Abstract
The article covers the principles and methods of magnetic levitation, including the use of superconductors. Selected applications that are discussed include maglev ground transport, clean-room applications, air and space launch, magnetic bearings, and levitation melting.
Bibliography
- 1 T. B. Jones, M. Washizu, and R. Gans. Simple Theory of the Levitron. J. Appl. Phys. 1997, 82, pp 883–888.
- 2
T. D. Rossing and
J. R. Hull.
Magnetic Levitation.
Phys. Teacher
1991,
29,
pp 552–562.
10.1119/1.2343425 Google Scholar
- 3 S. Earnshaw. On the Nature of the Molecular Forces Which Regulate the Constitution of the Luminferous Ether. Trans. Camb. Philos. Soc. 1842, 7, pp 97–112.
- 4
W. Braunbek.
Freischwebende Korper im Elektrischen und Magnetischen Feld.
Z. Phys.
1939,
112,
pp 753–763.
10.1007/BF01339979 Google Scholar
- 5 A. H. Boerdijk. Technical Aspects of Levitation. Philips Res. Rep. 1956, 11, pp 45–56.
- 6 V. Arkadiev. Hovering of a Magnet over a Superconductor. J. Phys. USSR 1945, 9, p 148. See also V. Arkadiev. A Floating Magnet. Nature 1947, 160, p 330.
- 7 S. Evershed. A Frictionless Motor Meter. J. Inst. Electr. Eng. 1900, 29, pp 743–796.
- 8 E. R. Laithewaite. Linear Electric Machines—A Personal View. Proc. IEEE 1975, 63, pp 250–290.
- 9 W. M. Saslow. How a Superconductor Supports a Magnet, How Magnetically “Soft” Iron Attracts a Magnet, and Eddy Currents for the Uninitiated. Am. J. Phys. 1991, 59, pp 16–25.
- 10 W. M. Saslow. On Maxwell's Theory of Eddy Currents in Thin Conducting Sheets, and Applications to Electromagnetic Shielding and MAGLEV. Am. J. Phys. 1992, 60, pp 693–711.
- 11 J. R. Reitz. Forces on Moving Magnets Due to Eddy Currents. J. Appl. Phys. 1970, 41, pp 2067–2071.
- 12 J. R. Powell and G. T. Danby. Magnetic Suspension for Levitated Tracked Vehicles. Cryogenics 1971, 11, pp 192–204.
- 13 R. H. Frazier, P. J. Gilinson, Jr., and G. A. Oberbeck. Magnetic and Electric Suspensions. MIT Press: Cambridge, MA, 1974.
- 14 M. V. Berry. The Levitron™: An Adiabatic Trap for Spins. Proc. R. Soc. London A 1996, 452, pp 1207–1220.
- 15 M. D. Simon, L. O. Heflinger, and S. L. Ridgway. Spin Stabilized Magnetic Levitation. Am. J. Phys. 1997, 65, pp 286–292.
- 16 J. R. Hull. Efficiency of Passive Magnetic-Confinement Techniques for Rapidly Rotating Rings. J. Appl. Phys. 1985, 58, pp 3594–3600.
- 17
M. V. Berry and
A. K. Geim.
Of Flying Frogs and Levitrons.
Eur. J. Phys.
1997,
18,
pp 307–313.
10.1088/0143-0807/18/4/012 Google Scholar
- 18 E. H. Brandt. Rigid Levitation and Suspension of High-Temperature Superconductors by Magnets. Am. J. Phys. 1990, 58, pp 43–49.
- 19 F. C. Moon. Superconducting Levitation. John Wiley & Sons, Inc.: New York, 1994.
- 20 J. Hull. Superconducting Bearings. Supercond. Sci. Technol. 2000, 13, pp R1–R14.
- 21 J. R. Hull. Superconducting Levitation. In Engineering Superconductivity; P. J. Lee, Ed.; John Wiley & Sons, Inc.: New York, 2001; pp 563–568.
- 22 J. R. Hull. Levitation. In Handbook of Superconducting Materials; D. Cardwell; D. Ginley, Eds.; Institute of Physics Publishing: Bristol, UK, 2002; Chapter E2.1.
- 23 J. R. Hull. Superconducting Bearings. In Properties, Processing, and Applications of YBCO and Related Materials; W. Lo; A. M. Campbell, Eds.; IEE Books: Stevenage, UK, 2002; Chapter 9.4.
- 24 K. B. Ma, Y. V. Postrekhin, and W. K. Chu. Superconductor and Magnet Levitation Devices. Rev. Sci. Instrum. 2003, 74, pp 4989–5017.
- 25
J. R. Hull.
Levitation Applications of High-Temperature Superconductors. In
High Temperature Superconductivity 2: Engineering Applications;
A. V. Narlikar, Ed.;
Springer:
Berlin,
2004;
pp 91–142.
10.1007/978-3-662-07764-1_6 Google Scholar
- 26 J. R. Hull and M. Murakami. Applications of Bulk High-Temperature Superconductors. Proc. IEEE 2004, 92, pp 1705–1718.
- 27 F. N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, and P. Schirrmeister. Superconductor Bearings, Flywheels and Transportation. Supercond. Sci. Technol. 2012, 25, p 014007.
- 28 J. R. Hull and A. Cansiz. Vertical and Lateral Forces Between a Permanent Magnet and a High-Temperature Superconductor. J. Appl. Phys. 1999, 86, pp 6396–6404.
- 29 C. P. Bean. Magnetization of Hard Superconductors. Phys. Rev. Lett. 1962, 8, pp 250–253.
- 30 C. P. Bean. Magnetization of High-Field Superconductors. Rev. Mod. Phys. 1964, 36, pp 31–39.
- 31 Z. Hong, Ph. Vanderbemden, R. Pei, Y. Jiang, A. M. Campbell, and T. A. Coombs. The Numerical Modeling and Measurement of Demagnetization Effect in Bulk YBCO Superconductors Subjected to Transverse Field. IEEE Trans. Appl. Supercond. 2008, 18, pp 1561–1564.
- 32 G. G. Goncalves, D. H. N. Dias, R. de Andrade, Jr., R. M. Stephan, N. Del-Valle, A. Sanchez, C. Navau, and D. X. Chen. Experimental and Theoretical Levitation Forces in a Superconducting Bearing for a Real-Scale Maglev System. IEEE Trans. Appl. Supercond. 2011, 21, pp 3532–3540.
- 33 R. Thornton. Efficient and Affordable Maglev Opportunities in the United States. Proc. IEEE 2009, 97, pp 1901–1921.
- 34 E. R. Laithwaite. Transport Without Wheels. Elek Science: London, 1977.
- 35 R. G. Rhodes and B. E. Mulhall. Magnetic Levitation for Rail Transport. Clarendon Press: Oxford, 1981.
- 36 B. V. Jayawant. Electromagnetic Suspension and Levitation. Rep. Prog. Phys. 1981, 144, pp 411–477. See also B. V. Jayawant. Electromagnetic Suspension and Levitation Techniques. Proc. R. Soc. London A 1988, 416, pp 245–320.
- 37 J. R. Hull. Magnetic Levitation. In Encyclopedia of Electrical and Electronics Engineering, Vol. 11; J. G. Webster, Ed.; John Wiley & Sons, Inc.: New York, 1999; pp 740–747.
- 38 S. Nishijima, S. Eckroad, A. Marian, K. Choi, W. S. Kim, M. Terai, Z. Deng, J. Zheng, J. Wang, K. Umemoto, J. Du, P. Febvre, S. Keenan, O. Mukhanov, L. D. Cooley, C. P. Foley, W. V. Hassenzahl, and M. Izumi. Superconductivity and the Environment: A Roadmap. Supercond. Sci. Technol. 2013, 26, p 113001.
- 39 S. Yokoyama, K. Shimohata, T. Inaguchi, T. Kim, S. Nakamura, S. Miyashita, and F. Uchikawa. A Conceptual Design for a Superconducting Magnet for Maglev Using a Bi-Based High-Tc Tape. IEEE Trans. Appl. Supercond. 1995, 5, pp 610–613.
- 40 Y. Sanagawa, H. Ueda, M. Tsuda, A. Ishiyama, S. Kohayashi, and S. Haseyama. Characteristics of Lift and Restoring Force in HTS Bulk—Application to Two-Dimensional Maglev Transportation. IEEE Trans. Appl. Supercond. 2001, 11, pp 1797–1800.
- 41 H. Fujimoto, H. Kamijo, T. Higuchi, Y. Nakamura, K. Nakashima, M. Murakami, and S. Yoo. Preliminary Study of a Superconducting Bulk Magnet for the Maglev Train. IEEE Trans. Appl. Supercond. 1999, 9, pp 301–304.
- 42 J. H. Durrell, A. R. Dennis, A. J. Jaroszynski, M. D. Ainslie, K. G. B. Palmer, Y.-H. Shi, A. M. Campbell, J. Hull, M. Strasik, E. Hellstrom, and D. A. Cardwell. A Trapped Field of 17.6 T in Melt-Processed, Bulk Gd–Ba–Cu–O Reinforced with Shrink-Fit Steel. Supercond. Sci. Technol. 2014, 27, p 082001.
- 43 J. S. Wang, S. Y. Wang, Z. Y. Ren, M. Zhu, H. Jiang, and Q. X. Tang. Levitation Force of a YBaCuO Bulk High Temperature Superconductor over a NdFeB Guideway. IEEE Trans. Appl. Supercond. 2001, 11, pp 1801–1804.
- 44 J. Wang, S. Wang, Z. Ren, X. Dong, G. Lin, J. Lian, C. Zhang, H. Huang, C. Deng, and D. Zhu. Preliminary Study of a Superconducting Bulk Magnet for the Maglev Train. IEEE Trans. Appl. Supercond. 1999, 9, pp 904–907.
- 45 H. Kamijo, T. Higuchi, H. Fujimoto, H. Ichikawa, and T. Ishigohka. Flux-Trapping Characteristics of Oxide Superconducting Bulks in Array. IEEE Trans. Appl. Supercond. 1999, 9, pp 976–979.
- 46 T. Ishigohka, H. Ichikawa, A. Ninomiya, H. Kamijo, and H. Fujimoto. Flux Trapping Characteristics of YBCO Bulks Using Pulse Magnetization. IEEE Trans. Appl. Supercond. 2001, 11, pp 1980–1983.
- 47 J. Wang, S. Wang, Y. Zeng, H. Huang, F. Luo, Z. Xu, Q. Tang, G. Lin, C. Zhang, Z. Ren, G. Zhao, D. Zhu, S. Wang, H. Jiang, M. Zhu, C. Deng, P. Hu, C. Li, F. Liu, J. Lian, H. Wang, L. Wang, Z. Shen, and X. Dong. The First Man-Loading High Temperature Superconducting Maglev Test Vehicle in the World. Physica C 2002, 378–381, pp 809–814.
- 48 L. Schultz, O. deHaas, P. Verges, C. Beyer, S. Roehlig, H. Olsen, L. Kuehn, D. Berger, and U. Noteboom-Funk. Superconductively Levitated Transport System—The Supratrans Project. IEEE Trans. Appl. Supercond. 2005, 15, pp 2301–2305.
- 49 G. G. Sotelo, D. H. N. Dias, R. de Andrade, Jr., and R. M. Stephan. Tests on a Superconductor Linear Magnetic Bearing of a Full-Scale Maglev Vehicle. IEEE Trans. Appl. Supercond. 2011, 21, pp 1464–1468.
- 50 R. L. Forgacs. Evacuated Tube Vehicles Versus Jet Aircraft for High-Speed Transportation. Proc. IEEE 1973, 61, pp 604–617.
- 51 S. Wang, J. Wang, Z. Ren, H. Jiang, M. Zhu, X. Wang, and Q. Tang. Levitation Force of Multi-Block YBaCuO Bulk High Temperature Superconductors. IEEE Trans. Appl. Supercond. 2001, 11, pp 1808–1811.
- 52 C. Beyer, O. deHaas, V. Verges, and L. Schultz. Guideway and Turnout Switch for Supratrans Project. J. Phys. Conf. Ser. 2006, 43, pp 991–994.
- 53 H. Jing, J. Wang, S. Wang, L. Wang, L. Liu, J. Zheng, Z. Deng, G. Ma, Y. Zhang, and J. Li. A Two-Pole Halbach Permanent Magnet Guideway for High Temperature Superconducting Maglev Vehicle. Physica C 2007, 463, pp 426–430.
- 54 Z. Deng, J. Wang, J. Zheng, Q. Lin, Y. Zhang, and S. Wang. Maglev Performance of a Double-Layer Bulk High Temperature Superconductor Above a Permanent Magnet Guideway. Supercond. Sci. Technol. 2009, 22, p 055003.
- 55 G. G. Goncalves, D. H. N. Dias, R. de Andrade, Jr., R. M. Stephan, N. Del-Valle, A. Sanchez, C. Navau, and D.-X. Chen. Experimental and Theoretical Levitation Forces in a Superconducting Bearing for a Real-Scale Maglev System. IEEE Trans. Appl. Supercond. 2011, 21, pp 3532–3540.
- 56 H. Minami and J. Yuyama. Construction and Performance Test of a Magnetically Levitated Transport System in Vacuum Using High-Tc Superconductors. Jpn. J. Appl. Phys. 1995, 34, pp 346–349.
- 57 J. Olds and P. Bellini. Argus, a Highly Reusable SSTO Rocket-Based Combined Cycle Launch Vehicle with Maglifter Launch Assist, in AIAA 8th International Space Planes and Hypersonic Systems and Technologies Conference; Norfolk, VA, 1998; AIAA 9801557.
- 58 J. Dill and D. Meeker. Maglifter Tradeoff Study and Subscale System Demonstrations, NAS-98069-1362, 2000.
- 59 W. A. Jacobs. Magnetic Launch Assist—NASA's Vision for the Future. IEEE Trans. Magn. 2001, 37, pp 55–57.
- 60 J. Schultz, A. Radovinsky, R. Thome, B. Smith, and J. Minervini. Superconducting Magnets for Maglifter Launch Assist Sleds. IEEE Trans. Appl. Supercond. 2001, 11, pp 1749–1752.
- 61 J. C. Mankins. Highly Reusable Space Transportation: Advanced Concepts and the Opening of the Space Frontier. Acta Astronaut. 2002, 51, pp 727–742.
- 62 J. Powell, G. Maise, J. Paniagua, and J. Rather. Maglev Launch and the Next Race to Space, IEEEAC Paper No. 1536, ver. 7, 2008. See also J. Powell and G. Maise. Space tram U.S. Patent 6,311,926, 2001.
- 63 I. R. McNab. Launch to Space with an Electromagnetic Railgun. IEEE Trans. Magn. 2003, 39, pp 295–304.
- 64 J. R. Hull, J. Fiske, K. Ricci, and M. Ricci. Analysis of Levitational Systems for a Superconducting Launch Ring. IEEE Trans. Appl. Supercond. 2007, 17, pp 2117–2120.
- 65 Y. Hsu, A. Langhorn, D. Ketchen, L. Holland, D. Minto, and D. Doll. Magnetic Levitation Upgrade to the Holloman High Speed Test Track. IEEE Trans. Appl. Supercond. 2009, 19, pp 2074–2077.
- 66 W. Yang, Z. Wen, Y. Duan, X. Chen, M. Qiu, Y. Liu, and L. Lin. Construction and Performance of HTS Maglev Launch Assist Test Vehicle. IEEE Trans. Appl. Supercond. 2006, 16, pp 1108–1111.
- 67 M. Qiu, W. Wang, Z. Wen, L. Lin, G. Yang, and Y. Liu. Experimental Study and Optimization of HTS Bulk Levitation Unit for Launch Assist. IEEE Trans. Appl. Supercond. 2006, 16, pp 1120–1123.
- 68 J. Wang, S. Wang, C. Deng, J. Zheng, H. Song, Q. He, Y. Zeng, Z. Deng, J. Li, G. Ma, Y. Huang, J. Zhang, Y. Lu, L. Liu, L. Wang, J. Zhang, L. Zhang, M. Liu, Y. Qin, and Y. Zhang. Laboratory-Scale High Temperature Superconducting Maglev Launch System. IEEE Trans. Appl. Supercond. 2007, 17, pp 2091–2094.
- 69 J. Wang, S. Wang, and J. Zheng. Recent Development of High Temperature Superconducting Maglev System in China. IEEE Trans. Appl. Supercond. 2009, 19, pp 2142–2147.
- 70 W. Yang, G. Li, J. Ma, X. Chao, and J. Li. A Small High-Temperature Superconducting Maglev Propeller System Model. IEEE Trans. Appl. Supercond. 2010, 20, pp 2317–2321.
- 71 J. Hull, M. Strasik, J. Mittleider, J. Gonder, P. Johnson, K. McCrary, and C. McIver. High Rotational-Rate Rotors with High-Temperature Superconducting Bearings. IEEE Trans. Appl. Supercond. 2009, 19, pp 2078–2082.
- 72 M. Strasik, J. R. Hull, J. A. Mittleider, J. F. Gonder, P. E. Johnson, K. E. McCrary, and C. R. McIver. Overview of Boeing Flywheel Energy-Storage Systems with High-Temperature Superconducting Bearings. Supercond. Sci. Technol. 2010, 23, p 034021.
- 73 B. R. Johnson, J. Collins, M. E. Abroe, P. A. R. Ade, J. Bock, J. Borrill, A. Boscaleri, P. de Bernardis, S. Hanany, A. H. Jaffe, T. Jones, A. T. Lee, L. Levinson, T. Matsumura, B. Rabii, T. Renbarger, P. L. Richards, G. F. Smoot, R. Stompor, H. T. Tran, C. D. Winant, J. H. P. Wu, and J. Zuntz. MAXIPOL: Cosmic Microwave Background Polarimetry Using a Rotating Half-Wave Plate. Astrophys. J. 2007, 665, pp 42–54.
- 74 T. Takazakura, R. Sakaguchi, and T. Sugiura. Experimental Study of Suppressing a Parametric Resonance in a HTSC Levitation System by a Horizontal Pendulum. IEEE Trans. Appl. Supercond. 2013, 23, p 3600204.
- 75 M. Sasaki, T. Takabayashi, and T. Sugiura. Transition Between Nonlinear Oscillations of an Elastic Body Levitated Above High-Tc Superconducting Bulks. IEEE Trans. Appl. Supercond. 2013, 23, p 3600604.
- 76 R. Amano, S. Kamada, and T. Sugiura. Dynamics of a Flexible Rotor with Circumferentially Non-Uniform Magnetization Supported by a Superconducting Magnetic Bearing. IEEE Trans. Appl. Supercond. 2013, 23, p 5202104.
- 77 Y. Yubisui, S. Kobayashi, R. Amano, and T. Sugiura. Effects of Nonlinearity of Magnetic Force on Passing Through a Critical Speed of a Rotor with a Superconducting Bearing. IEEE Trans. Appl. Supercond. 2013, 23, p 5202205.
- 78 H. Tadano, M. Fujita, K. Nagamatsu, and A. Fukuzawa. Levitational Melting of Several Kilograms of Metal with a Cold Crucible. IEEE Trans. Magn. 1994, 30, pp 4740–4743.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: