
- 35 C. Fermüller Y. Aloimonos On the geometry of visual correspondence, Technical Report CAR-TR-732, Center for Automation Research, University of Maryland, 1994.
- 36 C. Fermüller Y. Aloimonos The role of fixation in visual motion analysis, Int. J. Comput. Vision, 11: 165–186, 1993, in M. Swain (ed.), Special Issue on Purposive, Qualitative, Active Vision.
- 37 T. Brodsky C. Fermüller Y. Aloimonos Directions of motion fields are hardly ever ambiguous, Int. J. Comput. Vision, 26: 5–24, 1998.
- 38 T. Brodsky C. Fermüller Y. Aloimonos Simultaneous estimation of viewing geometry and structure, Proc. Eur. Conf. Comput. Vision, 1998, in press.
- 39 L. Cheong C. Fermüller Y. Aloimonos Effects of errors in the viewing geometry on shape estimation, Comput. Vision Image Understanding, 1998, in press, earlier version available as Technical Report CAR-TR-773, June 1996.
- 40 C. Fermüller Y. Aloimonos Ordinal representations of visual space, Proc. ARPA Image Understanding Workshop, 1996, pp. 897–903.
- 41 C. Fermüller Y. Aloimonos Towards a theory of direct perception, Proc. ARPA Image Understanding Workshop, 1996, pp. 1287–1295.
- 42 C. Fermüller Y. Aloimonos Direct Motion Perception, in Y. Aloimonos (ed.), Visual Navigation: From Biological Systems to Unmanned Ground Vehicles, Hillsdale, NJ: Lawrence Erlbaum Associates, 1997, chap. 6.
- 43 C. Fermüller Y. Aloimonos On the geometry of visual correspondence, Int. J. Comput. Vision, 21: 223–247, 1997.
- 44 C. Fermüller Y. Aloimonos Ambiguity in structure from motion: Sphere versus plane, Int. J. Comput. Vision, 1998. In press.
- 45 C. Fermüller L. Cheong Y. Aloimonos Visual space distortion, Biol. Cybern., 77: 323–337, 1997.
- 46 C. Fermüller L. Cheong Y. Aloimonos 3D motion and shape representations in visual servo control, Int. J. Robot. Res., 17: 4–18, 1998.
- 47 C. Fermüller R. Pless Y. Aloimonos Families of stationary patterns producing illusory movement: Insights into the visual system, Proc. Roy. Soc., London B, 264: 795–806, 1997.
- 48 R. Sharma Y. Aloimonos Early detection of independent motion from active control of normal image flow patterns, IEEE Trans. Syst. Man Cybern. B, 26: 42–52, 1996.
- 49 C. J. Duffy R. H. Wurtz Sensitivity of MST neurons to optical flow stimuli I: A continuum of response selectivity to large field stimuli, J. Neurophysiol., 65: 1329–1345, 1991.
- 50 J. H. R. Mausell D. C. V. Essen Functional properties of neurons in middle temporal visual area of the macaque monkey I, Selectivity for stimulus direction, speed and orientation, J. Neurophysiol., 49: 1127–1147, 1983.
- 51 K. Tanaka H.-A. Saito Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells illustrated in the dorsal part of the medial superior temporal area of the macaque monkey, J. Neurophysiol., 62: 626–641, 1989.
- 52 L. G. Ungerleider R. DeSimone Cortical connections of visual area MT in the macaque, J. Compar. Neurol., 248: 190–222, 1986.
- 53 A. Movshon Visual processing of moving images, in H. Barlow, C. Blakemore, and M. Weston-Smith (eds.), Images and Understanding, Cambridge, UK: Cambridge University Press, 1990, pp. 122–137.
- 54 T. S. Collett U. Schwartz E. C. Sobel The interaction of occulomotor cues and stimulus size in stereoscopic death constancy, Perception, 20: 733–754, 1991.
- 55 E. B. Johnston Systematic distortions of shape from stereopsis, Vision Res., 31: 1351–1360, 1991.
- 56 J. Todd F. D. Reichel Ordinal structure in the visual perception and cognition of smoothly curved surfaces, Psychol. Rev., 96: 643–657, 1989.
- 57 C. Fermüller B. Stuart Y. Aloimonos Medusa synthesized, Proc. DARPA Image Understanding Workshop, 1994.
- 58 J. Gårding et al. Binocular stereopsis, vertical disparity and relief transformations, Technical Report TRITA-NA-P9334, CVAP, Royal Institute of Technology, Stockholm, Sweden, 1993.
- 59 J. J. Koenderink A. J. van Doorn Affine structure from motion, J. Opt. Soc. Am., 8: 377–385, 1991.
- 60 P. H. Winston Learning Structural Descriptions from Examples, in P. H. Winston (ed.), The Psychology of Computer Vision, New York: McGraw-Hill, 1975.
- 61 N. K. Logothetis J. Pauls T. Poggio Viewer-centered object recognition in monkeys, Technical Report A.I. Memo 1473, Artificial Intelligence Laboratory and Center for Biological and Computational Learning, Massachusetts Institute of Technology, April, 1994.
- 62 D. W. Jacobs Space efficient 3D model indexing, Proc. IEEE Conf. Comput. Vision Pattern Recognition, 1992, pp. 439–444.
- 63 S. Ullman R. Basri Recognition by linear combination of models, IEEE Trans. Pattern Anal. Mach. Intell., 13: 992–1006, 1991.
- 64 O. D. Faugeras Three-Dimensional Computer Vision, Cambridge, MA: MIT Press, 1992.
- 65 T. Poggio S. Edelman M. Fahle Learning of visual modules from examples: A framework for understanding adaptive visual performance, CVGIP: Image Understanding, 56: 22–30, 1992, in Y. Aloimonos (ed.), Special Issue on Purposive, Qualitative, Active Vision.
- 66 J. J. Koenderink A. J. van Doorn The internal representation of solid shape with respect to vision, Biol. Cybern., 32: 211–216, 1979.
- 67 D. Gabor Theory of communication, J. IEE 93, part III: 429–457, 1946.
- 68 D. I. Perrett et al. Three Stages in the Classification of Body Movements by Visual Neurons, in H. Barlow, C. Blakemore, and M. Weston-Smith (eds.), Images and Understanding, Cambridge, UK: Cambridge University Press, 1990, pp. 94–107.
- 69 R. C. Nelson R. Polana Qualitative recognition of motion using temporal texture, CVGIP: Image Understanding, 1: 33–46, 1992, in Y. Aloimonos (ed.), Special Issue on Purposive, Qualitative, Active Vision.
- 70 E. Shavit A. Jepson Motion using qualitative dynamics, Proc. IEEE Workshop Qualit. Vision, 1993.
- 71 R. Polana R. Nelson Detecting activities, Proc. IEEE Image Understanding Workshop, 1993, pp. 569–574.
- 72 R. J. Qian T. S. Huang Motion analysis of articulated objects, Proc. Int. Conf. Pattern Recognition, 1992, pp. A220–223.
- 73 A. Pentland B. Horowitz S. Sclaroff Non-rigid motion and structure from contour, Proc. IEEE Workshop Visual Motion, 1991, pp. 288–293.
- 74 D. I. Perrett A J. Mistlin M. H. A. Chitty in M. Goodale (ed.), Vision and Action: The Control of Grasping, Norwood, NJ: Ablex, 1988.
- 75 J. Lubbock On the Senses, Instincts, and Intelligence of Animals with Special Reference to Insects, London: K. Paul Trench, 1889.
- 76 K. v. Frisch Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen, Experientia, 5: 142–148, 1949.
- 77 G. Sandini et al. Vision During Action, in Y. Aloimonos (ed.), Active Perception, Hillsdale, NJ: Lawrence Erlbaum Associates, 1993, pp. 151–190.
- 78 M. V. Srinivasan et al. How honeybees measure their distance from objects of unknown size, J. Compar. Physiol. A, 165: 605–613, 1989.
- 79 T. S. Collett et al. Visual landmarks and route following in desert ants, J. Compar. Physiol. A, 170: 435–442, 1992.
- 80 T. S. Collett S. N. Fry R. Wehner Sequence learning by honeybees, J. Compar. Physiol. A, 172: 693–706, 1993.
- 81 R. Wehner Homing in arthropods, in F. Papi (ed.), Animal Homing, London: Chapman and Hall, 1992, pp. 45–144.
- 82 S. Geman E. Bienenstock R. Doursat Neural networks and the bias/variance dilemma, Neural Comput., 4: 1–58, 1992.
- 83 T. Landelius Behavior representation by growing a learning tree, PhD thesis, Department of Electrical Engineering, Linköping University, Sweden, 1993.
- 84 J. Moody C. Darken Fast learning in networks of locally tuned processing units, Neural Computat., 1: 281–293, 1989.
- 85 T. Poggio F. Girosi Networks for approximation and learning, Proc. IEEE, 78: 113–125, 1990.
- 86 S. Omohundro Bumptrees for efficient function, constraint and classification learning, Technical report, International Computer Science Institute, Berkeley, CA, 1991.
- 87 S. Omohundro Best-first model merging for dynamic learning and recognition, Technical report, International Computer Science Institute, Berkeley, CA, 1992.
- 88 J. Hopfield Neural networks and physical systems with emergent collective computational capabilities, Proc. Natl. Acad. Sci., 79: 2554–2558, 1982.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: