Abstract
The sections in this article are
- 1 Logic
- 2 Graphical Probabilistic Models
- 3 Belief Networks
- 4 Conclusion
- 5 Appendix
Bibliography
- 1 M. R. Genesereth N. J. Nilsson Logical Foundations of Artificial Intelligence, San Francisco, CA: Morgan Kaufmann, 1987.
- 2 W. L. Buntine Operations for learning with graphical models, J. Artif. Intell. Res., 2: 159–225, 1995.
- 3 J. Pearl Probabilistic Reasoning in Intelligent Systems, San Francisco, CA: Morgan Kaufmann, 1988.
- 4
P. Walley
Statistical Reasoning with Imprecise Probabilities,
Melbourne:
Chapman and Hall,
1991.
10.1007/978-1-4899-3472-7 Google Scholar
- 5 H. Raiffa Decision Analysis: Introductory Lectures on Choices Under Uncertainty, New York: Random House, 1968.
- 6 A. P. Dempster A generalization of Bayesian inference, J. Royal Stat. Soc., 30: 205–247, 1968.
- 7
G. Shafer
A Mathematical Theory of Evidence,
Princeton:
Princeton University Press,
1976.
10.1515/9780691214696 Google Scholar
- 8 E. H. Shortliffe Computer-Based Medical Consultation: MYCIN, New York: Elsevier, 1976.
- 9 R. O. Duda P. E. Hart N. J. Nilsson Subjective Bayesian methods for rule-based inference systems, Proc. Natl. Comput. Conf. (AFIPS) 45: 1075–1082, 1976.
- 10 G. D. Kleiter Bayesian diagnosis in expert systems, Artif. Intell., 54: 1–34, 1992.
- 11 R. Musick Belief Network Induction, Ph.D. Dissertation U.C. Berkeley, 1994.
- 12 G. F. Cooper E. Herskovits A Bayesian method for the induction of probabilistic networks from data, Machine Learning, 9: 309–347, 1992.
- 13 G. F. Cooper A method for learning belief networks that contain hidden variables, Technical Report SMI-93-04, University of Pittsburgh, 1993.
- 14 J. York D. Madigan Markov chain Monte Carlo methods for hierarchical Bayesian expert systems, Proc. 4th Int. Workshop Artificial Intell. Stat., 433–439, Menlo Park, CA, 1993.
- 15 M. H. DeGroot Probability and Statistics, 2nd ed., Reading, MA: Addison-Wesley, 1986.
- 16 P. Dagum M. Luby Approximating probabilistic inference in Bayesian belief networks is NP-hard, Artif. Intell., 60 (1): 141–153, 1993.
- 17 S. M. Olmstead On Representing and Solving Decision Problems, Ph.D. Thesis, Stanford: Stanford University, 1983.
- 18 M. Henrion An introduction to algorithms for inference in belief nets. In M. Henrion, R. D. Shachter, and J. F. Lemmer (eds.), Uncertainty in Artificial Intelligence 5, North-Holland: Elsevier Science Publishers, 1990.
- 19 J. S. Breese E. J. Horvitz Ideal reformulation of belief networks, Proc. 6th Conf. Uncertainty Artif. Intell., 1990.
- 20 F. V. Jensen K. G. Olesen S. K. Andersen An algebra of Bayesian belief universes for knowledge-based systems, Networks, 20 (5): 637–659, 1990.
- 21 A. Darwiche G. Provan Query DAGs: A practical paradigm for implementing belief network inference, J. Artif. Intell. Res., 6: 147–176.
- 22 L. Stewart Hierarchical Bayesian analysis using Monte Carlo integration: Computing posterior distributions when there are many possible models, The Statistician, 36: 211–219, 1987.
- 23 K. C. Chang R. Fung Refinement and coarsening of Bayesian networks, Proc. 6th Conf. Uncertainty Artif. Intell., 1990.
- 24 J. O. Berger The robust Bayesian viewpoint, in J. B. Kadane (ed.), Robustness of Bayesian Analyses, Amsterdam: Elsevier Science, 1984.
- 25 D. Heckerman M. Wellman A. Mamdani (eds.) Special issue on uncertainty in AI, Commun. ACM, 38: 3.
- 26 S. L. Lauritzen B. Thiesson D. J. Spegelhalter Diagnostic systems created by model selection methods—a case study, 4th Int. Workshop Artif. Intell. Stat., 1992.
- 27 S. L. Lauritzen Propagation of probabilities, means and variances in mixed graphical association models, J. Amer. Stat. Assoc., 87 (20): 1098–1108, 1992.
- 28 A. V. Kozlov D. Koller Nonuniform dynamic discretization in hybrid networks, Proc. 13th Conf. Uncertainty Artif. Intell., Brown University, 1997.
- 29 A. Samuel Some studies in machine learning using the game of checkers. In E. A. Feigenbaum and J. Feldman (ed.), Computers and Thought, New York: McGraw-Hill, 1963.
- 30 R. Musick Rethinking the learning of belief network probabilities, Proc. 3rd Conf. Knowledge Discovery Databases, 1996.
- 31 R. Musick Maintaining inference distributions in belief nets, Proc. 9th Conf. Uncertainty Artif. Intell., 1993.
- 32 R. A. Howard J. E. Matheson Influence diagrams, in R. A. Howard and J. E. Matheson (eds.), Readings on the principles and applications of decision analysis, volume 2, 721–762, Menlo Park: Strategic Decisions Group, 1981.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: