Abstract
Magnetic losses in static and rotating electrical machine cores, most commonly assembled from electrical steel strip or laminations, consume more than 5% of all the generated electrical energy. The origins of the losses and the merits and pitfalls of traditional approaches to separation into classical eddy current and hysteresis components are described. Physical and structural characteristics of nonoriented and grain-oriented electrical steels that have the greatest influence on their losses are discussed. Limitations of present-day approaches to measurement or computational analysis of flux distributions and losses in electrical machine cores are summarized prior to explaining the occurrence of additional eddy current losses due to practical factors, such as flux harmonics, mechanical stress, sheet edge burrs, and rotational magnetization occurring in core joints.
Bibliography
- 1 A. J. Moses. Opportunities for Exploitation of Magnetic Materials in an Energy Conscious World. Interdiscipl. Sci. Rev. 2002, 27, pp 100–113.
- 2 R. Boll. Soft Magnetic Materials—The Vacuumschmelze Handbook. Heyden & Jones Ltd.: London, 1979.
- 3
R. M. Bozorth.
Ferromagnetism.
IEEE Press:
New York,
1993 (Reissue).
10.1109/9780470544624 Google Scholar
- 4
A. Goldman.
Handbook of Modern Ferromagnetic Materials.
Kluwer Academic Publishers:
Boston, MA,
1999.
10.1007/978-1-4615-4917-8 Google Scholar
- 5 C. Appino, O. Bottauscio, O. de la Barriere, F. Fiorillo, A. Manzin, and C. Ragusa. Computation of Eddy Current Losses in Soft Magnetic Composites. IEEE Trans. Magn. 2012, 48 (5), pp 3470–3473.
- 6 A. Russell. Alternating Currents. Cambridge University Press, 1914.
- 7 F. Brailsford. Physical Principles of Magnetism. D. Van Nostrand: London, 1966.
- 8 J. J. Thomson. On the Heat Produced by Eddy Currents in an Iron Plate Exposed to an Alternating Magnetic Field. Electrician 1892, 28, pp 599–600.
- 9 R. H. Pry and C. P. Bean. Calculation of the Energy Loss in Magnetic Sheet Material Using a Domain Model. J. Appl. Phys. 1958, 29, pp 532–533.
- 10 Y. Sakaki. How to Describe Eddy Current Loss Properties in Soft Magnetic Cores. Int. J. Appl. Electromagn. Mater. 1990, 1, pp 209–215.
- 11 G. Bertotti. Hysteresis in Magnetism for Physicists, Scientists and Engineers. Academic Press: San Diego, CA, 1998.
- 12 A. J. Moses. Energy Efficient Electrical Steels: Magnetic Performance Prediction and Optimization. Scr. Mater. 2012, 67, pp 560–565.
- 13 H. Barkhausen. Two Phenomena Uncovered with Help of New Amplifiers. Phys. Z. 1919, 20, p. 4013.
- 14 J. E. L. Bishop. Enhanced Eddy Current Loss Due to Domain Displacement. J. Magn. Magn. Mater. 1988, 49, pp 241–249.
- 15 A. J. Moses, F. J. G. Landgraf, K. Hartmann, and T. Yonamine. Correlation Between Angular Dependence of A.C. Barkhausen Noise and Hysteresis Loss in a Non-Oriented Electrical Steel. Stahleisen 2004, pp 215–219.
- 16 F. Brailsford and R. Fogg. Anomalous Iron Losses in Cold Reduced, Grain-Oriented Transformer Steel at Very Low Frequencies. Proc. IEE 1966, 113, pp 1562–1564.
- 17 N. F. Astbury. Industrial Magnetic Testing. The Institute of Physics: London, 1952.
- 18 IEC Standard 404-2: Methods of Measurement of Magnetic, Electrical and Physical Properties of Magnetic Sheet and Strip. IEC, 1996.
- 19 F. Brailsford and V. P. Mazza. Magnetic Flux Distribution in Transformer Laminations. J. IEE 1962, 85, pp 552–553.
- 20 A. J. Moses. Characterisation and Performance of Electrical Steels for Power Transformers Operating Under Extremes of Magnetisation Conditions, in CIGRE International Colloquium Transformer Research and Asset Management; Cavtat, Croatia, November 12–14, 2009.
- 21 J. D. Lavers, P. P. Biringer, and H. Hollitscher. Estimate of Core Losses When the Flux Waveform Contains the Fundamental Plus a Single Odd Harmonic Component. IEEE Trans. Magn. 1978, 13, pp 1128–1130.
- 22 M. Amar and R. Kaszmarek. A General Formula for Prediction of Iron Losses Under Nonsinusoidal Voltage Waveform. IEEE Trans. Magn. 1995, 31, pp 2504–2509.
- 23 A. J. Moses. Electrical Steels: Past, Present and Future Developments. IEE Proc. 1990, 137, pp 233–245.
- 24 T. Nozawa, M. Mizogami, H. Mogi, and Y. Matsuo. Magnetic Properties and Dynamic Domain Behaviour in Grain-Oriented 3% SiFe. IEEE Trans. Magn. 1996, 32, pp 572–589.
- 25 H. Haiji, K Okada, T. Hiratani, M. Abe, and M. Ninomiya. Magnetic Properties and Workability of 6.5% Si Steel Sheet. J. Magn. Magn. Mater. 1996, 160, pp 109–114.
- 26 Y. Oda, M. Kohno, and A. Honda. Recent Development of Non-Oriented Electrical Steel Sheet for Automobile Electrical Devices. J. Magn. Magn. Mater. 2008, 320, pp 2430–2435.
- 27 M. Namikawa, H. Ninomiya, Y. Tanaka, and Y. Takada. Magnetic Properties of 6.5% Silicon Steel Sheet Under PWM Voltage Excitation. IEEE Trans. Magn. 1998, 34, pp 1183–1184.
- 28 A. J. Moses. Development of Alternative Magnetic Core Materials and Incentives for Their Use. J. Magn. Magn. Mater. 1992, 112, pp 150–155.
- 29 K. Jenkins and M. Lindenmo. Precipitates in Electrical Steels. J. Magn. Magn. Mater. 2008, 320, pp 2423–2429.
- 30 J. W. Shilling and G. L. Houze. Magnetic Properties and Domain Structures in Grain-Oriented 3% Si-Fe. IEEE Trans. Magn. 1974, M10, pp 195–223.
- 31 G. Bertotti. General Properties of Power Losses in Soft Magnetic Ferromagnetic Materials. IEEE Trans. Magn. 1988, 24, pp 621–630.
- 32 F. Fiorillo and A. Novikov. An Improved Approach to Power Losses in Magnetic Laminations Under Non-Sinusoidal Induction Waveform. IEEE Trans. Magn. 1990, 26, pp 2904–2910.
- 33 G. P. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham, and A. Werstein. Matrix Converters: A Technology Review. IEEE Trans. Magn. 2002, 49, pp 276–288.
- 34 E. Barbisio F. Fiorillo, and C. Ragusa. Predicting Loss in Magnetic Steels Under Arbitrary Waveform with Minor Loops. IEEE Trans. Magn. 2004, 40, pp 1810–1819.
- 35 R. Kaczmarek, M. Amar, and F. Protat. Iron Loss Under PWM Voltage Supply on Epstein Frame and in Induction Motor Core. IEEE Trans. Magn. 1996, 32, pp 189–194.
- 36 A. Boglietti, A., Cavagnino, M., Lazzari, and M., Pasorelli. Predicting Iron Losses in Soft Magnetic Materials with Arbitrary Voltage Supply: An Engineering Approach. IEEE Trans. Magn. 2003, 39, pp 981–989.
- 37 J. Sagarduy, A. J. Moses, and F. Anayi. Eddy Current Losses in Electrical Steels Subjected to Matrix and Classical PWM Excitation Waveforms. IEEE Trans. Magn. 2006, 42, pp 2818–2820.
- 38 H. Winner, W. Naber, R. Sander, and W. Grosse-Nobis. Dynamic and Hysteresis Losses. Phys. Scr. 1989, 39, pp 666–669.
- 39 S. E. Zirka, Y. I. Moroz, P. Marketos, and A. J. Moses. Loss Separation in Nonoriented Electrical Steels. IEEE Trans. Magn. 2010, 46, pp 286–289.
- 40 S. E. Zirka, Y. I. Moroz, P. Marketos, and A. J. Moses. Viscosity-Based Magnetodynamic Model of Soft Magnetic Materials. IEEE Trans. Magn. 2006, 42, pp 2121–2132.
- 41 L. R. Dupre, O. Bottauscio, M. Chiampi, M. Reppeto, and J. A. A. Melkebeek. Modeling of Electromagnetic Phenomena in Soft Magnetic Material Under Unidirectional Time Periodic Flux Excitation. IEEE Trans Magn. 1999, 35, pp 4181–4184.
- 42 O. Bottauscio, M. Chiamp, and D. Chiarbaglioetic. Iron Losses in Soft Magnetic Materials Under Periodic Non-Sinusoidal Supply Conditions. Phy. B 2000, 275, pp 191–196.
- 43 S. E. Zirka, Y. I. Moroz, P. Marketos, and A. J. Moses. Comparison of Engineering Methods of Loss Prediction in Thin Ferromagnetic Laminations. J. Magn. Magn. Mater. 2008, 320, pp 2504–2508.
- 44 S. E. Zirka, Y. I. Moroz, P. Marketos, A. J. Moses, D. C. Jiles, and T. Matsuo. Generalization of the Classical Method for Calculating Dynamic Hysteresis Loops in Grain-Oriented Electrical Steels. IEEE Trans. Magn. 2008, 44, pp 2113–2508.
- 45 A. J. Moses. Importance of Rotational Losses in Rotating Machines and Transformers. J. Mater. Eng. Perform. 1992, 1 (2), pp 236–244.
- 46 Y. Alinejad-Beromi, A. J. Moses, and T. Meydan. New Aspects of Rotating Field and Flux Measurement in Electrical Steel. J. Magn. Magn. Mater. 1992, 112, pp 135–138.
- 47 C. Ragusa, C. Appino, and F. Fiorillo. Comprehensive Investigation of Alternating and Rotational Losses in Non-Oriented Steel Sheets. Prz. Elekrotech. 2009, 85, pp 7–10.
- 48 A. J. Moses. Effect of Stresses on Magnetic Properties of Silicon–Iron Laminations. J. Mater. Sci. 1974, 9, pp 217–222.
- 49 A. J. Moses and P. S. Phillips. Some Effect of Stress in Goss-Oriented Silicon Iron. IEEE Trans. Magn. 1978, 14, pp 353–355.
- 50 D. A. Ball and H. O. Lorch. An Improved Thermometric Method of Measuring Local Power Dissipation. J. Sci. Instrum. 1965, 42, pp 90–93.
- 51 R. Mazurek, P. Marketos, A. Moses, and T. Belgrand. Development of Sensors for Measurement of Localised Flux Density in Transformer Cores. Sensors Lett. 2013, 11, pp 56–58.
- 52 J. J. Dalton, J. Liu, A. J. Moses, D. H. Horrocks, and A. Basak. A Virtual Instrumentation Based Magnetic Test System. Stud. Appl. Electromagn. Mech. 1996, 10, pp 792–795.
- 53 A. J. Moses. Classical and Practical Approaches to Electromagnetic Field Solutions in Magnetic Devices. Int. J. Appl. Electromagn. Mech. 1995, 6, pp 1–8.
- 54 A. J. Moses. Factors Affecting Localised Flux and Iron Loss Distribution in Laminated Cores. J. Magn. Magn. Mater. 1984, 41, pp 409–414.
- 55 A. J. Moses and B. Thomas. The Spatial Variation of Localised Power Loss in Two Practical Transformer T-Joints. IEEE Trans. Magn. 1973, 9, pp 655–659.
- 56 M. A. Jones, A. J. Moses, and J. E. Thompson. Flux Distribution and Power Loss in the Mitred Overlap Joint in Power Transformer Cores. IEEE Trans. Magn. 1973, 9, pp 114–122.
- 57 M. Chiampi, A. L. Negro, and M. Tartagia. Alternating Electromagnetic Field Computation in Laminated Cores. IEEE Trans. Magn. 1983, 19, pp 1530–1536.
- 58 X. G. Yao, A. J. Moses, J. Sagarduy, and F. J. Anayi. Influence of Switching Frequency on Eddy-Current Losses in a Three-Phase, Three-Limb Transformer Core Subjected to PWM Voltage Excitation, in POWERGEN Conference; Setubal, Portugal, April 2007, pp 324–329.
- 59 G. S. Radley and A. J. Moses. Apparatus for Experimental Simulation of Magnetic Flux and Power Loss in a Turbo-Generator Stator Core. IEEE Trans. Magn. 1981, 17, pp 1311–1316.
- 60 E. Lamprecht and R. Graf. Fundamental Investigations of Eddy Current Losses in Laminated Stator Cores Created Through the Impact of Manufacturing Processes, in Electric Drives Production Conference (EDPC); 2011, pp 29–35.
- 61 R. Mazurek, H. Hamzehbahmani, A. J. Moses, P. I. Anderson, F. J. Anayi, and T. Belgrand. Effect of Artificial Burrs on Local Power Loss in a Three-Phase Transformer Core. IEEE Trans. Magn. 2012, 48, pp 1653–1656.
- 62 R. Mazurek, P. Marketos, A. J. Moses, and J.-N. Vincent. Effect of Artificial Burrs on the Total Power Loss of a Three-Phase Transformer Core. IEEE Trans. Magn. 2010, 46, pp 638–641.
Citing Literature
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: