Abstract
The sections in this article are
- 1 Position and Direction on Earth, Compasses and Gyros
- 2 Direction Finding in The Earth’S Magnetic Field, Error Sources, and Gyro Operation
- 3 More Detailed Analysis of The Earth’S Magnetic Field, Coordinate Systems, and New Developments
Bibliography
- 1 A. E. Siegman Lasers, Mill Valley, CA: Univ. Sci. Books, 1986.
- 2 Newsweek, Feb. 2, p. 12, 1998.
- 3 K. Hotate Fiber optic gyros, Photonics Spectra, 108–112, April 1997.
- 4 J. A. Jacobs (ed.) Geomagnetism, vols. 1–4, London: Academic Press, 1987.
- 5 T. Feder Congress chills hopes for polar cap observatory, Phys. Today, 53–54, July 1998.
- 6 G. Hochstrasser Détermination de formes et de largeurs de raies très fines en résonance magnétique nucléaire, Helv. Phys. Acta 34: 189–239, 1961.
- 7 E. S. Maloney Dutton’s Navigation and Piloting, 13th ed., Annapolis, MD: Naval Institute Press, 1981.
- 8 F. Jueneman Magnetic north by northwest, R&D Mag., 13, September, 1997.
- 9 S. Chapman J. Bartels Geomagnetism, vol. I, Oxford, UK: Clarendon Press, reprint 1951.
- 10 D. K. Cheng Field and Wave Electromagnetics, 2nd ed., Reading, MA: Addison-Wesley, 1992.
- 11 Defense Mapping Agency Hydrographic/Topographic Center, Handbook of Magnetic Compass Adjustment and Compensation, DMAHTC Publication No. 226.
- 12 Director, Defense Mapping Agency Hydrographic Center, Washington, DC, American Practical Navigator, vol. I–II.
- 13 W. M. Smart Textbook on Spherical Astronomy, 6th ed., revised by R. M. Green, Cambridge, UK: Cambridge Univ. Press, reprinted 1979.
- 14 J. C. Smith F. G. Smith The American Ephemeris and Nautical Almanac for the year 1980, Washington DC: U.S. Government Printing Office, 1979.
- 15 R. Anderson H. R. Bilger G. E. Stedman “Sagnac” effect: A century of earth-rotated interferometers, Am. J. Phys., 62: 975–985, 1994.
- 16 F. Hasselbach M. Nicklaus Sagnac experiment with electrons: Observation of the rotational phase shift of electrons in vacuum, Phys. Rev. A, 48: 143–151, 1993.
- 17 P. Bouyer T. L. Gustavson M. A. Kasevich Development of an atom interferometer gyroscope, presented at Cairns, Australia, July, 1996.
- 18 R. E. Packard S. Vitale Principles of superfluid-helium gyroscopes, Phys. Rev. B, 46: 3540–3549, 1992.
- 19 Anonymous, Orbiting gyro test of general relativity, Phys. Today, 20–22, May 1984.
- 20 B. Culshaw J. Dakin (eds.) Optical Fiber Sensors, vol. IV, Norwood, MA: Artech House, 1997.
- 21 H. Statz et al. The multioscillator ring laser gyroscope, in M. L. Stitch and M. Bass (eds.), Laser Handbook, vol. 4, Amsterdam: North-Holland, 1985, pp. 229–332.
- 22 G. E. Stedman et al. Harmonic analysis in a large ring laser with backscatter-induced pulling, Phys. Rev. A, 51: 4944–4958, 1995.
- 23 M. R. Sayeh H. R. Bilger Flicker noise in frequency fluctuations of lasers, Phys. Rev. Lett., 55, 700–702, 1985.
- 24 H. Gerhardt H. Welling A. Güttner Measurements of the laser linewidth due to quantum phase and quantum amplitude noise above and below threshold, Z. Phys., 253: 113–126, 1972.
- 25 R. Jayawardhama Mars pathfinder, Muse 1 (4): 32–33, 1977.
- 26 H. R. Bilger U. Schreiber G. E. Stedman Design and application of large perimeter ring lasers, Symp. Gyro Technol. 1996, Stuttgart, Germany, October 1996.
- 27 W. Schleich M. O. Scully H. G. von Garssen Quantum-noise quenching in the correlated spontaneous-emission laser as a multiplicative noise process, part I, A geometrical argument, Phys. Rev. A, 37: 1261–1269, 1988; part II, Rigorous analysis including amplitude noise, Phys. Rev. A, 37: 3010–3017, 1988.
- 28 M. A. M. Marte D. F. Walls Enhanced sensitivity of fiber-optic rotation sensors with squeezed light, J. Opt. Soc. Am., B4: 1849–1852, 1987.
- 29
J. T. Verdeyen
Laser Electronics,
3rd ed., Upper Saddle River, NJ:
Prentice-Hall,
1995.
10.2143/ETL.71.4.504870 Google Scholar
Reading List
- R. Anderson H. R. Bilger G. E. Stedman “Sagnac” effect: A century of earth-rotated interferometers, Am. J. Phys., 62: 975–985, 1994.
- S. Chapman J. Bartels Geomagnetism, vol. I, Oxford, UK: Clarendon Press, reprint 1951.
- B. Culshaw J. Dakin (eds.) Optical Fiber Sensors, vol. IV, Norwood, MA: Artech House, 1997.
- Defense Mapping Agency Hydrographic/Topographic Center, Handbook of Magnetic Compass Adjustment and Compensation, DMAHTC Publication No. 226.
- Director, Defense Mapping Agency Hydrographic Center, Washington DC, American Practical Navigator, vols. I–II. The 1977 edition is published by the Defense Mapping Agency Hydrographic Center, Washington, DC 1977. The first edition was published in 1802. These volumes are generally known as “Bowditch.”
-
H. Gerhardt
H. Welling
A. Güttner Measurements of the laser linewidth due to quantum phase and quantum amplitude noise above and below threshold, Z. Phys., 253: 113–126, 1972. Equation (8) had been proposed already by Townes, except for a factor
- G. Hochstrasser Détermination de formes et de largeurs de raies très fines en résonance magnétique nucléaire, Helv. Phys. Acta, 34: 189–239, 1961. This paper shows that with the nuclear magnetic resonance technique, the earth’s field can be measured at the earth’s surface down into the natural fluctuations of it, which are of the order of magnitude of 0.1 nT for short-term fluctuations, but can be as large as several tens of nanotesla over one day.
- J. A. Jacobs (ed.) Geomagnetism, vol. 1, London: Academic, 1987.
- R. T. Merrill M. W. McElhinny P. L. McFadden The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle, San Diego, CA: Academic Press, 1996.
- S. P. Parker (ed.) McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed., New York: McGraw-Hill, 1994. This dictionary has been used throughout this article for spelling and definition of scientific and technical terms.
- J. C. Smith F. G. Smith The American Ephemeris and Nautical Almanac for the year 1980, Washington DC: U.S. Government Printing Office, 1979. This is an annually issued volume since the original British edition of 1767. The data are predicted for each coming year. As the somewhat random announcements of leap seconds, up to twice annually, shows, the times in this Coordinated Universal Time System (UTC) are uncertain at a level of a fractional second, and the corresponding angular uncertainties are uncertain by up to several arcseconds. In the Atomic Time System (TAI), this type of error is greatly reduced.
- H. Statz et al. The multioscillator ring laser gyroscope, in M. L. Stitch and M. Bass (eds.), Laser Handbook, vol. 4, Amsterdam: North-Holland, 1985, pp. 229–332.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: